PURCHASED BY THE UNITED STATES DEPARTMENT
OF AGRICULTURE FOR OFFICIAL USE.

0013-7227/06/$15.00/0
Printed in U.S.A.

Endocrinology 147(1):324-337
Copyright © 2006 by The Endocrine Society
doi: 10.1210/en.2005-0970

Two Promoters Mediate Transcription from the Human
LHX3 Gene: Involvement of Nuclear Factor I and

Specificity Protein 1

Benjamin C. Yaden, Marin Garcia III, Timothy P. L. Smith, and Simon J. Rhodes

Department of Cellular and Integrative Physiology (S.J.R.), Indiana University School of Medicine, Indianapolis, Indiana
46202; Department of Biology (B.C.Y., M.G.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
46202; and U.S. Department of Agriculture/Agricultural Research Service (T.P.L.S.), U.S. Meat Animal Research Center,

Clay Center, Nebraska 68933

The LHX3 transcription factor is required for pituitary and
nervous system development in mammals. Mutations in the
human gene are associated with hormone-deficiency diseases.
The gene generates two mRNAs, hLHX3a and hLHX3b, which
encode three proteins with different properties. Here, the cis
elements and trans-acting factors that regulate the basal tran-
scription of the two mRNAs are characterized. A comparative
approach was taken featuring analysis of seven mammalian
Lhx3 genes, with a focus on the human gene. Two conserved,
TATA-less, GC-rich promoters that are used to transcribe the
mRNAs precede exons 1a and 1b of R LHX3. Transcription start
sites were mapped for both promoters. Deletion experiments

showed most activity for reporter genes containing the basal
promoters in the context of —2.0 kb of hLHX3a and 1.8 kb of
intron la (ALHX3b). Transfection, site-directed mutation,
electrophoretic mobility shift, Southwestern blot, and chro-
matin immunoprecipitation approaches were used to charac-
terize the interaction of transcription factors with conserved
elements in the promoters. Specificity protein 1 is a regulator
of both promoters through interaction with GC boxes. In ad-
dition, a distal element within intron 1a that is recognized by
nuclear factor I is critical for hLHX3b promoter function. We
conclude that dual promoters allow regulated production of
two hLHX3 mRNAs. (Endocrinology 147: 324-337, 2006)

HE Lhx3/P-LIM/LIM3 GENE encodes LIM-homeodo-
main transcription factors with essential roles in neu-
roendocrine development (reviewed in Ref. 1). During an-
terior pituitary development, Lhx3 participates with other
regulatory genes, such as Sf1, Propl, Pit1, EQrl, Pitx1, Pitx2,
and Tpit, to guide the specification of differentiated hor-
mone-secreting cells (reviewed in Refs. 2—-4). In mammals,
the Lhx3 gene is expressed in the embryonic nervous system
and in the primordial and mature pituitary gland (5-8). Mice
homozygous for a null Lhx3 allele die after birth and feature
incomplete structural development of the pituitary and de-
fective motor neuron specification (9-11). In these animals,
some anterior pituitary corticotrope cells are functional, but
expression of the characteristic hormones of the gonado-
trope, thyrotrope, somatotrope, and lactotrope cell types is
not detectable, indicating that Lhx3 is required for the even-
tual differentiation of these specialized lineages (9). These
observations are consistent with molecular studies demon-
strating that LHX3 and related LIM-homeodomain factors
can activate anterior pituitary expressed genes, including
those encoding «GSU, PRL, FSHB, TSHf, the GnRH recep-
tor, and the Pit-1 transcription factor (e.g. Refs. 6 and 12-16).
Furthermore, mutations in the human LHX3 (hLHX3) gene
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that are predicted to lead to the production of disabled pro-
teins cause recessive genetic diseases featuring combined
pituitary hormone deficiency and other symptoms (17-19).

The hLHX3 gene contains seven coding exons and six
introns that span approximately 8.7 kb located within the
subtelomeric region of chromosome 9 (Fig. 1A) (20). The
mouse Lhx3 gene has a similar organization (21). The single
hLHX3 gene produces two major mRNAs known as hLHX3a
and RLHX3b (13). Translation from the first methionine
codons of the hLHX3a and hLHX3b mRNAs generates the
LHX3a and LHX3b protein isoforms (13). These proteins
have identical LIM domains, a central DNA-binding home-
odomain and a carboxyl terminus that contains the major
activation domain but have distinct amino termini resulting
from alternate use of 5’ exons in the gene (20, 22). A third
protein isoform, M2-LHX3, is generated by preferential
translation of the second in-frame methionine codon of the
hLHX3a mRNA (22). The three LHX3 protein isoforms dis-
play different biochemical and functional properties (13, 14,
22, 23).

In this study, we investigated the transcriptional mecha-
nisms by which mammalian Lhx3 genes generate multiple
mRNAs that encode proteins with diverse regulatory prop-
erties. Phylogenetic comparisons and functional tests were
used to map two conserved, TATA-less, GC-rich promoters
that guide transcription of the two mRNAs. Two kilobases of
the hLHX3a promoter and 1.8 kb of intron 1a (a region that
contains the hLHX3b promoter) mediate basal activity. The
specificity protein 1 (Sp1) transcription factor binds to prox-
imal GC boxes and is a strong regulator of both promoters.
Furthermore, a critical upstream element within intron la
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Fia. 1. The human and mouse Lhx3 genes feature two GC-
rich, TATA-less promoters with multiple transcription
start sites. A, Structure of the human LHX3 gene. Exons
are depicted by boxes with translated regions shown in
black or hatched. Introns are indicated by lines. The major
mRNA products and their protein derivatives are shown. B,
Alignment of the proximal regions of the Lhx3a promoters
of the human and mouse Lhx3 genes. Transcription start
sites (T'SS) for Lhx3a mRNAs were mapped by RLM-RACE
and S1 nuclease assay experiments using human pituitary
gland and mouse aT3-1 pituitary cell RNAs as substrates.
Numbers are relative to the translation start codon. C, The
major transcription start site for the A LHX3b promoter was
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mapped by RLM-RACE using human pituitary RNA.
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allows regulation by nuclear factor I (NFI) family transcrip-
tion factors.

Materials and Methods
Cloning of mammalian Lhx3 gene and cDNA sequences

Fragments of the 1LHX3 gene (20) were amplified by touchdown PCR
using bacterial artificial chromosome clone RPC11-83N9 (Sanger Cen-
tre, Cambridge, UK) or normal human genomic DNA as substrates.
Primers were designed based on human genome sequence data accessed
through GenBank at the National Center for Biological Information
(NCBI). The upstream (hLHX3a promoter) region of the gene was am-
plified in approximately 500-bp increments using an antisense primer
(5"-cctectaggtcagegtecectg-3') and one of the following sense primers:
5'-gtcttgagtcctcageagtget-3' (580 bp upstream of exon la), 5'-gagactca-
caggacaagacccttga-3' (1.096 kb), 5'-agagctggatgccacctttagg-3' (1.581 kb),
5'-tgcttegtgtctcactcgagag-3'  (2.080 kb), 5'-tgcacacacaagcatctcactc-3’
(2.701 kb), 5'-cctgctccaggetgecaagtgt-3" (3.240 kb), and 5'-gtagtccg-
gaaagggccagtgt-3' (~4.8 kb). For the hLHX3b promoter upstream in
intron 1a, three regions were amplified using an antisense primer (5'-
cgccactctecagteecgaacttt-3') and one of the following sense primers: 5'-
gegtgtgctccagetcaggectet-3' (1804 bp upstream), 5'-ggtaacaagtgcetgte-
caaagtga-3' (1267 bp), and 5'-agtgcccgtcagctcttgeacaca-3' (418 kb). PCR
was performed with Pfu Ultra polymerase (Stratagene) and MasterAmp
PCR optimization buffers (Epicentre, Madison, WI) (if required due to
high GC content of the target sequences). To create luciferase reporter
genes, fragments of the hLHX3a promoter upstream region or of the
hLHX3b promoter/intron la region were cloned into the pGL2-basic
plasmid (Promega, Madison, WI). All plasmids were confirmed by DNA
sequencing (Biochemistry Biotechnology Facility, Indiana University
School of Medicine).

To obtain the sequence of the bovine Lhx3 gene, the Trace Archive of
the bovine genome project at the NCBI containing raw reads from the

first 3-fold genome coverage (~12 million reads at the time of screening)
was searched via basic local alignment tool nucleotide (BLASTN) using
the full-length cDNA sequence of the hLHX3a cDNA. Trace files whose
sequence showed highly significant (scores of >300) match to the cDNA,
as well as the mate-pair end sequences from the respective clones, were
collected in a directory and used to construct initial genomic contigs via
phred (24) and phrap (25) algorithms. Contig sequences were masked
for repetitive elements using RepeatMasker (Smit, A. F. A., and P. Green,
unpublished results; http://ftp.genome.washington.edu/RM/Repeat-
Masker.html) and used to search for overlapping trace files in the ar-
chive, which were added to the directory for reconstruction of contigs.
The process was repeated until none of the contigs in the phrap output
identified trace files not already in the directory. This resulted in con-
struction of four contigs containing portions with high similarity to
exons of the hLHX3 cDNA, leaving three gaps in the gene sequence.
Primers then were designed to span the gaps by PCR, and sequence was
obtained by amplification of bovine genomic DNA from the same animal
used in the whole genome shotgun sequencing. The PCR products were
sequenced with the amplification primers, nested primers, or both. The
resulting 12,883-bp contig was edited by manual inspection using the
Consed viewing program (25), and areas of low sequence quality or
areas where read overlap was exclusively from low-complexity se-
quence were targeted for finishing using additional PCR-based ampli-
fication and sequencing. To obtain confirming bovine Lhx3 cDNA se-
quence, primers were designed based on the cDNA sequence predicted
from the first set of genomic trace files obtained. Primers 5'-gagatc-
cegetgtgtgee-3' and 5'-ccttgeagtacacgcetetee-3” were designed from the
putative exon 2 sequence and used to obtain a full coding sequence
bovine Lhx3b cDNA clone via iterative screen (26) of a pooled-tissue
cDNA library that included pituitary gland [library 1BOV (27)]. The
clone obtained had an insert of 2,390 bp, and the complete insert was
sequenced. The edited bovine Lhx3 gene and cDNA sequences have been
submitted to GenBank with accession nos. AY923832 and AY923833,
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respectively. Intron 1a sequences of the rhesus monkey and porcine Lhx3
genes were amplified by the PCR. Templates were 150 ng of genomic
DNA from adult rhesus monkey (kindly provided by Dr. T. Golus,
Wisconsin Primate Research Center, Madison, WI) or adult pig (female
Yorkshire cross). Reactions included MasterAmp PCR optimization
buffer G (Epicentre), and 5'-atgctgctggaaacggggetcga-3' (monkey exon
la), 5'-gaatctctcggegcaggtecgee-3' (monkey exon 1b) or 5'-atgctgcetg-
gaaacggagctggce-3' (pig exon 1a), and 5'-ggatctctcggegeaggtectee-3' (pig
exon 1b) primers were used. PCR products from multiple independent
reactions were sequenced on both strands. Sequences were submitted to
GenBank (accession nos. AY879262 for pig intron 1la and AY879263 for
rhesus monkey intron 1a).

RNA ligase-mediated rapid amplification of cDNA ends

The transcription start sites of human and mouse Lhx3 genes were
deduced by 5" RNA ligase-mediated rapid amplification of cDNA ends
(RLM-RACE) performed using the GeneRacer protocol (Invitrogen,
Carlsbad, CA) according to the instructions of the manufacturer, as we
have described (28). First-strand cDNA was generated from adult hu-
man pituitary gland RNA (13) or from pituitary aT3-1 pregonadotrope
cell (29) total RNA and primed with 5'-ggcagtcgctgeacttgagacactt-3'.
Second-strand cDNA was generated using primers from the manufac-
turer and the following gene-specific primers: 5'-gagacgcgctcctcegag-
gtca-3' (5" RACE Lhx3a) and 5'-tctccagtcecgaacttt-3' (5" RACE Lhx3b).

S1 nuclease assays

S1 nuclease assays were performed as described (30). Briefly, 3P
end-radiolabeled single-stranded DNA probes for the hLHX3a and
hLHX3b promoters were generated. S1 digestion reactions contained 15
pg of aT3-1 RNA hybridized with labeled probes. Radiolabeled DNA
products were analyzed by electrophoresis through 12% polyacrylamide
8 M urea gels. A **P end-labeled 1-kb extension ladder (Invitrogen) was
used as a molecular marker.

Cell culture and transfection

Human embryonic kidney (HEK) 293T and rodent pituitary cell lines
were cultured and transfected as described (14). Typical transfections
contained 2 ug of a luciferase reporter gene and 500 ng of an expression
vector (if any). Control parallel samples received empty vector DNA. All
assay groups were performed in triplicate. Forty-eight hr following
transfection, cells were lysed in 25 mm Tris-Cl (pH 7.8), 2 mm dithio-
threitol, 1% Triton X-100, 2 mm EDTA (pH 8.0), 10% glycerol. The lysate
supernatant was assayed for luciferase activity using a luciferin sub-
strate (Promega) and a Beckman Coulter luminometer (Fullerton, CA).
Total cell protein was determined by the Bradford method (Bio-Rad,
Hercules, CA), and luciferase activity was normalized to the amount of
protein present. Expression vectors included human LHX3a, human
LHX3b (13), human PROP1 (31), mouse SF1 (a gift from Dr. Holly
Ingraham, University of California, San Francisco, CA), mouse EGR1 (a
gift from Dr. Eileen Adamson, Burnham Institute, La Jolla, CA), rat Sp1
(a gift from Michael Wegner, University of Erlangen, Erlangen,
Germany).

Cell protein extraction

Nuclear or whole cell protein extracts from HEK 293T and rodent
pituitary cells were prepared as we have described (14, 32). Rat pituitary
GH3 somatolactotrope nuclear extracts were purchased from Active
Motif, Inc. (Carlsbad, CA).

EMSAs

EMSAs were performed as we have described (14) using radiolabeled
double-stranded oligonucleotide probes with the results visualized by
autoradiography or using a Storm phosphorimager (Amersham Bio-
sciences, Piscataway, NJ). Cell extracts were prepared as described
above. Human recombinant Sp1 protein was purchased from Promega.
In some experiments, 2 ug of anti-Sp1, anti-NFI, or anti-SOX5 antibodies
(Santa Cruz Biotechnology Santa Cruz, CA) were added to the binding
reactions and incubated for an additional 30 min.

Yaden et al. ® LHX3 Gene Transcription

Chromatin immunoprecipitation

The chromatin immunoprecipitation (ChIP) method was adapted
from that of Petz et al. (33) and was performed as we have described (14)
using reagents from the ChIP Assay kit (Upstate Biotechnology, Lake
Placid, NY). Approximately 1 X 10° LBT2 cells were cross-linked with
formaldehyde and then lysed. Cellular DNA was sonicated to fragments
of 200-1000 bp. The supernatant from the sonicated lysate was then
precleared with salmon sperm DNA/protein A agarose. Next, either
Sp1- or NFI-containing complexes were immunoprecipitated using spe-
cific antibodies (Santa Cruz Biotechnology). Complexes were collected
using protein A agarose. After washing and elution, cross-linking was
reversed and DNA was extracted. The purified DNA was analyzed by
PCR using the following primers: 5'-agtcagacccagccctagagtga-3' and
5'-actaatccagtggttegtgeggg-3’ (mouse Lhx3a promoter region); 5'-aaag-
gectggeectgetectag-3' and 5'-ggtcagggaacactagettggag-3' (NFI site re-
gion in mouse intron la/Lhx3b promoter); and 5'-ctcctgctcgaagtcta-
gage-3' and 5'-gctggtgataagtggecttgg-3’ (mouse B actin gene). PCR
products were analyzed by agarose gel electrophoresis, and the identity
of observed DNA fragments was confirmed by cloning into pTOPO
vectors (Invitrogen) and DNA sequence analysis.

Site-directed mutagenesis

Site-directed mutagenesis was performed as described (32) using the
QuikChange Site Directed Mutagenesis Kit (Stratagene, La Jolla, CA).
Sequences containing predicted transcription factor-binding sites were
mutated using pGL2 plasmid substrates containing either intron la of
the hLHX3 gene (i.e. the hLHX3b promoter) or —2.7 kb of hLHX3a 5’
flanking sequence. Mutagenic oligonucleotides were as follows: 5'-ca-
gaggggtgaggttggggectgecttgag-3' (—291 Spl site in hLHX3a promoter);
5'-cccgggaggtggtiggecgegegggegegge-3' (—181 Spl site in hLHX3a pro-
moter); 5'-gcgacccceggeccctteecttecegttgecctttcecceggeeg-3' (—203/—185
Splsites in intron 1a); and 5'-ggagggctggegggatgecageagggtgggccgec-3'
(NFI site in intron 1a).

Southwestern analysis

For Southwestern blotting experiments, pituitary protein extracts
were separated by standard SDS-PAGE and transferred to nitrocellulose
membranes by electrophoresis. Membranes were then incubated in
TNED renaturation buffer (10 mm Tris-Cl pH 7.5, 0.1 mm EDTA pH 7.5,
50 mMm NaCl, 1 mm dithiothreitol, 5% nonfat dry milk) at room tem-
perature with slow rotation in a hybridization oven. The membranes
were then incubated with approximately 8 X 10”7 cpm/ml of a **P
end-radiolabeled DNA probe (3060 bp) overnight at room temperature
in TNED buffer supplemented with 0.25% nonfat dried milk and 0.005
mg/ml sheared salmon sperm. After binding of the DNA probe, the
protein blot membranes were washed three times for 5 min with 20 ml
of TNED buffer plus 0.25% milk. Membranes were then air dried, and
results were analyzed using a Storm Phosphorimager (Molecular Dy-
namics, Piscataway, NJ).

RT-PCR of NFI isoforms

Total RNA was isolated from mouse LBT2 gonadotrope pituitary and
HEK 293T human embryonic kidney cell lines. RT of 1 ug of RNA was
performed using the oligo-dT primers and the SuperScript First-Strand
Synthesis System (Invitrogen). NFI transcripts were detected by primers
that were designed to unique regions within the coding sequences of the
four mouse/human NFI isoforms accessed through GenBank. These
were 5'-gaagtcttggtttcagcagecc-3’ and 5'-aatgggttgtgcaccttgectt-3 for
the NFI-A isoform; 5'-gggaactggagtcaacttccca-3' and 5'-ggtggagttcgagt-
tgagatga-3' for NFI-B; 5'-acttccaggagagctttgtcac-3' and 5'-tgggge-
gacgggctgttgaatg-3' for NFI-C; and 5'-aagtactgatggggagcggcte-3' and
5'-tgctggtggaaggaggegaget-3' for NFI-X.

Results

Analysis of Lhx3 gene and cDNA nucleotide sequences
from humans and mice suggested that the two major mRNAs
are generated from two TATA-less promoters featuring high
GC contents (Fig. 1 and data not shown). To characterize the
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transcription start sites in the human and mouse Lhx3 genes,
we performed RNA ligase-mediated RACE and S1 nuclease-
mapping experiments using human pituitary gland RNA
and mouse pituitary aT3-1 pregonadotrope cell (29) RNAs
as substrates. These experiments revealed two major tran-
scription start sites for a hLHX3a promoter upstream of exon
Ia, one for the mouse Lhx3a promoter and one for a hLHX3b
promoter upstream of exon Ib in intron 1a (Fig. 1, B and C,
and data not shown).

To test the functional properties of the two identified
hLHX3 gene promoters, we created luciferase reporter genes
containing fragments of the hLHX3a and hLHX3b promoter
5’ flanking regions (Fig. 2). These reporter genes were trans-
fected into cultured mouse pituitary LBT2 gonadotrope or
aT3-1 pregonadotrope cells, and their activities were mea-
sured. Both of these cell types express the mouse Lhx3a and
Lhx3b mRNA transcripts (14, 22). The hLHX3a promoter re-
porter genes were active in these pituitary cells with the
—2701- and —2080-bp constructs displaying the highest ac-
tivities (Fig. 2A and data not shown). The region between
—4824 and —2701 in the hLHX3a upstream sequence appears
to contain negatively acting elements. In addition, positive
regulatory elements appear to lie between —2080 and —1581

A hLHX3a upstream
-4824
-34

e I
20—
200 — N

ass — L

100 — I
sso—Jl

Vetor — }—

B hLHX3b upstream
(intron la)

-1804

luciferase

)
SOk I
s — I
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bp of the hLHX3a promoter. The hLHX3b promoter reporter
gene containing the entire intron 1a sequence (—1804 bp) was
also active in the pituitary cells (Fig. 2B). Deletion of the distal
region of this sequence to leave —1267 bp reduced the ac-
tivity of the promoter to a level similar to that of a construct
retaining only 418 bp of 5’ flanking sequence (Fig. 2B). This
observation suggested that intron la contains proximal ele-
ments that are important for basal transcription of the
hLHX3b promoter and additional regulatory elements lo-
cated between —1804 and —1267 that confer higher levels of
expression (see below).

We next used a comparative strategy to examine conser-
vation of Lhx3 gene promoter sequences from primate, un-
gulate, and rodent mammals (Figs. 3 and 4). As part of these
studies, the sequence of the entire bovine Lhx3 gene was
determined. First, BLASTN searches of the NCBI Trace Ar-
chives containing whole genome shotgun reads from the
bovine genome sequencing project were performed using the
full-length cDNA sequence of the hLHX3a cDNA as a query.
Recovered sequences were collected and aligned into four
contigs containing portions with high similarity to exons of
hLHX3 (see Materials and Methods), leaving three gaps in the
gene sequence. The PCR was then used to span these gaps

T T T T
0 2000 4000 6000 2000
Light units/pg protein

T T
40000 60000
Light units/pg protein

I
0 20000 80000

Fia. 2. The two hLHX3 gene promoters are active in pituitary cell types that express LHX3. Molar equivalents of luciferase reporter genes with
the indicated 5’ flanking regions of the hLHX3a (A) and hLHX3b (B) promoters were transiently transfected into mouse pituitary gonadotrope
LBT2 cells and the basal activities determined. Similar data were obtained using mouse aT3-1 pregonadotrope pituitary cells. Promoter activity
was assayed by measuring luciferase activity 48 h after transfection. Activities are mean (light units/10 sec-ug total protein) of triplicate assays =
SEM. A representative experiment of at least three experiments is depicted.
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(-315) (-291)
Hu CCACCCTGGGTCTCAGAGGGGTGAGGGCGGGGGCTGCCTT--GAGTGC-GGCCCAACCCAGCCAGGGAGS
Ch CCACCCTGGGTCTCAGAGGGGTGAGGGCGGGGGCTGCCCT--GAGTGC-GGCCCAACCCAGCCAGGGAGG
Co CAGGACTGGAGCTCAGGATGGAGCTGCCCAAGGCTGCCTCCCAGGGAC-GEGCGEGGGTGGGECGAGCGE
Mo AAGGCCCAGAGCCCACGAC--AGCAAGTTGGAGCCACTATGCTACTCTGTAACAGGTARAGGAAGGTCCA
Ra AAGGCCCAGAGCCCAGGGCCGAACAAGTTGGAGCCACTATGCTACTCTG--ATAGGTAALGGGAG-TCCT
hTSs (-237)
Hu GAGGCGCG----CCCGACACGGGGCAGAGGCGGGG-GTGGGGACCGEGGLG-ACGAGAGGGGCCCCGGGA
Ch GAGGCGCG----CCCGACACGGGGCAGAGGCGGGG-GTGGGGACCGGEGCG-ACGAGAGGGGCCCCGGGA
Co AGGCCCCGGGGACCTGGGAAGGTGGEGEGECAGCGEGACGTGEEEEGEAGEGCEG-GCAGGAGGAGCTGA--——
Mo GAGARAAGGCTACCTCGAATTATAAACTAGTCAGACCCAGCCCTAGAGTGACGCCAGCCTGACTCCGCCT
Ra GAGAAAGGGCAAGCACACATTCTAGACTAGTCAAATCCAGCCCTGGAGTGTCGCCAGCCTGACTCCGCCT
(-181) (-165)
Hll: e e GGTGGGCGGGCGCGCGEEL~===————— GGGGCGGGCAGCGGE
Ch  —mmmmmm o GGTGGGCGGGCGCGCGGEC-———————— GGGGCGGGCAGCGGE
CO mmmmmm GGGCGGCAGGCGCAGTCGGGGGAGGTGEGECGECCG-CGCT
Mo GCCCA--—-=-—=——=— GGCCTGGAAGGGGCCAAGGGCGGGGACAGAGGA=—=——==== GGGGCGGGGCAGGCT
Ra GTCCGCCTGCCGGGGCCTGCAAGGGGCCARGGGCGGGGACAGAGGA-———————= GGGGCGGGGCAGGCT
hTSS (=115}
Hu CGCCTCCTTCAGCACCGCGGACAGC--GCCAGGCCCAGTGECTCCCGEGCTCCCTGCCCCGCACGACG——
Ch CGCCTCCTTCAGCACCGCGGACAGC--GCCAGGCCCAGTGGCTCCCGGGCTCCCTGCCCCGCACGACG--
Co TCCTTCAGCACCGCGGACA---GC--GCCTGGCCCAGCGGCTCACTTGT--CTGACCACGCTCCGCG-——
Mo TGTGAAGGTCCCCAGCACGCTGGTGCCTCCTTCAGCACCGCGGACAGCGCCAGCCCAGCGAGTGGGCCAR
Ra GGTGAAGGTCCCCAACAGGCTAGTGCCTCCTTCAGCACCGCGGACAGCGCCAGCTCAATGAGTAGGCCAR
mTss (-100)

Hu ---CGGCGGGACTTGGEGA--GCCCCGAACCCTCCAGGGGACGCTGACCTA---GEAGGAGCGCGETCTCGC
Ch ---CGGCGGGACTTGGGA--GCCCCGAACCCTCCAGGGGACGCTGACCTA---GGAGGAGCGCGTCTCGE
Co ~—---CACCAGGACACGGGGAGGGCCCAGCCTTCCCCGGGGGCGCAGAGGAGAAGGAAAGAGCGCTGCCCGG
Mo GGCCTGAAAGAGGTCCAGCACTTCC--AGGAACACCCCGCACGAACCACT---GGATTAGT-————=—-~
Ra GGCCTGARACAGGTCCAGCACTCCA--GGGAACACCCAGCAGGAACCACT-=-GGATTAGT-========
Hu GCCACT-————- CGGCCTGGT---—— GGCCGCGatgetgetg

Ch GCCACT=-==—=—- CGGCCTGGT—-——--—- GGCCGCGatgetgetg

Co GCCGCTTGGGTCCGGCCTGGTCCCGAGGCCTCGatgetecty

MO —mmmmmmmmmmmm e GACTGCCatgctgcta

Ra =====m=——mmmmm e GACTACCatgctgtta
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Fic. 3. Comparative sequence analysis of Lhx3a proximal promoter regions. The entire bovine (Co) Lhx3 gene and the human (Hu) LHX3a
promoter were cloned and sequenced (see Materials and Methods). The chimp (Ch), mouse (Mo), and rat (Ra) promoter sequences were obtained
by BLASTN searches of GenBank databases at NCBI. The entire promoter is GC rich, but notable GC boxes are shown in bold and their position
in nucleotides relative to the ALHX3a start codon (+1) are indicated. Transcription start site (T'SS) positions are shown in bold and labeled.
h, Human; m, mouse. Coding sequences are shown in lowercase bold italics.

and to confirm all regions of low sequence quality or com-
plexity by amplification and sequencing of bovine genomic
DNA from the same animal used in the whole genome shot-
gun sequencing project. The resulting edited 12,883-bp gene
contig was submitted to GenBank as accession no. AY923832.
To confirm the exons predicted from the gene, a full-length
bovine Lhx3b cDNA sequence was cloned by iterative screen-
ing of a multitissue cDNA library that included pituitary
gland. The 2,390-bp bovine Lhx3b cDNA clone was submitted
to GenBank as accession no. AY923833. This clone predicts
a 403 amino acid protein with 95% primary sequence identity
to human LHX3b (data not shown). The genome sequence
encompasses the entire observed cDNA sequence, including
5,000 bp of sequence upstream from the first exon, and dis-
plays consensus splice boundary and polyA addition signal
sequences (data not shown). The predicted bovine Lhx3a
promoter 5’ flanking region DNA sequence was aligned with
the equivalent regions from the human, chimp, mouse, and
rat genomes (Fig. 3). Chimp, mouse, and rat sequences were
identified by BLASTN searches of NCBI databases. The
Lhx3a promoter sequences are very GC rich (e.g. the human
and bovine promoters have 79% and 76% GC content in this
region, respectively) and lack obvious TATA boxes (Fig. 3).
Two GC boxes located at —181 bp and —165 bp of the human

sequence (the LHX3a protein first codon is considered to be
position +1) appear to be conserved in the examined mam-
malian sequences (Fig. 3). An additional element at —291 bp
(in humans) is observed also in the chimp with the bovine
sequence having a similar, more proximal element (Fig. 3).

To examine conservation of mammalian Lhx3b promoter
sequences, the Lhx3 intron 1la sequences of the rhesus mon-
key and pig genomes were also cloned and sequenced (see
Materials and Methods). The intron sequences were submitted
to GenBank (accession nos. AY879263 for rhesus monkey and
AY879262 for pig). As described above, the corresponding
chimp, mouse, and rat sequences were obtained by BLASTN
searches of GenBank databases. The aligned mammalian
Lhx3 gene intron 1a DNA sequences display two regions of
strong similarity: the proximal region around the transcrip-
tion start site (Fig. 4). Similar to the Lhx3a promoter, the Lhx3b
proximal regions are GC rich (e.g. the human and bovine
promoters are ~80% GC content in this region) and have no
obvious TATA elements. Six GC boxes are found in the
human sequence (Fig. 4). Of these, the distal three sequences
(—345, —308, and —286) are also found in the other primate
sequences (chimp and rhesus), with the —286 sequence also
found in the cow. Two closely aligned central GC boxes
(=203 and —185) are found in all of the mammalian se-
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(=355) (—345) (-308)
Hu GACGAACGCTGGCGGGAAGCCCTGACCTGGGCCCTCCCTTACCGGTGCCCGCCCTCGGGCCGG
Ch GACGAACGCTGGCGGGAAGCCCTGACCTGGGCCCTCCCTTACCGGTGCCCGCCCTCGGGCCGG
Rh GACGAACGCTGGCGGGCAGCTCTGACCTGAGCCTTCCCCTACCGGTGTCCGCCCTCGGGCCGG
Co GTCAAGCGCTATCGGGCAGCGCTGACACGGCTCCTCCCCTGCGCGTCCCTATCCCTGGGCCGG
Pi GGGAAGCGCCCTCGGGCAGCCCCGGCCCGGCTCCTCCCCTGLGGET————————————— CCGG
Mo GGCGAGCATCTGTAGGAAGCCTTGAG-TGGTTACTGCGCTGTCTCCGT----CCTCGGGAAGT
Ra GGTGAGCATCTGTGGGAAGCCTTGAG-TGGTTACCCAGCTGTCTCCGT----CCTCGGGAAGT
(-286)
Hu GCACGCGGGGCGGCCTCTGGGCACCGCAGGTCCCGGCGCARAGGCGCTCAGA-—--———-——~ G
Ch GCACGCGGGGCGGCCTCTGGGCACCGCAGGTCCCGGCGCARAGGCGCTCAGA-—~——————~ G
Rh GCACGCGGGGCGGCCTCTGGGCACCGCAGGTCCCGGCGCARAGGCGCGCAGA-—--———-—~~ G
Co GCACTCGGGGCGGTTTCCCCGCACCGCAGTTCTCCCGGCARAGGCGCGCAGA-————————— G
Pi GCCCTCGGGGCCGCGCCAGAGCCCCGCGGTCCTCCGCGCCGAGGCGLGCAAR-————~——~~ G
Mo GCAAGCCAGACGGCTTCTAGGCACCTCGGTTC-CGGCTGAAAGGTGCACAG--TCTCCAGTGG
Ra GCAAGTCGGACGGCTTCTAGGCACCTCAATTC-TGGCTGARAGGCGCACAGAGTTTCCAGTGG
(-203) (-185)
Hu TCCGCAGTGGCCC-GGGCTGGTCTCCGCGACCCCCGGCCCCGCCCCGCCCCGLGGCCCCGLCCe
Ch TCCGCAGTGGCCC-GGGCCGGTCTCCGCGACCCCCGGCCCCGCCCCGCACCGLGGCCCCGLCCC
Rh TCCGCAGTCACCCCGGGCTGGTCTCCGCGACCCCCGGCCCCGCCCCGCACCGLGGCCCCGLCCC
Co TCCGCGGACGCCAGCGGCGCGTCTCCGCGACCCC-GGCCCCGCCCCGCGLCGLGGCCCCGLCCC
Pi CCAGCGGACGCCCCCGACGCGTCCCCGCGACCCC-GGCCCCGCCCCGCGLCTCGGCCCCGLCCC
Mo CCTCCAGTGGCCCCGGGAGCGTCTCTGCGACCCCCGGCCCAGCCCCGCCCCGLGGCCCCGLCCC
Ra CATCCAGTGGCCTCCGGAGCGTCTCTGCGACCCCCGTCCCAGCCCCGCCCCGLGGCCCCGLCCC
(-133) TSS (-116)
Hu CCGGCCGCTCCGCCCTCCGCTCGGCCAGAGGCTCCGGGLCCCAGGGCGGCCCGCGGGCGCAGCG
Ch CCGGCCGCTCCGCCCTCCGCTCGGCCAGAGGCTCCGGGCCCCAGGGCGGCCCGCGGGLGCAGLG
Rh CCGGCCGCTCCGCCCTCCGCTCGGCCAGAGGCTCCGGGLCCCCAGGGCGGCCCGCGGGCGCAGCA
Co CCCGCCGCTCCGCC-TCCGCGCGGCCCGAGGCTCCGGGLCCCTGGGCGGLCCGLGGGCGCAGCE
Pi CCGGCCGCTCCGCC-TCCGCGCGGCCCGTGGCTCCGGGCCCCTGGGCGGCCGGCGGGCGCAGCG
Mo CCA-CCGCTCCGCCCTCCGCG-GGCCCGAGGCTTGGCGCCCAGAGGCCTCCCGTGGGCACAGCS
Ra CCG-CCGCTCCGCCCTCCGCG-GGCCGGAGGCTTGGCGCCCAGAGGCCTCCCGTGGGCACAGCG
Hu CCCAGCAGCACCCGGAGTCGCTTGGACGCCGGTTCGGGGCTATTGCGGG-GTGGCGTCGCTGGE
Ch CCCAGCAGCACCCGGAGTCGCTTGGACGCCGGTTCGGEGECAATTECGEG-GTGGCETCGCTGGE
Rh CCCAGCAGCACCGGGAGTCGCTTGGACGCCGGTTCGGGACCACTGCGGG-GTGGCGTCGCCGGE
Co CCCAGCAGCGCCGGGAGTCGTGCAGACGCCAGCCCGGGGCCACTGAGGCCGTGGTCTCGCCGAG
Pi CCCAGCAGCGCCGGGAGACGTTGGCACGCCGGCCCGGGGCCATCGAAGCCGTGGTCGCACCGGE
Mo CCCAGCAGCGACACGAGTCGCTCCGACGCCAGCTCGGAGTCCCTGCAACGGTGGCCTCGCCAGA
Ra CCCAGCAGCGACACGAGTCGCTCCGACGCCAGCTCGGAGTCCCTGCAGCGGTGGCCTCGCTGGA
Hu CCCG-GGAAAGTTCGGGACTGGAGAGTGGCGACGCCGGGCGGLGGGACCCatggag
Ch CCCG-GGAAAGTTCGGGACTGGAGAGTGGCGACGCCGGGAGGCGGGACCCatggag
Rh CCCG-AGAAAGTTCGGGACCGGAGAGTGGCGACGCCGGGCGGCGGGACCCatggag
Co CCCCTGGAAAGTTCAGGACCGGAGAGCCTCGGCGGCTGGCGGCGGGACCCatggag
Pi CCCCCGGCARAGTCCAGGGACCGAGAGCCGCGGGGCCAGGCGGCGGGACCCatggaa
Mo CCCAGGGGAAGTTCAGGGTCGGAGGGCGGCAGCACCAGGCACCTGGCCCCatggaa
Ra CCCAGGGGAAGTTCAGGGTCGGAGGGCGGCAGCACCARGCGCCCGGCCCCatggaa
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Fic. 4. Comparative sequence analysis of Lhx3b proximal promoter regions. The entire bovine (Co) Lhx3 gene and intron 1a from the human
(Hu), rhesus monkey (Rh), pig (Pi), and cow Lhx3 genes were cloned and sequenced (see Materials and Methods). The chimp (Ch), mouse (Mo),
and rat (Ra) Lhx3b promoter sequences were obtained by BLASTN searches of GenBank databases at NCBI. Within the overall GC-rich
promoter, GC boxes are shown in bold and their position in nucleotides relative to the start codon are annotated. The major transcription start
site (T'SS) position is labeled and protein-coding sequences are shown in lowercase bold italics.

quences, and a proximal element at —133 is found in all
examined mammals, except rodents (Fig. 4).

The observed clusters of GC boxes in the ZLHX3 promoters
led us to test the hypothesis that the Sp1 transcription factor
can recognize these elements and regulate hLHX3 gene tran-
scription. Luciferase reporter genes representing the most ac-
tive 5’ flanking regions of the hLHX3a and hLHX3b promoters
were transiently cotransfected into human embryonic kidney
(HEK) 293T cells with Sp1 transcription factor expression
vectors. In these experiments, the activity of the hLHX3a
promoter was increased approximately 40-fold (Fig. 5A) and
that of the hLHX3b promoter was boosted approximately

7-fold (Fig. 5B) in comparison with negative controls. For
comparison, we tested whether other pituitary transcription
factors could activate or repress transcription from these
promoter constructs. LHX3a and EGR1 increased transcrip-
tion from the hLHX3a promoter (~5-fold and ~4-fold, re-
spectively; Fig. 5A). LHX3b, SF1, and PROP1 had very mod-
est effects on the hLHX3a reporter gene (Fig. 5A). The hLHX3b
reporter gene was moderately induced by LHX3a and in-
hibited by LHX3b, EGR1, and PROP1 (Fig. 5B).

To better characterize the effects of the Sp1 transcription
factor, we performed EMSA experiments to test the Spl
interaction properties of GC box-containing sequences in the
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Fic. 5. The hLHX3 promoters are activated by Spl. Luciferase re-
porter genes with the indicated 5’ flanking regions of the ALHX3a (A)
and hLHX3b (B) promoters were transiently cotransfected into HEK
293T cells with expression vectors for the indicated transcription
factor ¢cDNA. Negative controls (Control) received equivalent
amounts of empty expression vector plasmid. Luciferase activities
were determined 48 h posttransfection as described in Fig. 2.

4000000

hLHX3 promoters. After extended exposures of EMSA gels
to film, the —291 element from the h1LHX3a promoter formed
a very weak complex with proteins from LBT?2 pituitary cells
that was disrupted by the addition of anti-Sp1 antibodies
(data not shown). In addition, a faster-migrating complex
was observed that was not affected by anti-Sp1 (Fig. 6A). This
—291 sequence was bound by purified, recombinant Sp1
protein (Fig. 6A, right panel). The —181 hLHX3a GC box
interacted with LBT2 cell proteins, and the interaction was
prevented by the anti-Sp1l antibodies (Fig. 6A). Consistent
with this observation, this site was strongly bound by re-
combinant Sp1 protein. The —165 element formed a faster-
migrating complex with pituitary cell proteins, but separate
experiments using anti-Sp1 antibodies or pure Sp1 protein
indicate that this is likely not a high-affinity Sp1-binding site.
We conclude that pituitary cell proteins recognize the GC
boxes in the hLHX3a promoter and that the —291 and —181
sites are likely weak and strong Spl interaction elements,
respectively.

We similarly examined protein/DNA interaction proper-
ties with GC boxes in the hLHX3b proximal promoters. In
these studies, EMSA experiments using pituitary LBT2 or

Yaden et al. ® LHX3 Gene Transcription

HEK cell extracts, anti-Sp1 antibodies, or purified Sp1 pro-
tein to probe protein/DNA interactions indicated that the
—308 element can be weakly bound by Sp1 and the —203/
—185 region is strongly recognized by Sp1 (Fig. 6B and data
not shown). As for the hLHX3a promoter analysis, for some
sites (—345 and —308), faster-migrating complexes that are
not disrupted by anti-Sp1 were also observed.

To assess Spl association with the endogenous mouse
Lhx3a gene promoter, we performed ChIP experiments.
These studies demonstrate Sp1 occupation of the proximal
region of the Lhx3a promoter in LBT2 pituitary cells (Fig. 7A).
Parallel negative controls showed no nonspecific recovery of
an unrelated actin gene (Fig. 7A). To date, we have been
unable to obtain similar data showing Sp1 association with
the mouse Lhx3b gene promoter. Likely technical explana-
tions for this result include the high-GC content of this
genomic region, a condition that makes conventional PCR
challenging.

We next examined the importance of the identified Sp1-
binding sites in the transcriptional activity of the hLHX3
promoters. Mutation of either the —181 or —291 element
within the hLHX3a promoter reduce the activity of the pro-
moter in pituitary cells (Fig. 7B). Interestingly, these muta-
tions reduce promoter activity to similar, low levels. This
observation may indicate the elements in this region act
together rather than in additive fashion. Similarly, mutation
of the major Spl-interacting region of the hLHX3b promoter
(—203/—185) compromised activity by approximately 5-fold
(Fig. 7C). We conclude that Sp1 is an important regulator of
the hLHX3 gene promoters.

Experiments described above indicate that the 5’ end of
intron la (upstream of the hLHX3b promoter) contains a
regulatory element that is critical for hLHX3b activity in
pituitary cells (Fig. 2B). To further define this potential pos-
itive regulatory region, we first scanned the entire intron for
trans-acting protein interactions using large (~400 bp), over-
lapping probes in EMSA experiments. All of the tested se-
quences displayed some protein binding, but the major com-
plex-forming regions were —1504/—1084 and the two most
proximal sequences that encompassed the GC boxes, includ-
ing the identified Sp1 element (asterisks, Fig. 8A). Based on
this observation and the functional data shown in Fig. 2B, we
therefore concentrated on the —1504/—1084 region. EMSA
experiments using shorter probes eventually refined the pri-
mary binding site within this region to an element located
between —1444 and —1414 that interacted strongly with pro-
teins from both LBT2 pituitary cells and HEK cells (Fig. 8, B
and C). In Southwestern blot experiments, radiolabeled
probes representing this intronic region interacted with pro-
teins of approximately 60—65 kDa from cultured rodent GC,
aT3-1, and LBT2 pituitary cells (Fig. 8D and data not shown).
Sequence analyses of the —1444 to —1414 DNA sequence
suggested the presence of a possible nuclear factor I (NFI)
transcription factor-binding site. To test the possibility that
NFI family proteins interacted with this region, we per-
formed additional EMSA assays. Anti-NFI antibodies dis-
rupted the protein/DNA complexes in EMSA experiments
using LBT2 pituitary cell extracts, and a supershifted com-
plex was observed (Fig. 8E). Antibodies to non-NFI proteins
did not affect the protein/DNA complexes in parallel neg-
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Fic. 6. Spl-binding sites in the ALHX3a and
hLHX3b proximal promoters. EMSA experi-
ments were performed. A, Radiolabeled DNA
probes representing the —289-, —179-, and
—162-bp regions were incubated with protein ex-
tracts from pituitary gonadotrope LBT2 cells (left
panel) and the resulting complexes were sepa-
rated by electrophoresis. Anti-Spl antibodies
were used to disrupt complexes containing Spl
(black arrow) as indicated. Some sites produce
faster-migrating complexes that do not contain
Sp1 (open arrowhead). The —291 element forms
avery weak complex with LBT2 proteins that can B
only be seen on extended exposures (not shown).

In the right panel, purified recombinant Sp1 pro- 293T extract:
tein was used. F, free, unbound DNA. B, Radio- Spl protein:
labeled DNA probes representing the indicated :

regions of the hLHX3b promoter were incubated anti-Spl:

F F

=291 -181  -165 -291 -181 -165
+ + + o+ o+ o+ o+ o+ o+ - - - - -
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with protein extracts from HEK 293T cells or
purified recombinant Sp1 protein and the result-
ing complexes separated by electrophoresis. Anti- Eal
Sp1 antibodies were used to disrupt cell extract
complexes containing Spl (black arrow). Some
DNA elements form smaller complexes that do
not contain Spl (open arrowhead). Similar data
were obtained using pituitary LBT2 protein ex-
tracts (not shown).

ative controls. To further examine NFI interaction with this
element within mammalian Lhx3 genes, we performed ChIP
experiments targeting the endogenous mouse intron 1a re-
gion. Consistent with the EMSA and Southwestern data,
anti-NFI antibodies precipitated chromatin complexes con-
taining this genomic sequence from LBT?2 pituitary gonado-
trope cells but not a region of an actin gene in parallel neg-
ative controls (Fig. 8F).

Mammalian NFI factors include the NFI-A, NFI-B, NFI-C,
and NFI-X isoforms (reviewed in Ref. 34). To investigate
which NFI family isoforms are expressed in the LBT2 pitu-

-133 2203/ -345 308 -286

3]
e
D

2345
-308
-286

-185

-203/-185

itary cells used in our studies and in pituitary glands, we
performed RT-PCR experiments using cDNA derived from
LBT2, human adult pituitary, mouse adult pituitary, or HEK
cells. Whereas all four NFI isoforms were expressed in the
adult pituitary tissues and in HEK cells, only the A, C, and
Xisoform mRNAs were detected in the mouse LBT2 pituitary
gonadotrope cells (Fig. 9A). During the course of our studies,
another group reported a RT-PCR assay of NFI isoform ex-
pression in LBT2 cells with similar results, except that these
authors did not detect NFI-A in their LBT2 cells (35). In
Northern blot experiments using pituitary GC somatolacto-
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Fia. 7. Spl regulation of human and mouse Lhx3 gene promoters. A, ChIP experiments demonstrate Spl occupation of the proximal region
of the endogenous mouse Lhx3a promoter in LBT2 pituitary cells. A gel displaying separation of the amplified genomic DNA region fragments
is shown. anti-SP1 mAct, Anti-Sp1 antibody reaction used as a substrate in a PCR for a region of the B-actin gene (negative control); anti-SP1
mLhx3, anti-Sp1 antibody reaction used as a substrate in a PCR for the mLhx3a promoter (closed arrow); In, input positive control; M, molecular
markers (in base pairs); Neg, negative control (no substrate); PI, preimmune negative control; Pos mAct, B-actin fragment amplification (open
arrow) from input DNA. B, A wild-type hLHX3a promoter [uciferase reporter gene or equivalent constructs with mutations of the indicated
Sp1l-binding GC boxes were transiently transfected into pituitary LBT2 cells, and their activities were determined. Promoter activity was assayed
by measuring luciferase activity 48 h after transfection. Activities are mean (light units/10 sec-ug total protein) of triplicate assays = SEM. A
representative experiment of at least three experiments is depicted. C, A similar approach was used to determine the importance of the proximal

Spl-binding sites in the ALHX3b promoter.

trope cell RNA, a separate laboratory detected expression of
the A, C, and X NFI mRNAs (36). We conclude that all
members of the NFI family are expressed in the pituitary and
that subsets are found in differentiated pituitary cell types.

To better understand the interaction of NFI factors with the
hLHX3 intron la element, we performed further structure/
function studies of the DNA element. Inspection of the —1454
to —1426 region of intron 1a revealed two NFI half-sites (be-
ginning at —1441 bp) surrounding an E-box, i.e. a DNA se-
quence matching the CANNTG consensus that can be recog-
nized by members of the basic helix-loop-helix transcription
factor superfamily (Fig. 9B). This sequence is therefore posi-
tioned 1325 bp upstream of the major transcription start site.
Upstream of these sequence features is an imperfect potential
NFI half-site (Fig. 9B). Oligonucleotide probes representing the
wild-type human sequence and variants with specific muta-
tions in each of these sequence features were tested in EMSA
experiments using LBT2 cell extracts. These experiments dem-
onstrated that, whereas the two downstream NFI half-sites
were critical for protein/DNA interaction, the E-box and the
upstream element were not required for formation of the com-
plex (Fig. 9C). Similar results were obtained in experiments

using protein extracts from rat pituitary somatolactotrope GH3
cells (Fig. 9C). These observations are consistent with our initial
mapping experiments (Fig. 8). Mutation of the downstream NFI
half-sites of the intron 1a luciferase reporter gene severely com-
promised its activity in LBT2 cells (Fig. 9D). Intriguingly, mu-
tation of the E-box similarly affected reporter gene function (Fig.
9D). It is also interesting to note that although both mutation of
the NFI site and deletion of the region containing the site both
significantly reduce activity of the Lhx3b promoter/intron la
(Figs. 2 and 9), the mutation results in a more severe reduction
in activity. One explanation for this is that a repressive element
in the intron is also removed in the deletion experiment. The
intron region containing the NFI site is conserved in primates,
and a similar sequence is found in a 5’-shifted location in other
examined species (Fig. 9E).

Discussion

In this study, we present the first characterization of the
mechanisms that regulate transcription of the Lhx3 gene from
any species. Two conserved, TATA-less, GC-rich promoters
located upstream of exons la and 1b of mammalian Lhx3
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Fic. 8. A distal upstream region of intron la recognized by NFI factors is critical for activity of the ALHX3b promoter. A, Experiments shown
in Fig. 2B demonstrated that an element between —1804- and —1267-bp of intron 1a is critical for activity of the ALHX3b promoter. To identify
regions within the entire intron la sequence that bind cellular factors that may regulate transcription, approximately 400-bp overlapping
fragments were used as probes in scanning EMSAs with HEK cell extracts. All regions displayed some protein binding, but three regions were
strongly recognized (asterisks), including the —1504 to —1084 region. B and C, Protein binding within the —1504 to —1084 region was further
refined by EMSA using probes of the indicated sizes until a 30-bp sequence encompassing —1444 to —1414 was identified. H, HEK cell protein;
L, LBT2 pituitary cell protein. D, Southwestern blot experiments using DNA probes including the —1454 to —1414 sequence interacted with
proteins of approximately 60—65 kDa on blots of protein extracts from cultured rodent pituitary cells. E, Anti-NFI antibodies disrupt
protein/DNA complexes (arrow) in EMSA experiments using DNA probes containing the —1454 to —1414 DNA sequence and LBT2 pituitary
cell extracts. The asterisk indicates a supershifted complex. Anti-SOX5 antibodies did not affect the protein/DNA complexes in parallel negative
controls. F, ChIP experiments demonstrate NFI occupation of the —1454 to —1414 region of the endogenous mouse Lhx3 intron la in LBT2
pituitary cells. A gel showing separation of the amplified genomic DNA region fragments is shown. anti-NFI mLhx3, Anti-NFI antibody reaction
used as a substrate in a PCR for the mLhx3b promoter/intron 1a (closed arrow); anti-SP1 mAct, anti-NFI antibody reaction used as a substrate
in a PCR for a region of the 3-actin gene (negative control); In, input positive control; M, molecular markers; Neg, negative control (no substrate);
PI, preimmune negative control; Pos mAct, B-actin fragment amplification from input DNA (open arrow).

Downloaded from endo.endojournals.org on October 31, 2006


http://endo.endojournals.org

334 Endocrinology, January 2006, 147(1):324-337 Yaden et al. ® LHX3 Gene Transcription

A C Pituitary LET2
NFI Isoform Transcript
M Neg Neo A B C X A B C X =
500 bp -
396 bp -
344 bp -
298 bp -
HEK 293T Cells Mouse Pituitary LBT2
Gonadotrope Cells
M Neg Neg A B C X
Human Adult Pituitary
-
Mouse Adult Pituitary L
el : ,.;‘_‘ .E"“:
B WT ATTGTTGGAGGGCTGGCCAGATGCCAGCA
M1 ATTGTTctAGGGCTGGCCAGATGCCAGCA
M2 ATTGTTGGAGGGCTatCCAGATGCCAGCA
M3 ATTGTTGGAGGGCTGGCCAGATGCgtEGCA
M4 ATTGTTGGAGGGCTGGCggGATGCCAGCA
WT M1 M2 M3 M4
.b s . GH3
D hLHX3b upstream (intron la)

-1804 WT
-4

SEERvEEES X I

11804 M4

I I I I
0 1000000 2000000 3000000 4000000
Light units/pg protein

E Hu ATTGTTGGAGGGCTGGCCAGATGCCAGCAGGGTGGGCCGCCT
Ch ATTGTTGGAGGGCTGGCCAGATGCCAGCAGGGTGGGCCGCCT
Rh ATTGTTGGAGGGCTGGCCAGATGCCAGCAGAGTGGGCTGCCT
Co ATTGTTGGCCAGTCGGCCAGATGCCGAGTGCATAGGCCCGCC
Pi ATTGTTGGCGGGCCGGCCAGATGCCCAGCGCATGGGCCCGCC
Mo ATTGTTGGCGGCAA-GCCAGATGCCCAACAGTGTGGAGCCGC
Ra ATTGTTGGCGGCAA-GCCAGATGCCCAGTAGTG-GGAGCCGC

Fic. 9. Regulation of the hLHX3b promoter by NFI factors through interaction with a conserved, critical distal element within intron la. A,
NF1I factors are expressed in pituitary LBT2 gonadotropes and adult pituitary glands. RT-PCR analysis of NFI isoform mRNA expression.
Isoform-specific primers were used in PCR containing either HEK 293T, LBT2, adult human pituitary, or adult mouse pituitary cDNA. M,
Marker (in base pairs); Neg, negative control reactions lacking reverse transcriptase but including the tested cDNA and primers for the A or
B isoform. B, The human —1454 to —1426 region contains three putative NFI recognition half-sites (bold, with two consensus proximal sites
underlined) and a putative E-box (line over text). Oligonucleotides representing this sequence with specific mutations of each of these elements
were synthesized (M1, M2, M3, and M4). C, EMSA experiments using LBT2 pituitary cell protein extracts and the oligonucleotide probes shown
in C reveal that the two proximal NFI half-sites are most important for binding. Similar results were obtained in experiments using GH3
pituitary cell extracts (only bound complexes are shown). D, The NFI site is important for the basal activities of the ALHX3b promoter. Wild-type
and mutated luciferase reporter genes containing intron 1la/ALHX3b promoter were transiently transfected into pituitary gonadotrope LBT2
cells and activities were determined. Promoter function was assayed by measuring luciferase activity 48 h after transfection. Activities are mean
(light units/10 sec'ug total protein) of triplicate assays = SEM. A representative experiment of at least three experiments is depicted. E,
Conservation of the —1454- to —1413-bp region of intron 1a of mammalian Lhx3 genes. The entire Lhx3 gene was cloned from cattle and intron
la was cloned from pig and rhesus monkey genomic DNA (see Materials and Methods). Alignment of the —1454 region of intron 1a in the human
LHX3 gene with other species. Ch, Chimp; Co, cow; Hu, human; Mo, mouse; Pi, pig; Ra, rat; Rh, rhesus monkey.
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genes function to initiate basal transcription of the Lhx3a and
Lhx3b mRNAs. Interestingly, the proximal Lhx3b promoter is
more strongly conserved in mammals than is the Lhx3a pro-
moter (Garcia, M., and S. J. Rhodes, unpublished data). To
date, molecular assays have demonstrated that the LHX3a
protein is significantly more active than LHX3b in DNA
binding and pituitary gene activation assays because of re-
pressive properties conferred by the LHX3b-specific amino
terminus (13, 22, 23). However, the observation that the
hLHX3b promoter is conserved, together with the previous
report that the LHX3b-specific amino terminus protein se-
quence is better conserved than that of the LHX3a-specific
amino-terminal domain (22), suggests that LHX3b plays im-
portant and, perhaps, unique roles in neuroendocrine
development.

The TATA-binding protein-associated factor components
of the TFIID complex are required for basal transcription at
TATA-less promoters but TATA-binding protein itself may
not always be required for initiation from this type of pro-
moter (37). Classically, TATA-less promoter organizations
were associated with housekeeping genes, which lacked pre-
cise temporal and spatial expression patterns. However, it is
becoming apparent that TATA-less promoters may be more
common than TATA-containing promoters (38) and that
TATA-less promoters are often a feature of tissue-specific
and regulatory genes (e.g. Refs. 39 and 40). The results de-
scribed here for the hLHX3 gene are consistent with these
findings.

We have shown that some of the conserved GC boxes
within the hLHX3 promoters are Spl-binding sites, that ex-
pression of Spl results in increased promoter activity, and
that the Spl sites are important contributors to basal pro-
moter function (Figs. 5-7). An organization including the
presence of multiple Sp1 binding sites in a GC-rich, TATA-
less promoter exhibiting several initiation sites has been ob-
served for other tissue-specific genes that encode regulatory
transcription factors. For example, the mouse and human
Wilm’s tumor suppressor gene (wt1), the expression of which
is regulated spatially and temporally during urogenital de-
velopment, has all of these features (41).

Mice lacking the Sp1 gene die in utero by embryonic d 10
demonstrating that Sp1 is critical for development. However,
in these animals expression of suggested Sp1 target genes is
nevertheless detectable (42). Although our data here dem-
onstrate that Sp1 proteins in pituitary cells do occupy func-
tionally important, GC-rich elements within the hLHX3a and
hLHX3b promoters, it is possible that, at specific times, other
members of the Sp protein family might interact with these
and other 1LHX3 promoter elements. Mammalian genomes
encode multiple Spl-related /XKLF transcription factors (43)
and some members of this family exhibit restricted expres-
sion patterns and play roles in the development of specific
tissues (e.g. Ref. 44).

Some of the identified GC elements within the hLHX3
promoters conform to consensus sites for the EGR1/
NGF1A/KROX24 zinc finger transcription factor. EGR1
plays a direct role in the transcriptional control of the LHB
subunit gene (reviewed in Ref. 45), and gene inactivation
experiments demonstrate its importance in pituitary soma-
totrope and gonadotrope cell development (46, 47). In trans-
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fection experiments, EGR1 boosted transcription from the
hLHX3a promoter and reduced the activity of a hLHX3b
reporter gene (Fig. 5), suggesting that EGR1 may differen-
tially regulate hLHX3 promoter activities. The activity of
EGR1 is often a response to environmental signals such as
growth factors, neurotransmitters, and hormones, and the
hLHX3 GC boxes may allow control of hLHX3 promoter
activities through competitive interplay among factors such
as EGR1, Sp1, and the Spl-related Sp3 protein, as has been
described for other promoters (e.g. Refs. 45 and 48-50).

We have shown in this report that a conserved, positively
acting cis-element lies at approximately —1442 bp of intron
la in the hLHX3b promoter. EMSA, Southwestern blot, and
ChIP assays indicate that NFI proteins interact with this
region. NFI/CTF family transcription factors (34) have been
suggested to contribute to both basal and tissue-restricted
gene activation and repression, including in the pituitary and
nervous systems (e.g. Refs. 35, 36, and 51-53). NFI and Sp1/
Sp3-binding sites have been found in other genes with ex-
pression patterns in endocrine tissues, such as the
ADAMTS-1 gene (54). Intriguingly, considering the involve-
ment of Sp1 in hLHX3 promoter regulation, NFI family mem-
bers have also been demonstrated to interfere with Sp1 ac-
tivities in some promoters (55). All four of the four major NFI
isoforms are found in pituitary cell types (Refs. 35 and 36 and
this study). To test the potential roles of individual NFI
proteins in 1LHX3b promoter activation, we have performed
transfection experiments in pituitary cells with expression
vectors for all four NFI factors and a hLHX3b promoter re-
porter gene. In these assays, overexpression of NFI did not
significantly affect the activity of the promoter (Garcia, M.,
and S. J. Rhodes, unpublished observations), likely due to the
presence of endogenous NFI proteins in the transfected cells.
However, mutation of the NFI element compromised the
activity of the hLHX3b promoter in pituitary gonadotrope
cells (Fig. 9D). Interestingly, a mutation of an E-box-like
sequence that did not affect gonadotrope cell NFI protein
binding also strongly reduced the activity of the promoter
(Fig. 9A), suggesting that this sequence is important for NFI-
mediated transcription but not DNA interaction or that this
sequence is recognized by other proteins that migrate within
the same DNA /protein complex in EMSA experiments.

The embryonic expression patterns of the four murine NFI
genes in many tissues including the pituitary suggest roles
for the NFI factors in developmental regulation (Ref. 56 and
Lyons, G., personal communication). Gene ablation experi-
ments in mice are beginning to dissect the unique roles of
individual NFI genes. Loss of the Nfia gene results in peri-
natal death associated with nervous system defects (57, 58).
Mice lacking functional Nfib genes also are not viable and
have incomplete nervous system and lung development (59).
The Nfic gene appears to play functions in mouse tooth root
development (60). To date, NFI gene knockout animals have
not displayed overt pituitary-associated phenotypes, but the
roles of NFI factors in pituitary development may have yet
to be revealed due to compensation or redundancy
phenomena.

In this study, we have characterized the proximal elements
that coordinate the basal production of the two major Lhx3
gene mRNAs and have identified two classes of trans-acting
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factors that regulate this activity. Our studies indicate that
both positive and negative cis-acting sequences function
within the approximately —4.8 kb upstream of the hLHX3a
promoter (Fig. 2A). A recent annotation of the human ge-
nome draft (accessed at the NCBI) indicates that the
QSCNG6L1/SOXN gene encoding the quiescin Q6-like 1 pro-
tein, a putative sulfhydryl oxidase (61), may be located as
close as 1.2 kb from the hLHX3a transcription initiation sites.
The close location of this gene is an important consideration
in interpretation of future studies investigating transcrip-
tional control elements that lie upstream of hLHX3. Further-
more, the basal promoters described here have some activity
in nonpituitary cells: additional gene regulatory pathways in
addition to those characterized herein are required to cor-
rectly guide the restricted temporal and spatial expression of
the LHX3 mRNAs. Future experiments will map the genomic
regions required for these repressive and/or activating path-
ways and to understand how the promoters are differentially
or coordinately controlled.

Autoregulation appears to be an important mechanism by
which pituitary transcription factor genes participate in the
establishment of stable cell fates during development (e.g.
Refs. 62 and 63). The experiments shown in Fig. 5A suggest
that this may also be true for the hLHX3a promoter. In ad-
dition, recent reports have demonstrated that paired-like
homeodomain (PITX)-class transcription factor genes act up-
stream of Lhx3 in pituitary development (64, 65). In prelim-
inary experiments, we have tested the responses of the
hLHX3a and hLHX3b promoters described in this report in
cotransfection assays using rodent PITX1 and PITX2c ex-
pression vectors. In the presence of either PITX1 or PITX2c,
transcription from the —2.7 kb hLHX3a promoter is moder-
ately increased (2- to 3-fold). The intron la/hLHX3b pro-
moter is induced to a similar degree by PITX2c, but is not
affected by PITX1 (Yaden, B. C., and S. J. Rhodes, unpub-
lished observations). These data suggest that PITX proteins
might exert some of their effects by actions at proximal Lhx3
promoters, but further studies will be required to examine
whether additional direct and indirect mechanisms mediate
the induction of Lhx3 by PITX-dependent pathways.

To date, the mutations in the hLHX3 gene that have been
associated with combined pituitary hormone-deficiency dis-
eases are located within the protein-coding regions of the
gene (19). The transcriptional regulatory elements that we
have characterized here provide candidate regions for diag-
nostic analyses looking for genetic lesions causing combined
pituitary hormone-deficiency diseases of unknown etiology.
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