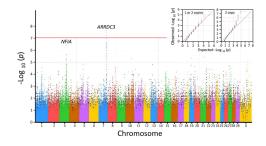
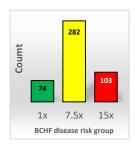
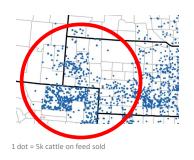
Genetic association with bovine congestive heart failure (BCHF) in Feedlot cattle

Mike Heaton, Ph.D.



Topics


• The problem of congestive heart failure in beef cattle



Discovery of genetic risk factors for BCHF

Identifying animals at risk for disease

Cattle with congestive heart failure are appearing with increased frequency in Western Plains feed yards

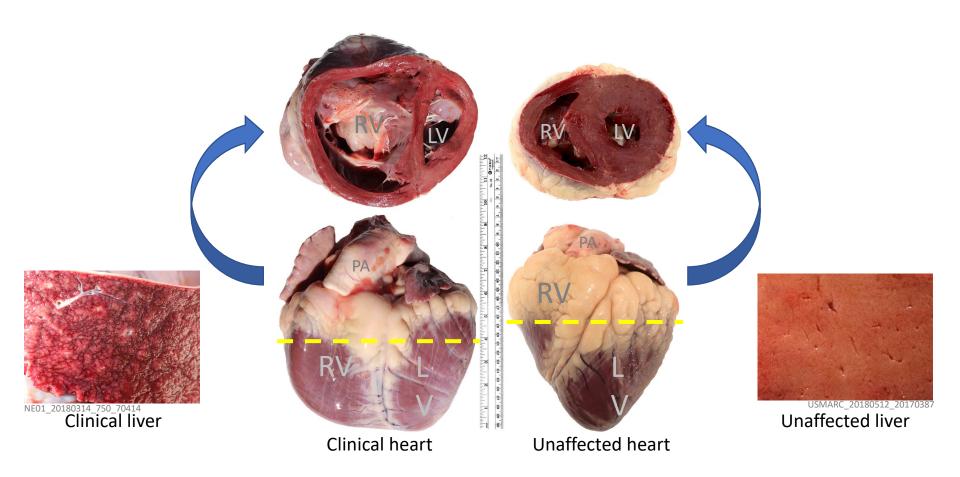
- These yards are experiencing significant losses to "brisket disease"
- These are well managed cattle with high genetic merit
- For some operations, this disease is their largest single economic loss
 - Nebraska Producer 1: > \$250 k annually
 - Nebraska Producer 2: = \$944 k from 2013 to 2018

Clinical features

Unaffected

Clinical disease

Other clinical signs



Jugular distension

Intermandibular edema

Postmortem differences

Outbreaks clustered by source

Up to 7% loss observed in single-source groups (lot)

• 40 of 600 (May, 2017)

• 39 of 500 (January, 2018)

Disease clustering by source suggests underlying genetic causes

Goals of our research

1. Understand how the disease works

Essential for prevention and treatment

2. Develop a DNA test for animals at risk

- ➤ Facilitate selective breeding for reduced risk
- > Reduce the number of diseased cattle
- Identify and manage cattle at risk

Manage cattle with signs of heart failure

Project collaborators

Dr. Brian Vander Lev

Dr. Kathy Whitman

Dr. Halden Clark

Dr. Adam **Bassett**

Sang In Lee

School of Veterinary Medicine and Biomedical Sciences

GREAT PLAINS VETERINARY EDUCATIONAL CENTER

Dr. Greta Krafsur

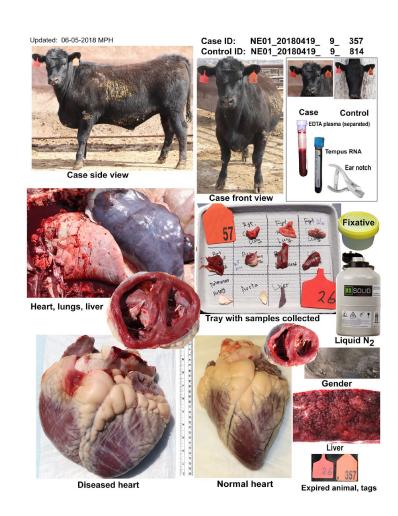
Agricultural Research Service

USMARC

Dr. Greg Harhay

Dr. Aspen Workman

Dr. Tim Smith


Dr. Larry Kuehn

Study design (2016)

- 100 matched case-control pairs
 - Four feedyards ~4000 ft
 - Pen riders identify clinical cases

- Presumptive diagnosis
 - Clinical presentation, necropsy, histopathology
- Matched controls
 - Source, arrival date, gender, and breed type
 - None developed clinical BCHF before harvest
- Preserve tissues
 - DNA, RNA, protein

Heaton et al., F1000Research 2019, 8:118

21 trips over 15 months and 15,000 miles

Sample Summary

Site	Altitude (ft)	Pairs	Sources
NE01	4,075	76	20
NE02	3,816	17	9
WY01	4,143	6	6
WY02	4,198	3	2
Ave	erage: 4,058	Totals: 102	37

- 95 black, 5 red, 2 red whiteface
- 71 males, 31 females
- 2017 2018

What types of clinical cases did we see?

Day 1 (bull)

Day 30 (heifer)

Day 238 (steer)

Affected, pair 24

Affected, pair 32

USMARC20060372

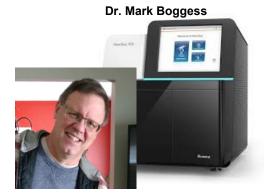
Clinical cases at every stage of the feeding cycle

First result: *EPAS1* was not associated with BCHF

RESEARCH ARTICLE

Evaluation of *EPAS1* variants for association with bovine congestive heart failure

Michael P. Heaton (1) 1, Adam S. Bassett², Katherine J. Whitman², Greta M. Krafsur³, Sang In Lee², Jaden M. Carlson², Halden J. Clark², Helen R. Smith¹, Madeline C. Pelster², Veronica Basnayake⁴, Dale M. Grotelueschen², Brian L. Vander Ley (1) ²


The search was expanded to the whole genome

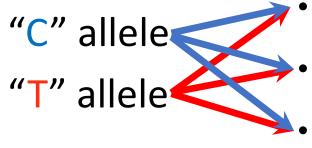
102 matched case-control pairs

Illumina BovineHD BeadChip (777 k markers)
2 months, ~\$20k

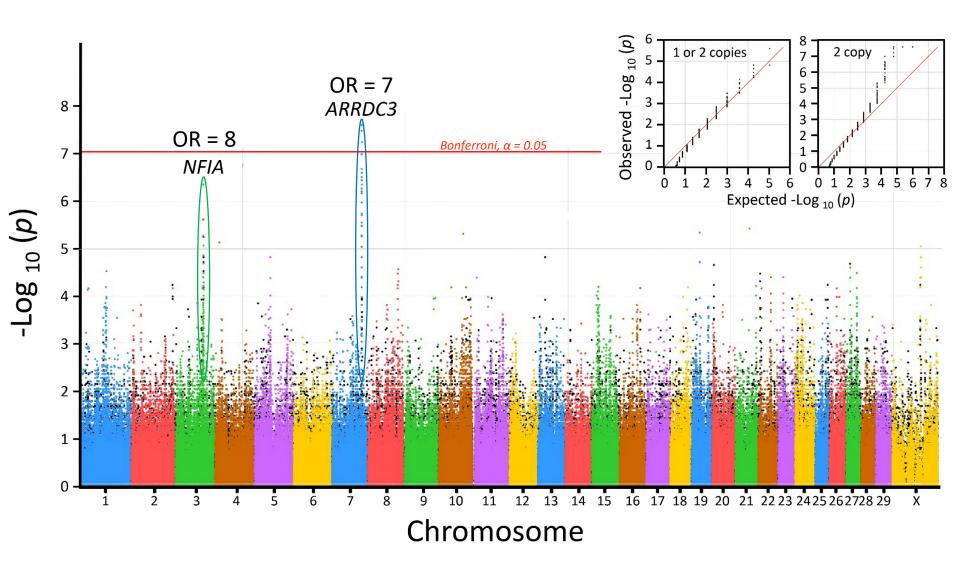
Whole genome sequencing (30 M variants)
2-3 years, \$300k, 78/204 (38%) sequenced Dec. 2019

Dr. Tim Smith

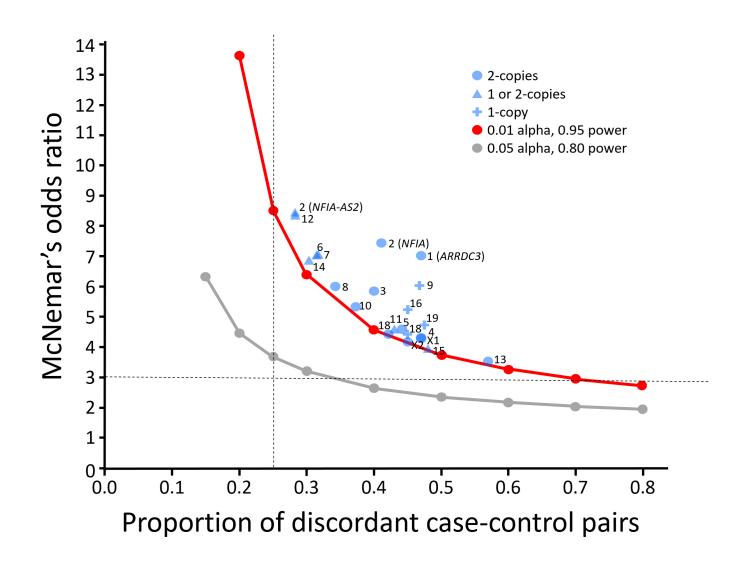
McNemar's test for association


- PLINK does not have a suitable McNemar's analysis package
 - Fisher's exact test, Cochran-Mantel-Haenszel test
- Custom software written in MATLAB programming language

Dr. Greg Harhay


Each of 562k SNPs were analyzed 12 ways:
"risk factor" vs "protective factor"

C/T SNP example



- 1 copy (dominant)
 - 1 or 2 copies (dominant or additive)
- 2 copies (recessive)

Manhattan plot of McNemar's test for association

21 SNPs significantly associated with BCHF

Top 21 SNP associations with BCHF

Table 2. SNPs associated with the highest risk of BCHF in feedlot cattle

			UMD3.1	ARS1.2										М	cNem	ar pa	irs										SNPs in	Bloc
			Chr. pos.	Chr. pos.					A1	. Frequer	псу		Risk	1,1	1,0	0,1	0,0					OR	Cl ₉₅		p -value		LD	size
Rank	Chr	SNP ID	(bp)	(bp)	Nearest genes	SNP location	A1 ^b	A2	Case	Control	Ref.	Risk model ^c	allele	а	b	с	d	b + c	n	(b+c)/n	OR	Lower	Upper	χ_2^d	(exact)	-log(<i>p</i>)	(χ2 >15	
1	7	BovineHD0700027239★	93244933	90845941	ARRDC3 🖈	Exon 4 C182Y tRt	Α	G	0.794	0.583	0.219	2 copies	Α	25	42	6	29	48	102	0.471	7.0	3.0	16.5	25.5	1.01E-07	7.0	56	956
2	3	BovineHD0300024307	85123495	84578325	NFIA	Intron 2	G	Α	0.647	0.427	0.448	2 copies	G	7	37	5	53	42	102	0.412	7.4	2.9	18.8	22.9	4.43E-07	6.4	21	596
2	3	ARS-BFGL-NGS-103524	85253155	84706206	NFIA-AS2	Intron3	С	Α	0.25	0.525	0.443	1 or 2 copies	Α	72	26	3	1	29	102	0.284	8.7	2.6	28.6	16.7	1.52E-05	4.8	21	596
3	10	BovineHD1000021490	75580294	75267920	KCNH5	Intron 4	Α	G	0.672	0.476	0.542	2 copies	Α	14	35	6	47	41	102	0.402	5.8	2.5	13.9	19.1	4.87E-06	5.3	0	5
4	5	BovineHD4100003664	48418959	48188142	HMGA2_MSRB3	Intergenic	Α	G	0.706	0.525	0.203	2 copies	Α	15	39	9	39	48	102	0.471	4.3	2.1	8.9	17.5	1.52E-05	4.8	2	5
5	26	BovineHD2600006169	23929257	23685234	CNNM2	Intron 1	Α	C	0.884	0.716	0.729	2 copies	Α	41	37	8	16	45	102	0.441	4.6	2.2	9.9	17.4	1.54E-05	4.8	0	4
6	19	BovineHD1900007657	25991182	25381310	PITPNM3	Intron 4	Α	C	0.799	0.941	0.760	1 or 2 copies	C	7	28	4	63	32	102	0.314	7.0	2.5	20.0	16.5	1.93E-05	4.7	9	30
7	22	BovineHD4100015417	5652914	5605128	GADL1_STT3B	Intergenic	Α	G	0.576	0.430	0.552	1 or 2 copies	Α	60	28	4	10	32	102	0.314	7.0	2.5	20.0	16.5	1.93E-05	4.7	0	5
8	20	BovineHD2000001515	4762743	4854589	BNIP1	Exon 6 3'UTR	G	Α	0.451	0.652	0.859	2 copies	Α	3	30	5	64	35	102	0.343	6.0	2.3	15.5	16.5	2.24E-05	4.7	0	8
9	9	BovineHD0900027458	96528831	95086861	SYTL3	Intron 3	Α	С	0.490	0.368	0.391	1 copy	Α	29	30	5	11	35	75	0.467	6.0	2.3	15.5	16.5	2.24E-05	4.7	0	2
10	4	BovineHD0400003776	12664064	12793811	ASB4	Intron 3	G	Α	0.960	0.824	0.688	2 copies	G	61	32	6	3	38	102	0.373	5.3	2.2	12.8	16.4	2.43E-05	4.6	0	22
11	27	BovineHD2700003477	11978259	12942894	AGA_TENM3	Intergenic	Α	G	0.451	0.657	0.698	1 or 2 copies	G	48	36	8	10	44	102	0.431	4.5	2.1	9.7	16.6	2.54E-05	4.6	4	48
12	8	BTB-01266056	95400554	93743405	SMC2	Intron 20	C	Α	0.855	0.970	0.814	1 or 2 copies	Α	3	25	3	71	28	102	0.283	8.3	2.5	27.6	15.8	2.74E-05	4.6	1	21
13	1	BovineHD0100023638	82311685	81722301	MAP3K13	Intron 10	G	Α	0.882	0.721	0.792	2 copies	G	36	45	13	8	58	102	0.569	3.5	1.9	6.4	16.6	3.01E-05	4.5	0	4
14	8	Hapmap27238-BTA-163742	93655394	92016089	GRIN3A_CYLC2	Intergenic	Α	G	0.825	0.955	0.823	1 or 2 copies	G	5	27	4	66	31	102	0.304	6.8	2.4	19.3	15.6	3.40E-05	4.5	2	6
15	22	BovineHD2200011041	38708159	38567450	CADPS	Intron 3	Α	G	0.530	0.690	0.750	1 or 2 copies	G	41	39	10	12	49	102	0.480	4	1.9	7.8	16.0	3.85E-05	4.4	0	2
16	3	ARS-BFGL-NGS-110776	41119556	40971803	COL11A1_OLFM3	Intergenic	С	Α	0.667	0.745	0.750	1 copy	Α	17	31	6	28	37	82	0.451	5.2	2.2	12.4	15.6	4.13E-05	4.4	0	3
17	22	BovineHD2200002812	9438878	9404132	PDCD6IP_ARPP21	Intergenic	Α	G	0.940	0.801	0.662	2 copies	Α	53	35	8	6	43	102	0.422	4.4	2.0	9.4	15.7	4.19E-05	4.4	0	8
18	26	BovineHD2600008347	31264198	31000995	SMNDC1_DUSP5	Intergenic	Α	G	0.767	0.891	0.651	1 copy	G	6	35	8	46	43	95	0.453	4.4	2.0	9.4	15.7	4.19E-05	4.4	0	12
19	24	BovineHD2400006360	23311439	23021459	NOL4	Intron 4	Α	G	0.662	0.799	0.635	1 сору	G	12	33	7	32	40	84	0.476	4.7	2.1	10.7	15.6	4.23E-05	4.4	0	7
1	X	BovineHD3000025651	93114732	87952697	CCNB3	Intron 1	Α	С	0.72	0.469	na	Homozygous	Α	28	39	9	26	48	102	0.471	4.3	2.1	8.9	17.52	1.52E-05	4.8	10	16:
2	Χ	BovineHD3000025051	91049685	85788201	ZNF41	Intron 2	С	Α	0.87	0.662	na	Homozygous	С	48	37	9	8	46	102	0.451	4.1	2.0	8.5	15.85	4.06E-05	4.4	1	1

aln the three models tested, the genetic risk factor were defined as having exactly 1, 1 or 2, or exactly 2 copies of the risk allele, respectively.

^bA1 was defined in the McNemar's test analyses as the most frequent allele in the combined group of 204 cases and controls.

c in the three models tested, the genetic risk factor were defined as having exactly 1, 1 or 2, or exactly 2 copies of the risk allele, respectively.

dMcNemar's chi-squared with continuity correction: (|b-c|-1)2/(b+c)

^eDistance between distal SNPs within block of LD where χ2 > 15. If no additional linked SNPs present, distance between non-linked adjacent SNPs.

In the X-chromosome analysis, pairs of males and pairs of females were analyzed together. Since male X-chromosome genotypes are always homozygous, the risk factor was defined as being homozygous at the position. Both alleles were evaluated for being the risk factor.

[★] Marker used in 2-SNP test: BovineHD0700027239 (BCHF5, ARRDC3, 2 copies, risk allele ="A")

^{★★} Linked to marker used in 2-SNP test: BovineHD0300024366 (BCHF2, NFIA-AS2, 1 or 2 copies, risk allele = "A")

ARRDC3 missense variant C182Y associated with BCHF

Possible function: In mouse and human, the arrestin domain-containing 3 protein gene (ARRDC3) is widely expressed and regulates body mass and energy expenditure. Patwari et al., Cell Metab 2011;14: 671–683

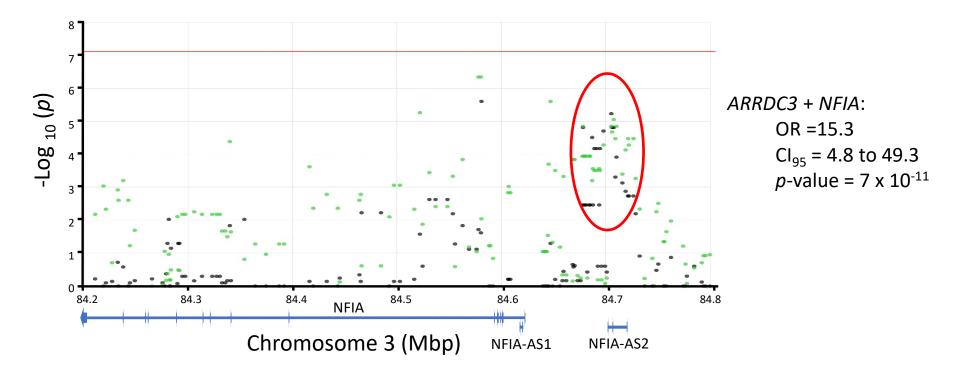
It also interacts with β2-adrenergic receptor in the early endosome and prevents receptor recycling. Tian et al., J Biol Chem 2016;291:14510–14525

Table 3. Evolutionary comparison of ARRDC3 residues near the C182Y position in the jawed vertebrates.

		Overall															
	TMRCA	Identity ^b										Α	RRDO	C3 pc	sitio	n ^c	
Species types	(Ma) ^a	(%)	1	Гах	on	on	nic	gro	oup)	179	180	181	182	183	184	18
Cattle (Hereford)	0	100.0									K	Т	L	Υ	С	W	F
Cattle (Brahman)	0	99.8												С			
Yak, bison	5	99.8	В											С			
Waterbuffalo	15	99.8	ctyl											С			
Sheep, goat, chiru	26	99.3	Artiodactyla											С			
Deer, elk	27	99.3	rtic	ä.										С			
Whale, dolphin	56	99.3	Arti Boreoeutheria	the										С			
Swine	62	99.0		eut	Theria	В								С			
Camel, alpaca	64	99.0		reo	The	Amniota	etrapoda	Έ	<u>-</u>					С			
Rhino, horse, bear, tiger, fox	78	99.0		B		Ę	гар	Sacopteryi	Euteleostomi	ata				С			
Bat	79	97.3				٩	Tet	CO	eos	Gnastomata				С			
Shrew	89	98.8						Sa	ıtel	ast				С			
Primates	96	98.8							Щ	Gn				С			
Rodents	96	96.9												С			
Aardvark, elephant, armadillo	105	98.6												С			
Opossum, koala, wombat	164	97.3												С			
Eagle, kiwi, quail	310	95.4												С			
Aligator, python, turtle	310	97.1												С			
Frog	350	90.5												С			L
Coelacanth	400	91.1												С			L
Salmon, gar, piranha, tetra	450	88.5												С			
Shark	483	84.8												С			

²⁻copies Y182: OR = 7.0 $Cl_{95} = 3.0 \text{ to } 16.5$ $p\text{-value} = 1 \times 10^{-7}$

^aTMRCA is the estimated time to most recent common ancestor in millions of years Hedges SB et. al., Mol Biol Evol. 2015; 32(4): 835–45.


b—The full length ARRDC3 protein is 414 in cattle and most of the Amniota species

^cThe letters are IUPAC/IUBMB codes for amino acids. The dots are amino acid residues identical to those in cattle.

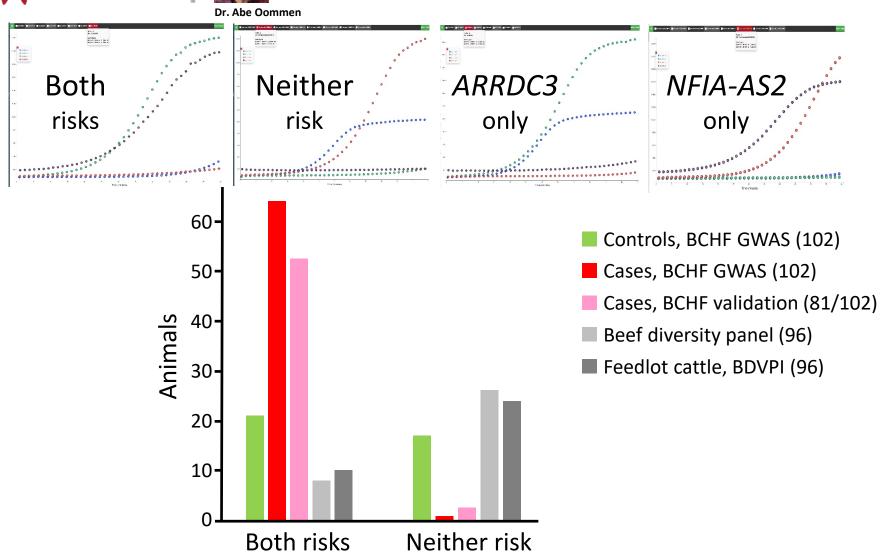
NFIA gene region associated with BCHF

Possible function: "..the transcription factor nuclear factor I-A (NFIA) is now shown to drive the brown fat genetic program through binding to lineage-specific cis-regulatory elements." Shapira and Seale, Nat Cell Biol. 2017;19:1006–1007

NFIA-AS2: OR = 8.7 $Cl_{95} = 2.6 \text{ to } 28.6$ $p\text{-value} = 2 \times 10^{-5}$

What can we do with 2 SNPs today?

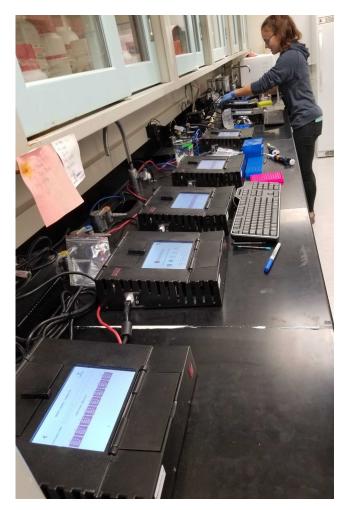
- It will take years to sort out all the effects of the top 21 genomic regions associated with BCHF.
- ARRDC3 and NFIA-AS2 markers are associated with up to 15-fold risk


 Can we make use of these markers now to help affected beef producers?

Can we test for disease risk with 2 SNPs?

BovineHD0300024366 (BCHF2, NFIA-AS2, 1 or 2 copies, risk allele ="A") BovineHD0700027239 (BCHF5, ARRDC3, 2 copies, risk allele ="A")

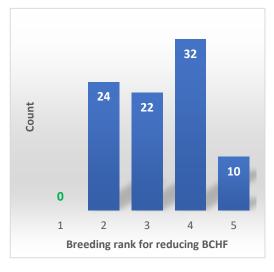
Collecting 1077 ear notches from an affected herd


- A pig ear-notcher and pickling brine solution
- Processed cattle at full speed (120/hour)
- Stable at room temperature storage until use

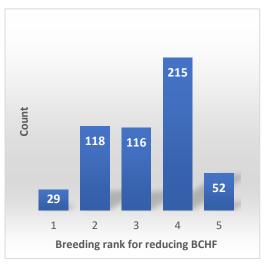


Genotyping ARRDC3 and NFIA-AS2 for 1077 calves

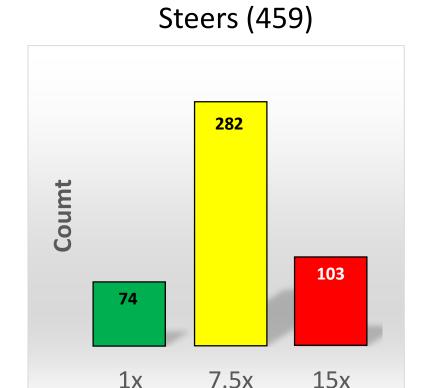
1 day, 2 people, 128 ear notches, 16 machines (1 run)



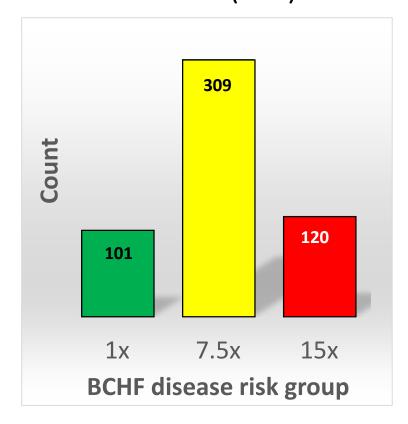
Mention of trade names is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA.


Sorting animals for breeding in an affected herd

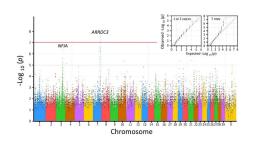
	Potential risk
Breeding	transmission to
rank	calves
1	0%
2	25%
3	50%
4	75%
5	100%

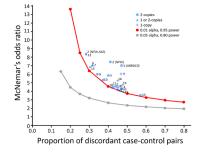

Bulls (88)

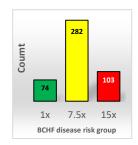
Heifers (530)



Sorting animals for disease risk in an affected herd


BCHF disease risk group




ARRDC3 and NFIA variants are major risk factors for heart failure in feedlot cattle.

Other loci were also significantly associated

A 2-SNP test sorts animals by risk group

Special credit and thanks go to the pen riders and feedyard operators that made this project possible

