Efficacy of surface applications with diatomaceous earth to control
Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) in stored wheat

Erika A. Vardemana, Frank H. Arthurb,* , James R. Necholsc, James F. Campbellb

a Carolina Biological Supply Company, 2700 York Road, Burlington, NC 27215-3398, USA
b Grain Marketing and Production Research Center, USDA-ARS, 1515 College Ave., Manhattan, KS 66502, USA
c Department of Entomology, Kansas State University, 123 W. Waters Hall, Manhattan, KS 66506-4-04, USA

Accepted 25 August 2006

Abstract

Commercial formulations of diatomaceous earth (DE) products labeled for use as grain protectants usually specify on the label the depth for using them as a surface treatment, which is often 30.5 cm. An experiment was conducted at two temperatures (27 and 32 °C) and three exposure intervals (7, 10 and 14 d), at a relative humidity of 57–60% to determine if Rhyzopertha dominica (F.), the lesser grain borer, could penetrate a 30.5-cm layer of wheat treated with the labeled rates of three commercial formulations of DE, and, if so, to measure rates of adult survival and progeny production. When R. dominica adults were introduced to this surface layer of 30.5-cm wheat admixed with DE, they were able to penetrate the DE-treated layer and oviposit in the untreated wheat below. Both adult survival and progeny production were significantly lower in wheat with a surface-layer treatment of Dryacides (1000 ppm) as compared to InsectoTM (500 ppm), Protect-Its (400 ppm) or the untreated control. Temperature and exposure interval had no effect on adult survival or progeny production. The vertical displacement patterns of adults were significantly different among DE treatments, but not for temperature or exposure intervals. More R. dominica traveled a greater distance in the untreated control, followed by InsectoTM, Protect-Its, and then Dryacides. Results indicate that R. dominica can penetrate a surface layer of DE-treated wheat and reproduce within and below it, but it is possible that pest suppression is dose dependent, or it may depend on a combination of application rate and specific DE formulation. Published by Elsevier Ltd.

Keywords: Rhyzopertha dominica; Diatomaceous earth; Wheat; Control; Movement

1. Introduction

Diatomaceous earth (DE) is mined and obtained from deposits of fossilized diatoms, which are microscopic plants related to algae. These unicellular plants extract silica from salt and fresh water, which then forms an outer skeletal structure. Upon death, the cell walls are deposited on the ocean floors, river beds, or lake bottoms (Subramanyam and Roesli, 2000; Korunic, 1998). Fossilized deposits are collected and processed for commercial use by drying, crushing, and milling to create a fine powder (Quarles and Winn, 1996). DE kills insects by adhering to and abrading the insect cuticle, thereby adsorbing lipids in the epicuticle and causing death due to water loss and desiccation (Quarles and Winn, 1996; Korunic, 1998; Subramanyam and Roesli, 2000).

Commercial formulations of DE have been available in the United States since the 1950s (Korunic, 1998). However, the large amount of DE required to adequately control stored-product insects has often resulted in physical problems and mechanical damage to grain handling equipment (Korunic et al., 1996). Newer formulations of DE are more effective than some of the older products, but even at lower application rates physical problems such as decreased flow rate and increased bulk density can occur when entire grain masses are treated (Korunic et al., 1996, 1998). Because of the concern regarding effects on the physical properties of grain, there is interest in using DE
primarily as a surface treatment for insect control in stored grain.

Insecticidal efficacy of DE can be affected by environmental factors, including the source of the deposits (Golob, 1997; Korunic et al., 1996). Generally the efficacy of DE decreases with increases in humidity and grain moisture content, but increases with temperature (Subramanyam and Roesli, 2000).

Also, susceptibility to DE can vary among insect species, in general mobile species such as Cryptolestes ferrugineus (Stephens), the rusty grain beetle, are more susceptible to DE than less mobile species (Rigaux et al., 2001).

Rhyzopertha dominica (F.), the lesser grain borer, is a major cosmopolitan pest of stored wheat (Potter, 1935). It is a strong flier (Dowdy, 1994) and generally enters a grain bin through the headspace, then moves through the grain mass in a slow downward progression (Sharangapani and Pingale, 1957; Surtees, 1965; Keever, 1983; Hagstrum et al., 1994; Vela-Coiffier et al., 1997; Hagstrum, 2001). Both adults and larvae attack whole kernels. Females lay eggs on the outside of the kernel and the first instars bore inside, where they continue development until adulthood. Upon reaching the adult stage, the mature insect bores out of the grain kernel and creates a large exit hole (Potter, 1935). This internal development makes management of the insect difficult.

There are several studies based on using new formulations of DE on stored grain as a surface treatment admixed with wheat, alone, or in combination with other methods of control (Subramanyam et al., 1994; McLaughlin, 1994; Nickson et al., 1994; Vardeman et al., 2006). However, there is little published research on the efficacy of DE as a surface treatment to control R. dominica in stored wheat. Therefore, our experimental objectives were to: (1) compare the efficacy of labeled rates of three commercial formulations of DE as surface-layer treatments against R. dominica; (2) determine if R. dominica could disperse through wheat treated with these different DE formulations and reproduce in untreated wheat below the treated layer; and (3) evaluate temperature effects and time of exposure on the dispersal, mortality, and reproduction of R. dominica.

2. Materials and methods

2.1. Rhyzopertha dominica

The R. dominica used in experiments were obtained from a pesticide-susceptible colony reared at 30 °C, ~60% relative humidity (r.h.) and maintained at the USDA Grain Marketing Research and Production Center in Manhattan, KS. Voucher specimens of the strain of R. dominica used in the experiments were deposited in the Kansas State University Museum of Entomological Prairie Arthropod Research under Lot no. 162.

2.2. Experimental design

Three commercial formulations of DE, Dryacide®, Protect-It®, and Insecto™, were selected for evaluation; the years these products were obtained were 2003, 2002, and 2002, respectively. These particular products were chosen because of previous research indicating overall effectiveness when admixed with grains (Desmarchelier and Dines, 1987; Aldryhim, 1993; Subramanyam et al., 1994; Arthur, 2001). Experimental units were constructed using standard plastic PVC pipe with an inside diameter of 7.62 cm and an outside diameter of 8.9 cm. Individual rings measuring 7.6 cm in width were cut from the pipe, and 12 of these rings were taped together with duct tape to form a vertical column, or tower, measuring 91.2 cm. Twenty-four towers were constructed, and each tower was closed at the bottom with a flat PVC hub and closed at the top with a round PVC cap. A small 1.27 cm diameter hole was drilled into the top ring of each tower. Three temperature cables attached to a HOBO sensor (Onset Computers, Pocasset MA, USA) were inserted through the holes. One temperature cable was placed at the bottom of the tower, a second cable was placed in the middle of the tower, and a final cable was placed so that it would rest on top of the wheat once the tower was filled. This was done to record temperatures through the depth of the towers.

Twelve towers were put into each of two incubators (Thermo Forma, Marietta OH) set at 27 and 32 °C. Actual average temperatures (± SEM) measured were 27.2 ± 1.1, and 31.9 ± 0.03 °C. A r.h. range of 57–60% was created in each incubator using a saturated solution of sodium bromide (NaBr) (Greenspan, 1977), which was put in each of two 1.9 L glass jars and placed on the bottom shelf in each incubator. All towers were filled with approximately 2.6 kg of hard red winter wheat (Triticum aestivum L.) to the top of the third ring down from the top of the tower, leaving a head space height of 15.2 cm. In treatments involving commercial formulations of DE, the DE was mixed with wheat to form a 30.5 cm surface layer using the labeled rates specified for each product (1000, 500, and 400 ppm for Dryacide®, Insecto™, or Protect-It®), respectively. The depth of the treated layer was chosen based on earlier work with Protect-It® (400 ppm) at three different surface depth treatments (Vardeman et al., 2006). To achieve this, the treatment towers were first filled with untreated wheat to the top of the sixth ring (six rings), and then the treated wheat filled the space (four rings) up to the top of the third ring. Each ring held 261 g of wheat; therefore the 30.5 cm surface layer treatment corresponded to 1044 g of wheat. The appropriate amount of DE was weighed for each formulation and applied to the wheat by placing the wheat in a 3.8 L glass jar, adding the DE and hand shaking and rotating the jar for 1 min. The treated wheat was placed in the towers on top of the untreated wheat and filled the tower to the same level as the untreated controls.

To initiate experiments, 100 1- to 2-week-old adult R. dominica were placed in the top of each tower which was then closed with a round PVC cap. The beetles were then held for 7, 10, or 14 d exposure intervals at each of the two temperatures and under one of four treatments: three DE
products plus an untreated control. At the end of each exposure interval, the top two rings and the HOBO® sensor and cables were removed by un-taping them and pulling them out of the tower. Sequentially the duct tape holding the rings together was removed for the entire tower by inserting a metal plate (14.0 x 9.5 cm) between the adjoining rings, allowing for the top ring and plate to be lifted off the cylinder and wheat from that ring transferred to a 177.4 mL clear plastic container (Consolidated Plastics Company, Inc. Twinsburg, OH). Each container had a hole (approximately 2.5 x 2.5 cm) in the side that was covered with a 3-cm diameter round copper mesh screen to allow for airflow. This process was repeated for all rings in all towers. The wheat from each container was sifted to assess adult mortality, wheat was returned to the original container, and held for eight additional weeks under the same temperature as the original exposure. Progeny adults were then sieved from each container, and live and dead insects were counted.

The experiment was set up according to a split-split-plot design, whereby the whole plot factor was temperature and the whole plot unit was incubator; the sub-plot factor was exposure time and the sub-plot unit was the set of four towers assigned to treatments at each exposure interval; and the sub-sub plot factor consisted of the individual DE treatments and the sub-sub plot unit the individual towers. The experiment, comprising two temperatures, four treatments, and three exposure intervals (for a total of 24 treatment combinations), was replicated five times.

2.3. Data analysis

Data were analyzed using the Proc Mixed and General Linear Model (GLM) procedure (SAS Institute, 2002). Raw data were transformed by square root to normalize their distribution, and statistical analyses were performed on the transformed data. Treatment means for the various statistical tests were separated using the Waller–Duncan \(k \)-ratio \(t \)-test.

Total adult survival was compared across all DE treatments, temperatures, and exposure intervals. A covariance model was used to analyze the distribution of insects among the 10 strata in each tower. To assess the average vertical displacement of beetles from the release point at the top of the wheat mass among DE treatments, temperatures, and exposure intervals, each stratum was assigned a number from 1 to 10, with “1” representing the uppermost stratum. These numbers were multiplied by the number of live insects in the same stratum and then summed over all strata. This sum was then divided by the total number of live insects in each tower to obtain a relative index of net vertical displacement. This is a dimensionless index, the higher the number, the more movement downwards from the release point. These procedures were described in the analysis for a previous study in which these same towers were utilized (Vardeman et al., 2006).

The percentages of live adults within and below the DE-treated layers at each temperature and exposure interval were compared between DE treatments, and again between the DE-treated layer and the untreated wheat below. The untreated control was compared with the DE treatments by separating the tower into the 30.5 cm depth corresponding to the treatment depth, and tabulating percentages of \(R. \ dominica \) found in that layer and in untreated wheat below. Progeny production and percentage survival of progeny were compared across all treatments, temperatures, and exposure intervals. To determine if population growth was affected by the DE treatments, a proportion was obtained by dividing the number of progeny from each tower by the initial number of 100 \(R. \ dominica \) adults. The distributions of progeny produced were also compared as percentages within and below the DE treatments, between temperatures and among exposure intervals.

3. Results

3.1. Parental survival

Total percentage survival of adult \(R. \ dominica \) (all strata within a given tower combined) was significantly different for DE treatments, including the control, \(F = 244.7, \ df = 3, 92; \ P < 0.01 \), but not temperature \(F = 0.01, \ df = 1, 92; \ P = 0.99 \) or exposure interval \(F = 0.9, \ df = 2, 92; \ P = 0.41 \). Survival was greatest in the untreated control and decreased significantly with exposure to InsectoTM followed by Protect-It® and then Dryacide®, which had the lowest survival (Table 1).

The percentage of live parental adults found below versus in the DE-treated layer was significantly affected by which DE treatment was employed \(F = 574.6, \ df = 2, 92; \ P < 0.01 \), but not temperature or exposure interval \(F = 3.4, \ df = 1, 92; \ P = 0.07 \), \(F = 1.8, \ df = 2, 92; \ P = 0.17 \), respectively. Significantly higher percentages of live adults were found below the DE-treated layer for all DE products than in it. All DE treatments were significantly different from the untreated control (Table 1).

Percentages of dead parental adults below the DE-treated layer differed significantly depending on the DE treatment \(F = 109.4, \ df = 2, 66.2; \ P < 0.01 \). However, neither temperature nor exposure interval produced significant differences \(F = 0.1, \ df = 1, 21.1, \ P = 0.71 \); \(F = 0.3, \ df = 2, 20.8; \ P = 0.73 \), respectively). Generally, higher percentages of dead adults were found within the DE-treated layer for all DE products than below it. All DE products were significantly different from each other and from the untreated control with respect to dead adults within and below the DE layer (Table 1). The greatest percentage of dead \(R. \ dominica \) within the DE-treated layer was in the Dryacide® treatment; the lowest was within the equivalent depth of the DE layer in the untreated control (Table 1).
3.2. Parental distribution

The distribution of live adult R. dominica among the ten strata was significantly affected by DE or control treatments (F = 95.4, df = 3, 936; P < 0.01) and strata (F = 8.5, df = 9, 936; P < 0.01). There was also a significant DE treatment by strata interaction (F = 3.8; df = 27, 936; P < 0.01). However, neither temperature (F = 0.04, df = 1, 4; P = 0.84) nor exposure interval (F = 0.39, df = 2, 16; P = 0.68) had a significant effect on spatial distribution. Because temperature and exposure interval were not significant, data for live insects in each stratum within each treatment were combined for all exposure intervals (Fig. 1). Most of the live R. dominica were found below the DE-treated layers in the 500 ppm InsectoTM treatment, and the fewest live adults were found in the 1000 ppm Dryacide® treatment (Figs. 1(B) and (D), respectively).

The mean vertical displacement of live R. dominica adults was significantly affected by the DE treatment or the untreated control (F = 62.6, df = 3; P < 0.01); those found alive in the untreated control had moved the farthest, and those in the Dryacide® treatment had moved the least (Table 2). Temperature and exposure interval had no effect on displacement (F = 2.88, df = 1; P = 0.09; F = 0.8, df = 2; P = 0.46, respectively). There was a significant difference in vertical displacement of adult R. dominica that had moved through the towers prior to death (dead beetles) between the three DE treatments and untreated control (F = 84.1, df = 3; P < 0.01). Dead beetles were found closer to the surface in the untreated control than in any of the DE treatments (Table 2). Temperature and exposure interval had no significant effect (F = 2.0, df = 1; P = 0.15; F = 1.54, df = 2; P = 0.21).

3.3. F1 production

Total production of F1 adults varied significantly among the DE and control treatments only (F = 11.94, df = 3, 72, P < 0.01). Temperature and exposure interval had no effect (F = 0.5, df = 1, 4, P = 0.53; F = 1.1, df = 2, 16, P = 0.34, respectively). Progeny production was equally high — approximately 400, which represented a four-fold increase — in the InsectoTM treatment and the untreated control. It was significantly lower (about a two-fold increase) in the Protect-It® treatment, and extremely low where Dryacide® was used (Table 3).

3.4. F1 survival

Total percentage survival of F1 adult R. dominica was significantly affected by DE or control treatment (F = 89.5, df = 3, 92; P < 0.01). Survival was highest in the untreated control, followed by InsectoTM, Protect-It®, and Dryacide® in descending order (Table 3). Neither temperature nor exposure interval had a significant influence on R. dominica survival (F = 3.33, df = 1, 92; P = 0.66; F = 3.13, df = 2, 92; P = 0.05, respectively).

3.5. F1 distribution

The percentages of live F1 adults found below and within the DE-treated layer were significantly affected by DE or control treatment (F = 0.6, df = 3, 72; P < 0.01), but not temperature or exposure interval (F = 4.1, df = 1, 24; P = 0.05; F = 1.6, df = 2, 24; P = 0.23, respectively). There were no significant differences among the three DE treatments in the distribution of live R. dominica progeny (~2–3% of progeny were found in the DE layer). However, significantly (P < 0.05) more (~97%) of live progeny were found within the depth of wheat corresponding to the DE layer in the untreated control (Table 3).

The percentages of dead F1 adult lesser grain borers found within and below the DE-treated layers were not significantly affected by DE treatment, temperature, or exposure interval (P > 0.05) with 85–100% of those progeny recovered from within the DE-treated layer (Table 3).

4. Discussion

Dryacide® is a freshwater DE product that has been used in Australia since 1985 (Quarles, 1992; Quarles and Winn, 1996). The present study showed that application of
Dryacide at the labeled rate of 1000 ppm could effectively control R. dominica in stored wheat. The observed mortality level was about 98%, which is not complete kill but could provide an acceptable level of control. This rate was double or more than double the rates of the other two commercial DE products, but direct comparisons are difficult because the rates are different. However, we chose to apply the products in accordance with label rates to be consistent with the way these products would be applied in actual field use. The actual amount of DE in the Dryacide formulation could have accounted for the greater efficacy compared to the other two DE products, but qualitative differences in the products and/or their formulations may also have contributed to differences in efficacy.

Our findings are consistent with those published previously for R. dominica and other stored-product insect pests. Quarles (1992) reported that Dryacide caused a 100% mortality rate for populations of R. dominica, Sitophilus oryzae (L.) (rice weevil), and Tribolium castaneum (Herbst), the red flour beetle, at a rate of 1000 ppm at 65% r.h. and 20 °C. In another test where Dryacide was applied at various rates on the grain surface, and combined with cooling, few insects of any species were trapped during a nine-month study, and no progeny developed from incubated samples (Nickson et al., 1994). In the present study, Dryacide resulted in ~98% mortality of adult P1 R. dominica, as well as ~95% mortality of adult F1 R. dominica produced.

Stathers et al. (2004) evaluated the efficacy of Dryacide and Protect-It against Prostephanus truncatus (Horn) (larger grain borer), Sitophilus zeamae Motschulsky (maize weevil), Callosobruchus maculatus (F.) (cowpea weevil), and Acanthoscelides obtectus (Say) (common bean weevil) at different rates and humidities, and a storage period of up to six months on stored maize, cowpeas, and red kidney beans. The insecticidal value differed among the species, and it was suggested that dosages of the product should be based on the diversity of insects within the grain bin environment. In our study, using Dryacide and Protect-It at their labeled rates (1000 and 400 ppm, respectively),

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Vertical displacement (mean±SEM) of live and dead adult R. dominica in each DE treatmenta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Live R. dominica</td>
</tr>
<tr>
<td>Untreated control</td>
<td>4.8±0.3 a</td>
</tr>
<tr>
<td>Insecto<sup>TM</sup> 500 ppm</td>
<td>1.8±0.3 b</td>
</tr>
<tr>
<td>Protect-It<sup>®</sup> 400 ppm</td>
<td>1.0±0.2 c</td>
</tr>
<tr>
<td>Dryacide<sup>®</sup> 1000 ppm</td>
<td>0.04±0.01 d</td>
</tr>
</tbody>
</table>

The greater the number, the more movement downwards through the grain mass from the release point (see text for details).

aMeans followed by different letters are significantly different (P<0.05, Waller–Duncan k-ratio t-test, SAS Institute).
Table 3
Percentages of live and dead *R. dominica* progeny within and below the layers of wheat treated with three commercial formulations of DE at their labeled rate, including the untreated control at a depth corresponding to that of the DE layer, the percentage total survival for the entire tower, and the actual number of progeny produced for the entire tower (mean ± SEM)\(^a\)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Percentage live R. dominica</th>
<th>Percentage dead R. dominica</th>
<th>Percentage survival</th>
<th>Total number of live + dead progeny</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Within DE</td>
<td>Below DE</td>
<td>Within DE</td>
<td>Below DE</td>
</tr>
<tr>
<td>Untreated control</td>
<td>96.6±3.3 b</td>
<td>3.3±3.3 b</td>
<td>96.7±3.3 a</td>
<td>3.3±3.3 a</td>
</tr>
<tr>
<td>Insecto(^\text{TM}) 500 ppm</td>
<td>2.3±1.1</td>
<td>97.7±1.1 a</td>
<td>90.8±3.6</td>
<td>9.2±3.6 a</td>
</tr>
<tr>
<td>Protect-It(^\text{R}) 400 ppm</td>
<td>3.2±2.2</td>
<td>96.8±2.2 a</td>
<td>85.4±5.9</td>
<td>14.6±5.9 a</td>
</tr>
<tr>
<td>Dryacide(^\text{R}) 1000 ppm</td>
<td>2.6±0.9</td>
<td>97.3±0.9 a</td>
<td>100.0±0.0</td>
<td>0.0±0.0 a</td>
</tr>
</tbody>
</table>

\(^a\)Means within columns for below DE followed by different letters are significantly different (\(P<0.05\), Waller–Duncan k-ratio \(t\)-test, SAS Institute). Analysis is based on percentages, therefore data for within DE are the inverse of the data for below DE.

there were significant differences with respect to total survival of parents and the progeny they produced.

Dryacide\(^\text{R}\) is considered an enhanced DE product due to the addition of silica gel (Subramanyam and Roesli, 2000). This coating of silica gel to the DE particles and the relatively small particle size of the dust may add to its insecticidal value. Protect-It\(^\text{R}\) is also an enhanced DE product; however, the silica gel is admixed with the DE product, and not coated on the dust particles as is done with the Dryacide\(^\text{R}\) formulation (Subramanyam and Roesli, 2000). Protect-It\(^\text{R}\) was developed mainly in response to one of the physical problems associated with DE, which is an increased test weight. The silica gel was added to increase the efficacy of the product as an insecticide (Quarles and Winn, 1996).

In previous studies, Protect-It\(^\text{R}\) has been effective in controlling insects in laboratory trials. Fields and Korunic (2000) tested six different DE formulations against five different stored-product insects, including *R. dominica*. Among the six DE products tested in this study were earlier formulations of Protect-it\(^\text{R}\) and Dryacide\(^\text{R}\) as well as Insecto\(^\text{TM}\). They reported that ranking between the DE formulations was closely related to moisture content of the wheat, the temperature at which the wheat was stored, and whether or not a dust or spray was used (the dust being more efficacious). In their study *R. dominica* was considered one of the least susceptible species to DE, but they documented a 90% mortality rate on wheat treated with 300 ppm of Protect-it\(^\text{R}\) after a 14-d exposure at 25 °C and a grain moisture content of 11.8%. It was also noted that *R. dominica* was twice as sensitive to Dryacide\(^\text{R}\) at 30 °C than at 20 °C. In our study Dryacide\(^\text{R}\) was the most effective DE product in suppressing *R. dominica* when used at the labeled rate, followed by Protect-It\(^\text{R}\) and then Insecto\(^\text{TM}\).

There are very few published reports on the insecticidal value of Insecto\(^\text{TM}\). McLaughlin (1994) tested six DE products, including silica aerogels and the modified DE products Dryacide\(^\text{R}\) and Insecto\(^\text{TM}\), against *Sitophilus granarius* (L.) and *S. oryzae* in grain and structural treatments. In the grain treatments, the most effective DE product was Dryacide\(^\text{R}\), and Insecto\(^\text{TM}\) fell just below that ranking and the ranking of Insectogone\(^\text{R}\) but above the least effective product Permaguard. In the structural treatments, Dryacide\(^\text{R}\) again seemed to be the most effective against the species tested.

Subramanyam et al. (1994) studied Insecto\(^\text{TM}\) in small-scale field tests and in laboratory tests against six stored-product insects, one of which was *R. dominica*. In barrel studies with surface-treated wheat, mortality ranged from 55% to 70%, and this value was not significantly different among treatments. In the laboratory trials, Insecto\(^\text{TM}\) was applied throughout the wheat and barley at three rates, two label rates and one slightly higher rate, for two weeks. Mortality of all test species was 100% at all three doses after the first 7 d. This suggests that a difference in insecticidal value between laboratory assays and barrel studies may result from the presence of untreated wheat below the treated layers, and that this untreated wheat may aid in the survival of *R. dominica*. These findings are supported by this current study. Specifically, the presence of both live and dead individuals in the untreated portion of the wheat below the DE-treated layer indicates that adult *R. dominica* were capable of surviving exposure to DE long enough to reach the untreated wheat below and oviposit before they died.

The fact that *R. dominica* was able to move following exposure to DE, and that differential mortality may have had additional effects on the distribution of live adults makes it difficult to interpret the percentages of beetles found within and below the DE layer. However, the consistent pattern of percentages of live beetles found in the DE layer and dead beetles below it suggests that deaths occurred more quickly with the most effective product, Dryacide\(^\text{R}\), and least quickly in the untreated wheat (Table 1). A somewhat different pattern was evident for five *F. rufilabris* (progeny) where a uniformly low percentage was found in the DE-treated layer and a very high percentage was found within the upper, untreated wheat layer. Likewise, the percentages of dead beetles below the DE-treated layer were similar for the three DE products (Table 3). Survival rates were consistently lowest for Dryacide\(^\text{R}\) and highest for Insecto\(^\text{TM}\). Therefore, percentages of live and dead progeny found within and below the DE-treated layers may have been influenced by where oviposition occurred.
In conclusion, this study showed the label rate of 1000 ppm Dryacide® reduced penetration of *R. dominica* through the treated grain mass, as shown by the level of mortality in the initial adult population, and the relatively low numbers of live adults collected after each exposure interval; the resultant population of live progeny was also very low. While increasing the label rates of Insecto® or Protect-It® may or may not yield comparable results to those obtained for Dryacide®, the current rate of 1000 ppm Dryacide® could be used as a surface treatment or in combination with other control strategies to suppress *R. dominica* populations in stored wheat.

Acknowledgments

We thank Dr. Tom Loughin for statistical assistance, and J.M. Vardeman, C.K. Hoernermer, L. Chanhang, B. Wehrman, and S. Mohandass for technical support. This research was supported in part by USDA-CSREES-RAMP Agreement no. 00-51101-9674. This is Contribution no. 05-295-J from the Kansas Agricultural Experiment Station.

References

