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Technical Note: Calculation of standard errors of estimates of genetic
parameters with the multiple-trait derivative-free restricted
maximal likelihood programs

S. D. Kachman*! and L. D. Van Vleck??

*Department of Statistics, University of Nebraska, Lincoln 68583-0963; and TUSDA, ARS,
Roman L. Hruska US Meat Animal Research Center, Lincoln, NE 68583-0908

ABSTRACT: The multiple-trait derivative-free
REML set of programs was written to handle partially
missing data for multiple-trait analyses as well as sin-
gle-trait models. Standard errors of genetic parameters
were reported for univariate models and for multiple-
trait analyses only when all traits were measured on
animals with records. In addition to estimating (co)vari-
ance components for multiple-trait models with par-
tially missing data, this paper shows how the multiple-
trait derivative-free REML set of programs can also
estimate SE by augmenting the data file when not all
animals have all traits measured. Although the stan-
dard practice has been to eliminate records with par-
tially missing data, that practice uses only a subset of
the available data. In some situations, the elimination

of partial records can result in elimination of all the
records, such as one trait measured in one environment
and a second trait measured in a different environment.
An alternative approach requiring minor modifications
of the original data and model was developed that pro-
vides estimates of the SE using an augmented data
set that gives the same residual log likelihood as the
original data for multiple-trait analyses when not all
traits are measured. Because the same residual vector
is used for the original data and the augmented data,
the resulting REML estimators along with their sam-
pling properties are identical for the original and aug-
mented data, so that SE for estimates of genetic param-
eters can be calculated.
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©2007 American Society of Animal Science. All rights reserved.

INTRODUCTION

The multiple-trait derivative-free REML
(MTDFREML; Boldman et al., 1995) set of programs
was written to handle single-trait models and multiple-
trait models with partially missing data in an expedient
manner. When estimating (co)variance components and
genetic parameters for multiple-trait models, the pro-
grams have not been able to estimate SE of those esti-
mates for multiple-trait models when animals with ob-
servations do not have all traits measured.

When some traits were not recorded on some units
(e.g., animals), the standard approach used has been
to discard incompletely recorded units. In the worst
case, when males have one trait measured and females
have another trait measured, there are no animals that
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have both traits measured. A similar case is observed
for genotype by environment interaction, where some
animals have records in one environment and other
(some related) animals have records in another envi-
ronment.

Although the program uses a derivative-free algo-
rithm (simplex) to minimize -2logL|y, where Ly is the
likelihood (L) given the data (y), the asymptotic SE for
single-trait analyses and multiple-trait analyses with
all traits measured are based on the average informa-
tion matrix (AIM; Johnson and Thompson, 1995) as
implemented by Dodenhoff et al. (1998).

MATERIALS AND METHODS

Animal Care and Use Committee approval was not
obtained for this study because no animals were used.

The limitation that all animals with observations
have all traits measured can be overcome without any
changes in the set of MTDFREML programs. A model-
based procedure will be described to accomplish that
goal, which makes use of properties of the mixed model
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equations. The relatively trivial changes in the data
file and model will be described.

Each missing observation for a trait is assigned a
unique level of a dummy factor associated with that
trait. Each missing observation can be assigned the
same arbitrary pseudo-value. The program accepts that
value as a real observation. The result is that the pro-
gram handles the analysis as if all traits were observed
for each animal with records. In essence, the estimated
residual element associated with the pseudo-observa-
tion is a structural zero because the pseudo-observation
is alone in a unique level of the newly created fixed
factor. Because structural zeros in the estimated resid-
ual vector contribute nothing to the AIM, the resulting
AIM is the same as if it was computed with a more
complex algorithm. Similarly, L|y also is the same as
if it was computed with missing observations ignored.
(See Appendix for proof of equivalence.)

RESULTS

Revised Data File

The simplest case is when the data line for an animal
that includes a missing measurement for a trait in-
cludes the levels of fixed factors that would have been
associated with an actual measurement. (Often these
would be the same as for another trait that has an
observation.) As an example, consider the 2-trait analy-
sis for the data file partially represented in Table 1,
which is the data file used by K. Meyer (University of
New England, Armidale, New South Wales, Australia,
unpublished data) as an example with early versions of
her DFREML program but now with some observations
missing. The table presents data for the first 20 of 284
mice. Observations on the 2 traits are in the last 2
columns. A -99.00 represents a pseudo-value for a miss-
ing observation. Actual observations will be assigned
level 1 for the dummy factor (MTDFREML does not
accept 0 as a valid level). Each missing observation for
a trait will be assigned a unique level for the dummy
factor. An easy-to-program method is to assign level 2
for the first missing observation, level 3 for the next,
etc. This assignment of levels would be done for each
trait. Table 1 shows the result for the first 20 animals
that includes all animals with missing observations.
The first animal has trait 1 measured so field m1 has
a 1 for the level, but the first animal does not have trait
2 measured so field m2 has a 2 as the first unique level.
Animal 2 has both traits measured, so fields m1 and
m2 are both 1. The third animal is missing trait 1 but
has trait 2, so m1 is 2 and m2 is 1. Animal 8 is missing
both traits and both would represent the second missing
observation, so m1 and m2 will both be 3. The pattern
for the remaining missing observations is obvious. For
the first 20 animals shown for the data file, trait 1
has 3 missing observations with corresponding unique
levels for m1 of 2, 3, and 4. Trait 2 has 2 missing obser-
vations with corresponding unique levels for m2 of 2
and 3.

Kachman and Van Vleck

For the analysis with MTDFREML, an additional
fixed factor is used for each trait (fields m1 and m2).
In this example, levels for gn (generation), sx (sex), and
n{¢ (number in litter) are the same for both traits and
are present even for the eighth animal, which is missing
both traits. A suitable strategy for handling the case
when some of the levels for those 3 factors are missing
will be described later. Note that the pseudo-values
—99.00 will now be treated as actual observations in
the analysis with MTDFREML.

For trait 1 alone with the full model including mater-
nal effects, —2logL|y is 744.53 for the analysis with miss-
ing observations treated as missing and also is 744.53
for the analysis with —99.00 treated as observed mea-
surements for trait 1 but with the fixed factor m1 added
to the model. Estimates of variance components and
genetic parameters as well as the average information
matrix and asymptotic SE of the genetic parameters are
also the same for both analyses. Similarly, estimates of
estimable functions of the fixed effects are the same
although the analysis with —99.00 as pseudo measure-
ments also has estimates for levels 1,..., 6 of m1.

Choice of a Pseudo-Value for a Missing
Observation

When 0.00 is substituted for —-99.00 to denote a miss-
ing measurement, the —2logL. and estimates of (co)vari-
ance components and genetic parameters with SE are
the same as when -99.00 is used. Although estimates
of levels for some fixed factors can be different, esti-
mates of estimable functions will be the same. Esti-
mates for levels of m1 are greater by 99.00 when 0.00
rather than —99.00 is substituted for missing values.
That difference forces the residual effects for missing
observations to be zero in both cases. The solution for
level 1 of m1 was constrained to zero for both analyses
(when -99.00 and 0.00 were substituted for missing
values). As had to happen, similar analyses of trait 2
resulted in the same results.

Different pseudo-values could be assigned to different
missing observations because the key step is to have
only 1 missing observation within a level of m1 or m2.
Assignment of the same pseudo-value for each missing
observation is usually the easiest way to modify the
data file.

Assignment of Levels of Other Factors
for Missing Observations

Often a missing observation will not have levels asso-
ciated with fixed factors as will actual observations.
The question then is what levels of these fixed factors
should be assigned when pseudo-observations are ana-
lyzed within unique levels of factor m1 (and/or m2).
Three options for an analysis of a single trait were tried:
1) a unique level different from those associated with
actual observations was used (in the example, level 10
was used for generation, sex, and number in the litter
when actual levels were 1 to 3, 1 to 2, and 1 to 7); 2)
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Table 1. Data file for the first 20 of 284 mice, modified to create levels for a dummy factor
(m1) for trait 1 and a dummy factor (m2) for trait 2 which will allow analysis as if the
missing value indicators (-99.00) are actual observations for m1 and m2'?

An ID Sire Dam gn SX nl lit ml m2 nl t1 t2

20101 11012 10101 1 1 4 1 1 2 4. 22.50 -99.00
20102 11012 10101 1 1 4 1 1 1 4. 22.60 52.40
20103 11012 10101 1 1 4 1 2 1 4. -99.00 61.10
20104 11012 10101 1 1 4 1 1 1 4. 23.00 57.90
20112 11012 10101 1 2 4 1 1 1 4. 24.60 69.30
20113 11012 10101 1 2 4 1 1 1 4. 26.40 66.40
20114 11012 10101 1 2 4 1 1 1 4. 24.10 61.60
20115 11012 10101 1 2 4 1 3 3 4. -99.00 -99.00
20302 10614 10506 1 1 7 2 1 1 7. 23.60 60.10
20303 10614 10506 1 1 7 2 1 1 7. 24.20 60.80
20304 10614 10506 1 1 7 2 1 1 7. 22.50 62.80
20306 10614 10506 1 1 7 2 1 1 7. 22.30 59.40
20312 10614 10506 1 2 7 2 1 1 7. 23.70 66.90
20313 10614 10506 1 2 7 2 1 1 7. 27.50 72.90
20314 10614 10506 1 2 7 2 1 1 7. 17.30 58.40
20401 10813 10701 1 1 2 3 1 1 2. 20.30 58.10
20402 10813 10701 1 1 2 3 4 1 2. —-99.00 58.70
20403 10813 10701 1 1 2 3 1 1 2. 21.90 53.20
20404 10813 10701 1 1 2 3 1 1 2. 22.10 57.10
20413 10813 10701 1 2 2 3 1 1 2. 28.80 62.50

Level 1 is for the actual records. Other levels for m1 and m2 are unique for each missing observation
within trait (2,..., 6 for trait 1 and 2,..., 9 for trait 2 for the augmented data set).

2gn = generation; sx = sex; nl = number in litter; m1 = dummy factor for trait 1; m2 = dummy factor for
trait 2; n1 = number in litter if used as a covariate; t1 = trait 1; t2 = trait 2.

level 1 was assigned to gn, sx, and nl when a pseudo-
observation was analyzed as a real observation; and 3)
the last level of gn (3), sx (2), and nl (7) was assigned.
As expected, results were the same as those described
before for —2logLly, estimates of variance components
and genetic parameters, and estimable functions of esti-
mates of fixed effects.

From a practical standpoint, assigning a different
unique level from those for actual observations for each
fixed factor would seem preferable. The output file from
MTDFPREP, MTDF66, will then provide means for
each level of each factor for checking. This combines
both the pseudo-observations and actual observations
(see Table 2). The means for levels with actual observa-
tions would be actual means and means for the different
level would be the missing value (pseudo-values of 0.00
or —99.00, etc.). The overall mean and unadjusted SD
in MTDF66, however, would be calculated from a mix-
ture of actual and pseudo-observations. Note that the
mean for level 1 of m1 (missing 1) is the unadjusted
mean for actual measurements.

The proceeding analyses were exploratory as SE have
been available for single-trait analyses even without
the trick of assigning pseudo-values for missing obser-
vations nested within unique levels of another fixed
factor. The real strength is in the enhanced capability
to estimate SE of genetic correlations with partially
missing data.

Two-Trait Analyses

Two-trait analyses were also done with the preceding
ways of handling missing observations. As before,

—2logL, estimates of variance components and genetic
parameters, and estimates of estimable functions of
fixed effects were the same when missing observations
were excluded or included as pseudo-observations as-
signed unique levels of fixed factor m1 for trait 1 and
fixed factor m2 for trait 2 for the case when levels of
the other fixed factors were already available.

When levels of the other fixed factors are not available
for missing observations, then modifications of the
fields for fixed factors are needed. The options could be
as described earlier, taking care not to modify the levels
for a field shared by a trait with real measures when
modifying levels of the same field for a pseudo measure-
ment of another trait. An easy solution is to have sepa-
rate fields for each trait. In contrast to the usual analy-
sis that would include fixed effects for gn, sx, and nl
for trait 1 and trait 2, the augmented analysis has a
model equation for trait 1 that has the fixed effects gn1,
sx1, and nll, whereas the model equation for trait 2
has gn2, sx2, and nl2. Table 3 shows how to accomplish
this in the example. Two extra sets of 3 fields were
added in addition to m1 and m2. The first line of Table
3 for missing trait 2 shows that the 3 extra fields for
trait 1 are the same as the original 3 fields, but the 3
extra fields for trait 2 now contain the level 10. For
data line 3, the 3 extra fields for trait 1 contain level
10, and the 3 extra fields for trait 2 are the original
levels. For data line 8, both sets of 3 extra fields contain
level 10. (Assigning first or last levels for each factor
would also work). In all 3 cases, the —2logL|y, estimates
of (co)variance components, genetic parameters, and
estimable functions of fixed effects were the same as
with excluding the missing observations from the anal-
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Table 2. A condensed copy of the summary file (MTDF66) from running MTDFPREP for
trait 1, with missing values (0.00) as actual observations using unique levels for each
missing value for factor (m1) and one unique level (10) for each other factor (generation,
sex, litter size) for missing values

No. of data lines in Unit 33 = 284
No. of integer variables per record = 15
No. of real variables per record = 3
No. of traits = 1
No. of animals with valid records = 284
No. of animals in A-1 = 329

Order of MME (before constraints)

721

Results for trait 1 — body weight (position 2)
No. of records = 284 (missing value: —999.0000; No. Missing = 0)

Trait Mean SD CV Min Max
1 23.6989 4.55254 19.21 0.000 34.500
No. of fixed effects = 4

1, 4 levels for generation

Levels Value No. % Mean

1 1 88 30.99 23.878
2 2 84 29.58 23.063
3 3 107 37.68 25.158
4 10 5 1.76 0.000

2, 3 levels for sex

Levels Value No. % Mean

1 1 147 51.76 22.700
2 2 132 46.48 25.709
3 10 5 1.76 0.000

3, 8 levels for litter size

Levels Value No. % Mean

1 1 11 3.87 26.609
2 2 40 14.08 23.783
3 3 25 8.80 24.864
4 4 34 11.97 24.053
5 5 94 33.10 24.393
6 6 45 15.85 24.333
7 7 30 10.56 21.973
8 10 5 1.76 0.000

4, 6 levels for ml

Level Value No. % Mean

1 1 279 98.24 24.124
2 2 1 0.35 0.000
3 3 1 0.35 0.000
4 4 1 0.35 0.000
5 5 1 0.35 0.000
6 6 1 0.35 0.000

Fixed effects = 4

Trait No. Name Position Levels Rows

1 1 generation 10 4 1to4

1 2 sex 11 3 5to 7

1 3 litter size 12 8 8 to 15
1 4 ml 8 6 16 to 21
1 1 animal w/ full A-1 1 329 22 to 350
1 1 maternal genetic effect 3 329 351 to 679
1 1 maternal permanent env 3 42 680 to 721

ysis. With each of these 3 assignments of fixed levels  aswell as the same —2logL,, estimates of genetic param-
along with dummy fixed factors m1 and m2, estimates  eters, and estimates of estimable functions of levels of
of SE of estimates of genetic parameters were obtained  fixed factors.
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Table 3. Data file for the first 20 of 284 mice for a 2-trait analysis modified to create levels for dummy fixed factors
(m1 for trait 1 and m?2 for trait 2) and also modified to create separate sets of fixed factors for traits 1 and 2, so that
the actual levels are used for actual observations but with a unique level used for a missing value (0.00) analyzed as

an actual observation!

Trait 1 Trait 2

An ID Sire Dam gn sx nl lit ml m2 Gnl Sx1 NI Gn2 Sx2 Lit2 NI2 tl t2

20101 11012 10101 1 1 4 1 1 2 1 1 4 10 10 10 4. 22.50 0.00
20102 11012 10101 1 1 4 1 1 1 1 1 4 1 1 4 4. 22.60  52.40
20103 11012 10101 1 1 4 1 2 1 10 10 10 1 1 4 4. 0.00 61.10
20104 11012 10101 1 1 4 1 1 1 1 1 4 1 1 4 4. 23.00  57.90
20112 11012 10101 1 2 4 1 1 1 1 2 4 1 2 4 4. 24.60 69.30
20113 11012 10101 1 2 4 1 1 1 1 2 4 1 2 4 4. 26.40  66.40
20114 11012 10101 1 2 4 1 1 1 1 2 4 1 2 4 4. 24.10 61.60
20115 11012 10101 1 2 4 1 3 3 10 10 10 10 10 10 4. 0.00 0.00
20302 10614 10506 1 1 7 2 1 1 1 1 7 1 1 7 7. 23.60  60.10
20303 10614 10506 1 1 7 2 1 1 1 1 7 1 1 7 7. 24.20 60.80
20304 10614 10506 1 1 7 2 1 1 1 1 7 1 1 7 7. 2250  62.80
20306 10614 10506 1 1 7 2 1 1 1 1 7 1 1 7 7. 22.30 59.40
20312 10614 10506 1 2 7 2 1 1 1 2 7 1 2 7 7. 23.70  66.90
20313 10614 10506 1 2 7 2 1 1 1 2 7 1 2 7 7. 27.50  72.90
20314 10614 10506 1 2 7 2 1 1 1 2 7 1 2 7 7. 17.30  58.40
20401 10813 10701 1 1 2 3 1 1 1 1 2 1 1 2 2. 20.30 58.10
20402 10813 10701 1 1 2 3 4 1 10 10 10 1 1 2 2. 0.00 58.70
20403 10813 10701 1 1 2 3 1 1 1 1 2 1 1 2 2. 21.90 53.20
20404 10813 10701 1 1 2 3 1 1 1 1 2 1 1 2 2. 22.10  57.10
20413 10813 10701 1 2 2 3 1 1 1 2 2 1 2 2 2. 28.80 62.50

n this example, level 10 for gn, sx, and nl, which are not actual levels, where gn = generation, sx = sex, nl = number in litter; m1 =
dummy factor for trait 1; m2 = dummy factor for trait 2. Gnl = generation, Sx1 = sex, and nll = number in litter for trait 1. Gn2 = generation,
Sx2 = sex, and N12 = number in litter for trait 2. t1 = trait 1; t2 = trait 2.

A rigorous test of the method was to develop a file
(Table 4) with trait 1 measured only for sex 1 and trait
2 only for sex 2. Thus, trait 2 would always be missing
for animals of sex 1 and trait 1 would always be missing
for animals of sex 2. As before, each missing observation
(0.00) for trait 1 was assigned a unique level for factor
ml, and each missing observation for trait 2 was as-
signed a unique level for factor m2. In this case, the
number of unique levels for m1is number of the animals
of sex 2 plus 1, and the number of unique levels for m2
is the number of animals of sex 1 plus 1. For this data
file, the number of levels for m1 was 1 + 134 = 135 and
for m2 was 1 + 150 = 151. With large data files, many
extra equations will result: basically one extra equation
for each animal with an observation on one trait but
no observation for the other trait for a 2-trait analysis.
In this case the original levels for gn, sx, and n¢ could
be used, but with other genotype x environmental inter-
action models that would not always be true.

Analysis of the 2 sex-limited traits with missing ob-
servations excluded gave the same estimates of fixed
and random effects, (co)variance components, heritabil-
ities, and genetic correlations as for the analysis with
missing observations for 1 trait or the other trait
treated as actual observations (0.00) with correspond-
ing unique levels of factors, m1 and m2. With factors
ml and m2 and pseudo-values as “real” observations,
SE of the estimates of the genetic parameters were
obtained for the 2-trait analysis even when no animals
had actual measurements for both traits.

A similar multiple-trait model is often used to esti-
mate covariance components due to genotype x environ-
mental interaction based on sires with progeny in more
than one environment. Environment is often region or
country. Often thousands of animals provide observa-
tions. For a 2-trait G x E analysis, each animal would
have a record only in its own environment, but to obtain
a SE for the estimate of the genetic correlation between
environments, each animal would also have a pseudo-
value for the other environment. The numbers of unique
levels for the dummy factors (m1 and m2) would effec-
tively be the total number of animals with observations
in the 2 environments, which could be many thousands,
whereas the number of genetic effects would usually
be twice the total number of animals, with a much
smaller number with a sire model. Most of the mixed
model equations would be associated with levels of the
dummy factors for pseudo-observations. The 2-trait file
would usually be created by joining files from the 2
regions with separate sets of fields for fixed factors and
with 2 new fields for the pseudo missing observations
for environment 1 or 2 very much the same as for Table
4. The ASREML program (Gilmour et al., 2002) appears
to use a similar procedure but without external changes
in the data file.

A method has been developed to obtain SE of genetic
parameters with the MTDFREML program for multi-
ple-trait analyses when some observations are missing
for some traits. The method involves relatively small
changes in the data file. Estimates of genetic parame-
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Table 4. Data file for first 20 of 284 mice for a 2-trait analysis with trait 1 measured only
on sex 1 and trait 2 on sex 2 modified to create unique levels for factors m1 and m2 for
missing observations (0.00) for trait 1 (m1) or trait 2 (m2)!

An ID Sire Dam gn SX nl lit ml m2 nl t1 t2

20101 11012 10101 1 1 4 1 1 2 4 22.50 0.00
20102 11012 10101 1 1 4 1 1 3 4 22.60 0.00
20103 11012 10101 1 1 4 1 1 4 4 22.90 0.00
20104 11012 10101 1 1 4 1 1 5 4 23.00 0.00
20112 11012 10101 1 2 4 1 2 1 4 0.00 69.30
20113 11012 10101 1 2 4 1 3 1 4 0.00 66.40
20114 11012 10101 1 2 4 1 4 1 4 0.00 61.60
20115 11012 10101 1 2 4 1 5 1 4 0.00 68.30
20302 10614 10506 1 1 7 2 1 6 7. 23.60 0.00
20303 10614 10506 1 1 7 2 1 7 7. 24.20 0.00
20304 10614 10506 1 1 7 2 1 8 7 22.50 0.00
20306 10614 10506 1 1 7 2 1 9 7 22.30 0.00
20312 10614 10506 1 2 7 2 6 1 7 0.00 66.90
20313 10614 10506 1 2 7 2 7 1 7 0.00 72.90
20314 10614 10506 1 2 7 2 8 1 7 0.00 58.40
20401 10813 10701 1 1 2 3 1 10 2 20.30 0.00
20402 10813 10701 1 1 2 3 1 11 2 21.30 0.00
20403 10813 10701 1 1 2 3 1 12 2 21.90 0.00
20404 10813 10701 1 1 2 3 1 13 2 22.10 0.00
20413 10813 10701 1 2 2 3 9 1 2 0.00 62.50

INote that no animal has both traits measured. gn = generation; sx = sex; nl = number in litter; m1
dummy factor for trait 1; m2 = dummy factor for trait 2; nl1 = number in litter if used as a covariate; t1

trait 1; t2 = trait 2.

ters, estimable functions of fixed effects, and L|y are
the same as for the original data file.

The steps in changing the data file and analysis of
the augmented data file may vary, but the following
are suggested:

1)

Do the analysis with missing observations
treated as missing because there will be fewer
equations and nonzero coefficients in the mixed
model equations. Thus, the analysis will run
faster and result in best possible starting values
to run with missing observations treated as ac-
tual values. At convergence, copy updated start-
ing answer file, MTDF4, to MTDF4.1.

2a) When levels of other factors are known, the data

file is modified by using the missing value indica-
tor as a real measurement and including a new
fixed factor for each trait which would have a
level of 1 for an actual measurement and a
unique level (easiest as, 2, 3, ..., etc.) for each
missing measurement.

2b) When levels of other factors are not known, the

3)

data file can also be modified by creating new
fields for other fixed factors for each trait and
using the original levels when the trait is actu-
ally measured and, for data checking, using a
unique level different from any of the original
levels when the missing value is used as the mea-
surement. Other options will also work.

When the data file with extra fixed factors is
created, change levels for other factors for miss-
ing observations to a level unique for that factor.

Means from MTDF66 will be correct for other
levels, and the unique level will have as a mean
the original “missing value indicator”.

4) Nextrun MTDFPREP with the modified data file
with a different “missing value indicator”. The
MTDF®66 file from MTDFPREP must be interpre-
ted carefully as the original missing value indica-
tor will be used to calculate overall mean, unad-
justed SD, and high and low observations. These
items of data description can be obtained from
MTDF66 from running the analysis with missing
observations treated as missing (suggestion 1).

5) Then restart MTDFRUN with command
MTDFRUN<MTDF4.1. MTDFRUN should need
only 1 round (i.e., modify MTDF4.1 to do 1
round). Disregard “not converged” message. To
be sure, compare —2logL. from 1) with —2logL
from 5).

6) For the extra factor, do not always ask for a
summary because some analyses may have
1,000s of levels (e.g., G x E analyses). For some
analyses, the user may need to change sizes of
vectors included in the PARAM.DAT file and re-
compile MTDFPREP and MTDFRUN.

APPENDIX

The REML estimators differ from maximum likeli-
hood estimators because the maximum likelihood esti-
mators are based on the distribution of the data vector,
whereas REML estimators are based on the distribu-
tion of a lower dimensional linear function of the data
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vector or residual vector. If the same residual vector
can be used for both the observed data and the aug-
mented data, then the REML estimators along with
their sampling properties will also be the same as for
the maximum likelihood estimators. To show that the
same residual vector can be used for both the observed
and augmented data, we will first define a residual
vector for the observed data and then show that this
residual vector can be used for the augmented data.
Let y, be the n, x 1 vector of observed data, where

Vo = X0 + Zou + e, with u ~ N(0,G) and e, ~ N(O,R,).

The REML estimators of the (co)variance components
of G and R, are the maximum likelihood estimators of
those (co)variance components based on the distribu-
tion of the residual vector K.y,. The (n, — p,) X n, matrix
K, is selected such that 1) p, is the rank of X,, 2)
K X, =0, and 3) the rank of K, is n, — p,. These require-
ments define REML (e.g., Harville, 1977; Searle et al.,
1992). The distribution of the residual vector is

Koyo ~ N(0, K,ZoGZKy + KReKy).

Because the selection of K, is based on the column
space of X,,, augmenting the original design matrix X,
with additional columns, W, will not impact the selec-
tion of K, provided that the columns of W, are a linear
function of the columns of X,,. So without loss of general-
ity, the vector of missing value effects, m,, and design
matrix, W,, can be added to the observed model equa-
tions for the data,

Vo = X0 + Wom, + Zou + e,.

The same residual vector, K,y,, can be used provided
that the columns of W, are a linear function of the
columns of X,,.

Next let y, be the n, x 1 vector of unobserved data,
where

Vu = X0+ Wym, + Z,u + ey,
with W, is a matrix with rank n, and with u ~

N(0,G) and

eO
[ ] ~ NOR).
e

u

The n x 1 augmented data vector, y, is then formed
by concatenating the observed and unobserved data

2381

vectors. The design matrix for the fixed effects for the
augmented data is

<X W 0
TX. 0 WS

The residual vector for the observed data, K.y,, can
be written in terms of the augmented data as

K'y = (K, o>[y°].

It remains to be shown that K’y is a (n —p) x 1 residual
vector for the augmented data that satisfies: 1) p =rank
of X, the design matrix for the augmented data, 2) KX =
0, and 3) rank of K’ is n — p. Because none of the last
n, rows of X are a linear function of the first n, rows,
the rank of X is equal to the rank of the first n, rows,
Po, Plus the rank of the last n, rows, n,. Therefore, the
rank of X is p = n, + p, and K’y is a (n — p) x 1 residual
vector because n — p = (n, + n,) — (n, + pP,) = Ny — Po.
With KX = KX, + K.W, and K, selected such that
KX, + KW, = 0, KX must also be equal to 0. Because
K’ = (K, 0), the rank of K’ is equal to the rank of K.

With K| selected to have rank n, — p,, which is equal
to n — p, the rank of K’ is also equal to n — p. Therefore,
K’y satisfies the 3 conditions for a REML residual
vector.
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