Relationship between Concentrations of Immunoreactive Insulin-Like Growth Factor-I in Follicular Fluid and Various Biochemical Markers of Differentiation in Bovine Antral Follicles

L. J. SPICER, S. E. ECHTERNKAMP, S. F. CANNING, and J. M. HAMMOND

Department of Medicine
Division of Endocrinology
The Milton S. Hershey Medical Center
The Pennsylvania State University
Hershey, Pennsylvania 17033

and

United States Department of Agriculture
Roman L. Hruska U. S. Meat Animal Research Center
Clay Center, Nebraska 68933

ABSTRACT

Three experiments were conducted to determine the relationship between concentrations of insulin-like growth factor-I (IGF-I) in ovarian follicular fluid and various biochemical markers of follicular differentiation in bovine follicles. In Experiment I, ovaries were removed on Days 7, 14, 28, 42, or 56 after parturition from a total of 21 cows. In Experiment II, ovaries of 31 cows were removed between Days 20 and 30 postpartum after 48 or 96 b of either saline (0.9% NaCl, 5 ml) or luteinizing hormone-releasing hormone (LHRH, 500 ng/5 ml saline) injections given every 2 b via jugular canulae. In Experiment III, ovaries of six cows were removed 48–50 b after a 35-mg injection of prostaglandin F\(_2\alpha\) during the midluteal phase of an estrous cycle. In Experiments I and II, all follicles > 8.0 mm in diameter were removed from each ovary (n = 33 and 46, respectively). In Experiment III, fluid from all follicles > 4 mm in diameter were removed individually (n = 10), and fluid from follicles 1–4 mm in diameter were pooled for each cow. Follicles for each experiment were further categorized as either estrogen-active (E-A, concentration of estradiol > progesterone in follicular fluid) or estrogen-inactive (E-I, concentration of progesterone > estradiol in follicular fluid). Measurements of immunoreactive IGF-I (i-IGF-I) were made after separating IGFs from their binding proteins with an acid-ethanol extraction. Levels of i-IGF-I in follicular fluid (72–149 ng/ml) did not significantly change with time postpartum (Experiment I) nor change in response to LHRH injections (Experiment II). In Experiment III, concentrations of i-IGF-I in fluid of 1–4 mm, 5–12-mm or >12-mm follicles did not differ (p>0.10). Although E-A follicles contained 15- to 61-fold greater levels of estradiol than E-I follicles across all three experiments, i-IGF-I levels did not differ (p>0.10) between E-A and E-I follicles. Also, in Experiments I and II, levels of androstenedione in follicular fluid and numbers of granulosa cell nuclear chordic gonadotropin (BCG) binding sites were not significantly correlated with levels of i-IGF-I in follicular fluid. However, a positive correlation was found between concentrations of i-IGF-I (range 11–248 ng/ml) and progesterone (range 19–1500 ng/ml) in fluid in E-I (but not E-A) follicles of Experiments I and II (r = 0.56, p<0.05, and r = 0.82, p<0.01, respectively). Levels of i-IGF-I in follicular fluid were also positively correlated with follicular diameter in E-A follicles of Experiment I (r = 0.62, p<0.05) and III (r = 0.72, p<0.05). Levels of i-IGF-I were negatively correlated with numbers of granulosa cell stimulating hormone binding sites (r = 0.54, p<0.01), numbers of thecal BCG binding sites (r = 0.33, p<0.05), and levels of prostaglandin F\(_2\alpha\) in E-I follicles of Experiment II. In summary, follicular differentiation in cattle accompanied by dramatic increases in follicular fluid levels of estradiol occurred without changes in levels of i-IGF-I. In contrast, increased concentrations of progesterone in follicular fluid were associated with increased levels of i-IGF-I in individual follicles. Thus, in contrast to results from in vitro studies, it seems unlikely that concentrations of IGF-I in follicular fluid are limiting for ovarian follicular estradiol production in vivo. However, results of the present study are consistent with the hypothesis that IGF-I levels in follicular fluid may regulate progesterone production in vivo.
INTRODUCTION

Previously, in vitro studies have established the ovarian granulosa cell as a site of insulin-like growth factor-I (IGF-I) action and secretion (Baranao and Hammond, 1984; Adashi et al., 1985b,c; Davoren et al., 1985; Hammond et al., 1985; Veldhuis et al., 1985ab). Specifically, IGF-I (i.e., Somatomedin-C) has been shown to enhance follicle-stimulating hormone (FSH)-stimulated estrogen and/or basal and FSH-stimulated progesterin production in murine (Adashi et al., 1985a,b,c; Davoren et al., 1985; 1986), bovine (Schams, 1987), and porcine granulosa cells (Baranao and Hammond, 1984; Veldhuis et al., 1985a,b; 1986a,b; 1987a,b; Maruo et al., 1988). In addition, the presence of high-affinity, low-capacity binding sites for IGF-I in granulosa cells of rats (Adashi et al., 1986, 1988b; Davoren et al., 1986) and pigs (Baranao and Hammond, 1984; Veldhuis et al., 1985b; Maruo et al., 1988) has been documented. More recently, the production of an immunoreactive IGF-I (i-IGF-I) by porcine granulosa cells in vitro has been reported (Hammond et al., 1985) and appears to be under hormonal (i.e., luteinizing hormone [LH], FSH, growth hormone [GH], and estradiol) control (Hsu and Hammond, 1987a,b). Although i-IGF-I levels in porcine follicular fluid increase with increased follicular size (Hammond et al., 1985; 1988), no other evidence has been reported supporting the notion that fluctuating levels of IGF-I regulate follicular differentiation in vivo.

Therefore, we measured concentrations of i-IGF-I, progesterone, androstenedione, and estradiol (E2) in follicular fluid, and numbers of gonadotropin receptors in the same follicles collected in two experiments. Previously, we have reported from these same studies that the steroidogenic capacity of large (> 8 mm) follicles increase with time postpartum (Spicer et al., 1986a) and in response to low-dose injections of luteinizing hormone-releasing hormone (LHRH) (Spicer et al., 1986b) in anovulatory cattle. Thus, in Experiments I and II, IGF-I levels were measured in follicular fluid previously assayed for steroids (Spicer et al., 1986a,b) to determine if i-IGF-I levels in fluid of large follicles changed with time postpartum or in response to low-dose injections of LHRH. A third experiment was conducted to determine if i-IGF-I levels in fluid of antral follicles were associated with follicular diameter or concentrations of E2, or progesterone in the same follicles collected during the preovulatory period of an estrous cycle in cattle.

MATERIALS AND METHODS

Experiment 1

Over an 8-wk period (July to September), 32 primiparous, suckled beef cows were slaughtered on either Day 7 (n = 6), 14 (n = 6), 28 (n = 6), 42 (n = 8), or 56 (n = 6) after parturition as previously reported (Spicer et al., 1986d). Only the anovulatory cows (as determined by absence of newly formed corpora lutea and/or serum progesterone < 1 ng/ml) were used in the present study. The number of anovulatory cows on Days 7, 14, 28, 42, and 56 were 6, 6, 5, 3, and 1, respectively. Within 30 min of slaughter, ovaries were removed and placed on ice; all follicles > 8.0 mm in diameter were removed from each pair of ovaries. Follicles were dissected free of ovarian stroma, diameters were recorded, and follicular fluid was collected as described (Spicer et al., 1986a). Follicular fluid was stored frozen at −20°C until concentrations of progesterone, androstenedione, and E2 were determined by radioimmunoassay as previously described (Ireland and Roche, 1982; Spicer et al., 1986a).

Immunoreactive IGF-I (i-IGF-I) in follicular fluid was determined by radioimmunoassay after an acid-ethanol extraction to dissociate IGFs from their binding protein as previously described (Hammond et al., 1985; 1988). Briefly, aliquots of follicular fluid were diluted 1:4 with 87.5% acidic ethanol (0.25 N HCl final concentration) and incubated overnight at 4°C. The samples were then centrifuged for 30 min at 1200 × g at 4°C. After neutralization with 0.855 M tris(hydroxymethyl)aminomethane (TRIS), an aliquot of the supernatant was then used in the radioimmunoassay. This extraction procedure resulted in parallelism between the IGF-I standard and bovine follicular fluid (Fig. 1). The IGF-I intra- and interassay coefficients of variation were 5.3 and 8.4%, respectively. Stability of i-IGF-I in follicular fluid was evaluated by freeze-thawing a pool of bovine follicular fluid (Fig. 1). The IGF-I intra- and interassay coefficients of variation were 5.3 and 8.4%, respectively. Stability of i-IGF-I in follicular fluid was evaluated by freeze-thawing a pool of bovine follicular fluid 1, 3, 9, or 27 times. Three, 9, or 27 freeze-thaw cycles (vs. 1 freeze-thaw cycle) had no significant effect on the concentration of i-IGF-I. The concentration of i-IGF-I after 3, 9, and 27 freeze-thaw cycles was 97, 98, and 98%, respectively, of that measured after one freeze-thaw. Similarly, Furlanetto and Marino (1987) have reported that serum exposed to 9 repetitive freeze-thaw cycles did not alter i-IGF-I levels.
IGF-I LEVELS IN BOVINE OVARIAN FOLLICLES

FIG. 1. Competition of acid-ethanol-treated bovine follicular fluid in the insulin-like growth factor-I (IGF-I) radioimmunoassay. A pool of follicular fluid from >8 mm follicles collected from postpartum cattle was treated with acid-ethanol as described in Materials and Methods. Increasing volumes of this follicular fluid extract were lyophilized and reconstituted in assay buffer and expressed in µl follicular fluid equivalents added per tube as percentage of total binding (Buffer Control) of [125I]iodo-IGF-I (Amgen Biologicals, Thousand Oaks, CA) on a log-logit plot. Displacement curve for authentic IGF-I (Amgen Biologicals) is also shown.

Granulosa and thecal layers were removed via blunt dissection, quickly frozen, and stored at −70°C in phosphate-buffered saline (PBS): 20% glycerol (vol:vol) until numbers of human chorionic gonadotropin (hCG) and follicle-stimulating hormone (FSH) binding sites (expressed as dpm/µg DNA) were determined by saturation analysis as previously described (Ireland and Roche, 1982; Spicer et al., 1986a; Spicer and Ireland, 1986). The distribution of numbers of cows and follicles processed in each treatment group is listed in Table 1. Of cows that had initiated estrous cyclicity, first ovulation occurred 41 ± 1 days after parturition (Spicer et al., 1986d).

Analysis of variance, with “days after parturition” as the main effect, was used to determine changes in levels of follicular i-IGF-I, steroids, or gonadotropin binding. Data from cows on Days 42 and 56 were combined to form a group identified as Days 42–56 (n = 4). Results of analysis of variance were similar whether “cow” or “follicle” was used as the replicate

TABLE 1. Distribution of numbers of cows and follicles processed for Experiments I and II.

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>No. of cows*</th>
<th>No. of follicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Day 14</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Day 28</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Day 42–56</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Experiment II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 h saline</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>96 h saline</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>48 h LHRH*</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>96 h LHRH</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

*Total number of cows in each experimental group from which follicles were collected.

* LHRH = luteinizing hormone-releasing hormone.

within experimental groups. Differences between means were determined using Fisher’s Protected Least-Significant mean test (Ott, 1977). In addition, i-IGF-I levels were evaluated after follicles were categorized as estrogen-active (E-A; concentrations of E2 > progesterone in follicular fluid) or estrogen-inactive (E-I; concentrations of progesterone > E2 in follicular fluid), since E-A follicles in cattle are predominantly healthy (nonatretic) follicles (Ireland and Roche, 1982). Student’s t-test was used for comparisons of two means.

Experiment II

Over a 3-wk period (September to October), 31 pluriparous, suckled beef cows were allotted to one of four treatment groups as described (Spicer et al., 1986c). All cows used in the present study were anovulatory on the basis of absence of newly formed corpora lutea and/or serum progesterone <1 ng/ml. Briefly, treatments were begun on Day 21 after parturition and were 1) injections of saline for 48 h, n = 6; 2) injections of saline for 96 h, n = 7; 3) injections of LHRH for 48 h, n = 9; and 4) injections of LHRH for 96 h, n = 9. Saline (0.9% NaCl, 5 ml) and LHRH (Beckman, Palo Alto, CA; 500 ng/5 ml saline) were injected i.v. at 2-h intervals via a jugular cannula. Two hours after the last injection, all cows were ovarioctomized under local anesthesia (2% procaine HCl) by inserting a 50-cm serrated spay scissors through an incision in the dorsal wall of the vagina. Immediately after ovarioectomy, ovaries were placed on ice and processed as described for Experiment I.
Concentrations of progesterone, androstenedione, E₂, and i-IGF-I in follicular fluid, and numbers of hCG (LH) and FSH binding sites were quantified as in Experiment I. The distribution of numbers of cows and follicles processed in each treatment group is listed in Table 1. LHRH treatment induced LH and FSH pulses in all cattle but did not induce ovulation in any of the cows within the 96-h period studied (Spicer et al., 1986c).

Data were subjected to factorial analysis of variance with “LHRH” and “interval of injection” as main effects and interactions to determine changes in levels of follicular fluid i-IGF-I, steroids, or gonadotropin binding. Mean differences were determined using Fisher’s Protected Least Significant Difference mean test (Ott, 1977). As in Experiment I, i-IGF-I levels were evaluated after follicles were categorized as either E-A or E-I. Student’s t-test was used for comparisons of two means.

Experiment III

Six pluriparous beef cows exhibiting regular estrous cycles were synchronized with a 35-mg prostaglandin F₂α (PGF₂α; lutilase, Upjohn Co., Kalamazoo, MI) injection (i.m.) during the midluteal phase. Ovaries were collected 48–50 h after PGF₂α. Ovariotomies were performed as described in Experiment II. Blood was collected for progesterone determinations to verify that luteal regression had occurred. Immediately after ovariectomy, ovaries were placed on ice. The surface diameter of all follicles >4 mm were recorded and their follicular fluid was collected individually. Follicular fluid from all follicles 1–4 mm in diameter were collected and pooled for each cow. Follicular fluid was stored at −20°C until concentrations of i-IGF-I, E₂, and progesterone were quantified as in Experiment I.

Data were grouped into three sizes (1–4 mm, 5–12 mm, and >12 mm) and subjected to analysis of variance with “size of follicle” as the main effect to determine if i-IGF-I or steroids in follicular fluid varied with follicular size. In addition, i-IGF-I levels were evaluated after follicles were categorized as either E-A or E-I as in Experiments I and II. Student’s t-test was used for comparisons of two means.

Experiment I

Concentrations of i-IGF-I in follicular fluid of large (>8 mm) follicles did not change (p>0.10) with time postpartum; i-IGF-I averaged 139 ± 13, 137 ± 13, 143 ± 10, and 147 ± 15 on Days 7, 14, 28, and 42–56, respectively. In contrast, concentrations of E₂ in fluid of these same follicles increased from 48 ± 24 ng/ml to 273 ± 83 ng/ml between Days 7 and 28 postpartum (p<0.05). Likewise, follicles classified as E-A contained 28-fold greater concentrations of E₂ than E-I follicles (p<0.01) whereas i-IGF-I levels did not differ between E-A and E-I follicles (p>0.10) (Table 2). Progesterone levels were 2-fold greater in E-I than in E-A follicles (p<0.05). Concentrations of androstenedione (Table 2), numbers of [¹²⁵I]iodo-hCG binding sites in thecal cells (average = 337 ± 56 dpm/μg DNA) and granulosa cells (average = 878 ± 165 dpm/μg DNA), and numbers of [¹²⁵I]iodo-FSH binding sites in granulosa cells (Table 2) did not differ between E-A and E-I follicles. However, concentrations of i-IGF-I were correlated with progesterone levels in E-I follicles (r = 0.56, Fig. 2A), and with

![Graph](image-url)
 IGFBP-1 LEVELS IN BOVINE OVARIAN FOLLICLES

TABLE 2. Concentrations of immunoreactive insulin-like growth factor-I (IGF-I), estradiol (E2), progesterone (P), and androstenedione (A) in follicular fluid and numbers of [125I]iodo-follicle-stimulating hormone (FSH) binding sites in granulosa cells of large follicles categorized as either estrogen-active (E-A) or estrogen-inactive (E-I).

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(n)b</th>
<th>Average diameter (mm)</th>
<th>i-IGF-I</th>
<th>E2</th>
<th>P</th>
<th>A</th>
<th>[125I]iodo-FSH (dpm/μg DNA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-A</td>
<td>12</td>
<td>11.6 ± 0.4c</td>
<td>149 ± 7</td>
<td>338 ± 45c</td>
<td>96 ± 5c</td>
<td>14 ± 4</td>
<td>574 ± 41</td>
</tr>
<tr>
<td>E-I</td>
<td>21</td>
<td>9.2 ± 0.3d</td>
<td>136 ± 9</td>
<td>12 ± 3d</td>
<td>197 ± 53d</td>
<td>18 ± 3</td>
<td>644 ± 93</td>
</tr>
<tr>
<td>(range)</td>
<td>(8.0-14.2)</td>
<td></td>
<td>(75-230)</td>
<td>(1-606)</td>
<td>(38-1065)</td>
<td>(4-49)</td>
<td>(139-1652)</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-A</td>
<td>17</td>
<td>11.3 ± 0.6</td>
<td>72 ± 12</td>
<td>180 ± 25c</td>
<td>60 ± 6c</td>
<td>19 ± 5</td>
<td>1364 ± 223c</td>
</tr>
<tr>
<td>E-I</td>
<td>29</td>
<td>9.9 ± 0.4</td>
<td>81 ± 11</td>
<td>12 ± 3d</td>
<td>333 ± 79d</td>
<td>16 ± 3</td>
<td>933 ± 166d</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-A</td>
<td>7</td>
<td>12.1 ± 1.4</td>
<td>146 ± 28</td>
<td>680 ± 92c</td>
<td>47 ± 8c</td>
<td>NDc</td>
<td>ND</td>
</tr>
<tr>
<td>E-I</td>
<td>3</td>
<td>9.3 ± 1.5</td>
<td>181 ± 35</td>
<td>16 ± 5d</td>
<td>217 ± 46d</td>
<td>NDc</td>
<td>ND</td>
</tr>
<tr>
<td>(range)</td>
<td>(6-19)</td>
<td></td>
<td>(50-292)</td>
<td>(3-1021)</td>
<td>(25-274)</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

aE-A = E2, concentration > P concentration in follicular fluid; E-I = P concentration > E2 concentration in follicular fluid. Values are means ± SE.
bNumber of follicles.
c, d, For each experiment, means within a column with different superscripts differ (p<0.05).
cND, Not determined.

dFollicular diameter (r = 0.62) and numbers of LH binding sites in granulosa cells of E-A follicles (r = 0.46) (Table 3). Other correlations were not significant (p>0.10, see Table 3).

Experiment II

LHRH treatment or interval of injections did not affect concentrations of I-IGF-I in follicular fluid of large (>8 mm) follicles, I-IGF-I averaged 83 ± 12 and 70 ± 12 ng/ml in LHRH- and saline-treated cows, respectively. Therefore, all follicles were classified as either E-A or E-I as described in Experiment I (see Table 2). Although concentrations of E2 were 15-fold greater in E-A than in E-I follicles, I-IGF-I levels were similar (p>0.10). Progesterone levels were nearly 6-fold greater in E-I than in E-A follicles (p<0.05). Concentrations of androstenedione (Table 2), and numbers of [125I]iodo-hCG binding sites in thecal cells (average = 443 ± 88 dpm/μg DNA) and granulosa.

TABLE 3. Correlations between concentrations of insulin-like growth factor-I (IGF-I) in follicular fluid and progesterone (P), androstenedione (A), and estradiol (E2), concentrations in follicular fluid, follicular diameter, and numbers of gonadotropin receptors (R) in granulosa cells (GC) and theca (T).

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(n)</th>
<th>Diameter</th>
<th>P</th>
<th>A</th>
<th>E2</th>
<th>GC-LH-R</th>
<th>GC-FSH-R</th>
<th>T-LH-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-A</td>
<td>12</td>
<td>0.62**</td>
<td>-0.34</td>
<td>-0.02</td>
<td>0.19</td>
<td>0.46*</td>
<td>-0.12</td>
<td>-0.31</td>
</tr>
<tr>
<td>E-I</td>
<td>21</td>
<td>0.04</td>
<td>0.56***</td>
<td>-0.30</td>
<td>0.11</td>
<td>-0.07</td>
<td>0.21</td>
<td>0.26</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-A</td>
<td>17</td>
<td>0.23</td>
<td>0.34*</td>
<td>0.20</td>
<td>0.10</td>
<td>0.13</td>
<td>-0.29</td>
<td>-0.13</td>
</tr>
<tr>
<td>E-I</td>
<td>30</td>
<td>0.04</td>
<td>0.82***</td>
<td>-0.14</td>
<td>-0.45***</td>
<td>0.28*</td>
<td>-0.54***</td>
<td>-0.33**</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-A</td>
<td>7</td>
<td>0.72**</td>
<td>0.56*</td>
<td>NDc</td>
<td>-0.57*</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

*p<0.10.
**p<0.05.
***p<0.01.
aE-A = Estrogen-active.
bE-I = Estrogen-inactive.
cND = Not determined.
cells (average = 1446 ± 240 dpm/µg DNA) did not differ between E-A and E-I follicles. However, in E-I follicles, concentrations of i-IGF-I were positively correlated with progesterone levels \((r = 0.82, p<0.01)\) (Fig. 2B) and with numbers of LH binding sites in granulosa cells \((r = 0.28, p<0.10)\). Levels of i-IGF-I were negatively correlated with E2 levels \((r = -0.45)\), numbers of FSH binding sites in granulosa cells \((r = -0.54)\) and numbers of LH binding sites in thecal cells \((r = -0.33)\) (Table 3). Other correlations were not significant \((p>0.10, \text{Table 3})\).

Experiment III.

Concentrations of i-IGF-I and progesterone in fluid of 1–4 mm, 5–12 mm or >12 mm follicles did not differ \((p>0.10)\) among size groups (Table 4). In contrast, E2 was lower \((p<0.05)\) in 1–4 mm than in 5–12 mm or >12 mm follicles. Although follicles classified as E-A had 61-fold greater \((p<0.01)\) concentrations of E2, i-IGF-I levels were similar \((p>0.10)\) (Table 2). Progesterone levels were 2.6-fold greater in E-I than in E-A follicles \((p<0.05)\). Because of the low number of E-I follicles >4 mm \((n = 3)\), correlation coefficients between i-IGF-I and E2 or progesterone were not calculated. However, in E-A follicles \((n = 7)\), concentrations of i-IGF-I were significantly correlated with diameter \((r = 0.72, p<0.05)\), and tended to correlate positively with progesterone levels \((r = 0.56, p<0.10)\) and inversely with E2 levels \((r = -0.57, p<0.10)\).

DISCUSSION

Substantial evidence from in vitro experiments supports the notion that IGF-I at physiological concentrations (10–200 ng/ml) is stimulatory to granulosa cell steroidogenesis (Adashi et al., 1984; 1985a,b,c; Baranao and Hammond, 1984; Davoren et al., 1985; Hammond et al., 1985; Veldhuis et al., 1985a,b; 1986a; 1987a,b; Schams, 1987; Hutchinson et al., 1988). However, it is more difficult to establish the importance of IGF-I in ovarian function in vivo. Thus, the present studies were undertaken to examine in detail the relationship between intrafollicular levels of IGF-I and various biochemical markers of follicular differentiation in individual follicles of cattle. Although we observed that concentrations of IGF-I in large (>8 mm) follicles did not change with time postpartum or in response to LHRH injections, intrafollicular IGF-I levels were significantly correlated with several markers of follicular differentiation. The fact that concentrations of IGF-I were positively correlated with concentrations of progesterone in fluid from both E-A and E-I follicles of Experiments I, II, and/or III supports results of in vitro studies that have shown IGF-I as a potent stimulator (5- to 20-fold increase) of progesterone production by murine, bovine, and porcine granulosa cells (Adashi et al., 1984; 1985a,b,c,d; Baranao and Hammond, 1984; Veldhuis et al., 1985a; 1986a; 1987a,b; Davoren et al., 1986; Schams, 1987). In comparison, IGF-I is a much weaker (<5-fold increase) stimulator of E2 production in cultured murine and porcine granulosa cells (Adashi et al., 1985a; Davoren et al., 1985; 1986; Veldhuis et al., 1985a), and this could explain, in part, why levels of E2 and IGF-I in follicular fluid were not positively correlated in the present studies. In fact, levels of IGF-I and E2 were negatively correlated in E-I follicles of Experiment II and in E-A follicles of Experiment III. This finding was surprising yet not without precedent, since Veldhuis et al. (1983) reported inhibitory effects of 1 µg/ml insulin (a dose known to cross-react with the IGF-I receptor; Veldhuis et al., 1985b) on porcine granulosa cell aromatase in vitro. Although the current studies suggest that IGF-I is not rate-limiting for follicular E2 production in cattle, they do not exclude the possibility that IGF-I acts as a permissive yet necessary factor for E2 synthesis.

A significant positive correlation between follicular diameter and IGF-I levels was found in Experiments I and III, whereas only a weak positive correlation was observed in Experiment II of the present studies. These data are in partial agreement with those of Hammond et al. (1985) who reported that pooled fluid of large (>6 mm) porcine follicles contained 65% greater IGF-I levels than small (<3 mm) follicles. In addition, Hammond et al. (1988) reported that concentrations of i-IGF-I in follicular fluid (pooled within animal) increased coincident with an increase

TABLE 4. Concentrations of immunoreactive insulin-like growth factor-I (i-IGF-I), estradiol (E2) and progesterone (P) in follicular fluid of various-sized follicles in Experiment III.

<table>
<thead>
<tr>
<th>Diameter</th>
<th>(n)</th>
<th>i-IGF-I (ng/ml follicular fluid)</th>
<th>E2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td><4 mm</td>
<td>6</td>
<td>170 ± 30</td>
<td>25 ± 18b</td>
<td>54 ± 12</td>
</tr>
<tr>
<td>5–12 mm</td>
<td>5</td>
<td>156 ± 32</td>
<td>312 ± 135c</td>
<td>132 ± 52</td>
</tr>
<tr>
<td>>12 mm</td>
<td>5</td>
<td>156 ± 32</td>
<td>650 ± 159c</td>
<td>64 ± 13</td>
</tr>
</tbody>
</table>

b,c: Number of cows for <4 mm group, and number of individual follicles for 5–12 mm and >12 mm groups.

b,c: Means within a column with different superscripts differ \((p<0.05)\).
in follicular size during preovulatory follicular development in gonadotropin-treated prepubertal gilts. Since these studies in swine evaluated a broader spectrum of follicular sizes than the present studies, perhaps a more consistent correlation would have been observed in E-A and E-I follicles across Experiments I and II if follicles < 8 mm in diameter had been evaluated, as in Experiment III.

In both Experiments I and II, significant positive correlation between IGF-I levels and numbers of granulosa cell LH binding sites was observed. In agreement with our findings, IGF-I has been found to augment (by over 3-fold) FSH-induced increases in LH binding without affecting basal LH binding in cultured rat (Adashi et al., 1985d) and pig granulosa cells (Maruo et al., 1988). Although responsiveness of granulosa cells to FSH appears to be enhanced with addition of IGF-I (Adashi et al., 1985a,c; Davoren et al., 1985; 1986; Veldhuis et al., 1985a; 1987a; Maruo et al., 1988), this effect in rat granulosa cells is not accompanied by an increase in the number of FSH receptors (Adashi et al., 1988a). In comparison, we observed a significant negative correlation between IGF-I levels and numbers of granulosa cell FSH binding sites and thecal cell LH binding sites in E-I follicles in Experiment II. Further studies are needed to determine if numbers of thecal LH receptors are modulated by IGF-I.

The source of IGF-I in ovarian follicular fluid is uncertain. Since recent studies have shown that porcine granulosa cells can secrete immunoreactive IGF-I in vitro (Hammond et al., 1985; Hsu and Hammond, 1987a,b), local production of IGF-I within the follicle seems likely. However, IGF-I derived from serum and thecal cells must also be considered. It is also possible that changing follicular permeability to serum-derived IGF-I may modulate concentrations of IGF-I in follicular fluid. These possibilities await further elucidation. Regardless of the source of follicular fluid IGF-I, the concentrations measured in follicular fluid of the present studies are within the range of concentrations that have been shown to be effective in stimulating steroidogenesis (Schams, 1987) and proliferation (Savion et al., 1981) of bovine granulosa cells in vitro.

In summary, dramatic increases in concentrations of E2 in follicular fluid were not associated with increases in levels of IGF-I during spontaneous and LHRH-induced follicular development in cattle. Thus, these data do not support the hypothesis that IGF-I levels in follicular fluid enhance estrogen biosynthesis in vivo, although a permissive role for IGF-I cannot be excluded. In fact, two of three studies revealed an inverse relationship between IGF-I and E2. On the other hand, increased concentrations of progesterone in follicular fluid were associated with increased levels of IGF-I, and thus support the hypothesis that IGF-I levels in follicular fluid regulate progesterone biosynthesis in vivo.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Dr. K. Leung and S. Lyth for technical assistance; Drs. J. J. Van Wyk and L. E. Underwood for providing the IGF-I antiserum through the National Hormone and Pituitary Program; Dr. M. R. Swiram (Montreal, Quebec, Canada) for supplying highly purified ovine FSH; Dr. G. D. Niswender (Colorado State University) for supplying antisera to androstenedione; the National Hormone and Pituitary Program for supplying bovine LH and hCG (Cr-I19); and Mrs. Sandra J. Christian for her excellent secretarial assistance.

REFERENCES