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Abstract

Insect fragments in commercial wheat flour are a major concern to the milling industry because
consumers expect high quality and wholesome products at the retail level. Thus, the US Food and Drug
Administration (FDA) has established a defect action level of 75 insect fragments per 50 g of flour. Millers
routinely test their wheat flour to comply with this federal requirement and to deliver sound flour to their
consumers. The current standard flotation method for detecting fragments in flour is expensive and labor
intensive. Therefore, we examined the possible use of a rapid, near-infrared spectroscopy (NIRS) method
for detecting insect fragments in wheat flour. We also compared the sensitivity and accuracy of the NIRS
method with that of the current standard flotation method. Fragment counts with both techniques were
significantly correlated with the actual number of fragments present in flour samples. However, the
flotation method was more sensitive than the NIRS method with fragment counts below the FDA defect
action level. We were unable to predict whether the number of fragments in a sample exceeded the FDA
action level with our NIRS instrumentation. However, we were able to predict accurately whether flour
samples contained less than or more than 130 fragments. Although current NIRS instruments are unable to
detect insect fragments at the FDA action level, this method should be re-examined in the future because
NIRS technology is rapidly improving. Published by Elsevier Science Ltd.
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1. Introduction

Primary pests of stored cereals, such as the rice weevil, Sitophilus oryzae (L.), and the lesser
grain borer, Rhyzopertha dominica (F.), that develop and feed inside grain kernels are the main
source of insect fragments in wheat flour (Campbell et al., 1976; Singh et al., 1976; Pedersen,
1992). The hidden immature stages and newly eclosed adults of the rice weevil, which remain
inside the grain kernels for several days before emerging (Longstaff, 1981), are not easily detected
or removed during normal cleaning or processing practices. A number of secondary pests that
develop outside grain kernels can also contribute to insect fragments in cereal products.
Therefore, care must be exercised during storage, handling, and processing of grain to minimize
final product adulteration by insect fragments.
The Food and Drug Administration (FDA) administers the Federal Food, Drug and Cosmetic

Act (FDCA) in the United States. It deals with, among other things, adulteration of foods
and unsanitary conditions where foods are manufactured, packaged, and stored. Therefore, the
FDA has set defect action levels for some unavoidable, naturally occurring food defects
that are not hazardous to human health. In the case of insect fragments in wheat flour, the
defect action level is 75 or more insect fragments per 50 g of flour (FDA, 1988). Several analytical
methods for detecting insects and insect fragments in whole kernels and flour have
been developed. Some of these methods use chloroform and carbon tetrachloride, exposing the
analyst to possible contact with phosgene gas during drying (Glaze and Bryce, 1994). The
current standard flotation method used by the FDA [972.32 light filth (pre- and post-milling)
in flour (white), AOAC, 1997] is based on the principle that whole-wheat flour can be
digested away without any effect on insect exoskeleton or mammalian hair contaminants.
These oleophilic filth elements are separated from non-oleophilic food products by attraction
to the oil phase of an oil–aqueous mixture. The oil phase is trapped off, filtered, collected on a
filter paper, and examined microscopically to determine the amount and kinds of filth
present (Glaze and Bryce, 1994). Recently, enzyme-linked immunosorbent assays
(ELISA) techniques have been developed to measure insect contamination by detection
of myosin (Quinn et al., 1992; Schatzki et al., 1993; Brader et al., 2002). These techniques
eliminated the need for microscopic examinations. However, both the flotation method
and the ELISA procedure are labor intensive and expensive. Therefore, development of a
relatively simple, rapid, and accurate analytical method is highly desirable.
Near-infrared spectroscopy (NIRS) is a relatively fast, accurate, and economical

technique available to the grain industry for compositional analysis. This technique can be
used for both qualitative and quantitative analysis. NIRS has been used to identify
several coleopteran species (Dowell et al., 1999), detect parasitized weevils in wheat kernels
(Baker et al., 1999), and to detect external and internal insect infestation in wheat (Ridgway
and Chambers, 1996; Ghaedian and Wehling, 1997; Dowell et al., 1998). The objective of
this study was to determine whether NIRS has the potential to detect insect fragments in flour.
As wheat flour becomes contaminated with fragments, slight changes that occur in its
physical and chemical composition may influence NIR absorption characteristics. In
this laboratory study, we compared the sensitivity of NIRS with that of the standard
flotation method for determination of insect fragments in commercial wheat
flour.
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2. Material and methods

2.1. Preparation of insect fragments

Rice weevils were obtained from cultures maintained on hard red winter wheat (13.5%moisture
content) at 271C and 60% r.h. Adult weevils (3–4-week-old) from these cultures were removed by
screening and frozen at �201C for 48 h. Subsequently, weevils were held in a desiccator for 72 h.
The dry weevils were ground using a mortar and pestle, and screened through # 40 (0.425mm) and
# 60 (0.250mm) sieves. We used fragments that passed through a # 40 sieve but were retained on a
# 60 sieve. These fragments were similar in size (E0.4mm) to the insect fragments used by Glaze
and Bryce (1994) during development of the AOAC 993.26 light filth in whole-wheat flour-
flotation method.

2.2. Preparation of wheat flour samples

Test samples were prepared by mixing 50 g of commercial wheat flour (Gold Medal All Purpose
wheat flour, General Mills, Minneapolis, MN) with different numbers of insect fragments to
produce the following concentrations: 0, 35, 75, 150, and 300 insect fragments per 50 g of flour. In
order to obtain these concentrations, ten replicates of 35, 75, 150, and 300 fragments were counted
manually and weighed on a Mettler UMT2 microbalance (USA Mettler Instrument Corporation,
Hightstown, NJ). The average weight of each fragment concentration was used to prepare the test
samples. A total of 300 samples (60 samples from each fragment level) were prepared for the
development and validation of the NIRS calibration model.

2.3. NIRS data collection

A diode-array near-infrared spectrometer (DA7000, Perten Instruments, Springfield, IL) was
used to collect absorbance [log (1/R) where R is diffuse reflectance] spectra from the test samples
over a spectral range of 550–1700 nm. Each sample was placed into a 13.3 cm-diameter, 1.2 cm-
thick metal ring above a sample quartz window. The light beam came from below the quartz
window and penetrated the sample. The diffuse reflectance was measured by an array of silicon
and indium–gallium–arsenide sensors. Fifteen spectra were collected from each sample, averaged,
and stored in a computer in o1 s.
A calibration model was developed by scanning 40 test samples of each insect fragment

concentration (N ¼ 200). The model was validated using another set of 100 samples by predicting
the number of insect fragments present.

2.4. Detection of insect fragments using the AOAC 972.32 flotation method

This method was scaled down to detect insect fragments in 7.5 g samples of white flour. We
digested 7.5 g of flour in a 250-ml beaker with 90ml 3% HCl solution by autoclaving for 5min at
1211C. The digested solution was sieved through a # 100 (0.150mm openings) sieve with tap water
and transferred to a 1-l beaker. Mineral oil (7.5ml) was added, and the resulting solution was
stirred with heat on a magnetic hot plate for 5min. The mixture was transferred to a 2-l
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percolator/retaining beaker, filled with hot water, and allowed to stand with occasional stirring
for 30min. The lower layer of the mixture was drained to almost 3 cm of the interface. This
operation was repeated two to three times until the lower phase of the mixture was clear. After the
final wash, the lower phase was drained, 3% HCl solution was added to the top oil phase at
almost 3% (v/v), and the mixture was boiled on a magnetic hot plate for 3–4min. It was then
filtered through ruled filter paper into a filtration funnel with suction. Finally, the filter paper was
transferred to a Petri dish and examined microscopically (AOAC, 1997). Insect fragments present
in 20 samples of flour containing 0, 3, 7, and 11 insect fragments (five samples/fragment level) per
7.5 g of flour were analyzed by this method. The number of fragments recovered from the samples
was compared with the predicted number of fragments obtained by the NIRS method.

2.5. Statistical analysis

Paired and multiple-comparison statistical analyses were performed on NIR spectra using
partial least-squares (PLS) regression (Galactic Industries, 1996). In paired comparisons, all
concentrations of insect fragments were paired and analyzed. Cross-validation was used to
determine classification accuracy. Results were presented as the classification accuracy (%) and
the coefficient of determination (r2) when the optimum number of PLS factors was used. The
number of factors selected was based on the reduction in residual sum of squares achieved by
adding PLS factors to the calibration model. The PLS regression reports the importance of
wavelengths used in calibrations as beta coefficients. For any given wavelength, the absolute value
of the beta coefficient indicates how important that wavelength was for classification. Thus, beta
coefficient plots can be compared to NIR absorption spectra of specific flour and insect fragment
components such as protein, starch, insect lipids, or chitin to indicate which components cause
unique NIR absorptions between flour samples with and without insect fragments (Dowell, 2000).
An insect fragment prediction is obtained by multiplying the absorbance at each wavelength by
the corresponding beta coefficient, and then summing each of those products across all
wavelengths. Thus, the beta coefficients represent the calibration model. The value of the beta
coefficients will change as the number of factors change, but the number of beta coefficients will
not change.
The relationship between the number of fragments present in flour and the number of

fragments recovered with the flotation method was determined by linear regression analysis (SAS
Institute, 1991).

3. Results and discussion

3.1. Detection of insect fragments by NIRS

Results obtained when correlating absorbance to number of insect fragments in wheat flour
showed that little classification information resulted from absorbance in the visible or very near-
infrared (550–700 nm) region. Including wavelengths below 700 nm probably does not improve
classification accuracies because no significant visible differences existed between flour with and
without low number of insect fragments. Based on the calibration studies, the wavelength range
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selected for final calibration to analyze the flour samples was from 700 to 1700 nm because this
range provided the largest r2 and the smallest standard error of prediction. The optimum number
of PLS factors that resulted in the lowest classification errors ranged from 9 to 15. The first few
factors normally explain over 90% of the variance (Williams, 1996). Therefore, we selected 10
PLS factors for the final calibration because this model gave classification results similar to those
achieved with a higher number of factors, and because less information is needed to explain
variability in the data. This model was also more accurate in predicting the number of fragments
in the validation set of samples, and beta coefficients produced from this model were less noisy
and easier to interpret.
NIR spectra obtained from flour samples correlated well with actual number of insect

fragments present in the flour samples (Fig. 1). When the calibration model developed from these
flour samples was used to predict the number of insect fragments in the validation test samples, at
least 90% of the samples that contained 75, 150, and 300 fragments per 50 g of flour were correctly
classified as having more than 75 insect fragments. However, classification accuracy of the
samples that contained 0 or 35 fragments was only 20–40%. The calibration model tended to
overestimate the number of insect fragments in samples that contained fewer than 75 fragments.
Therefore, the calibration model generated with this commercial flour and with fragments from
rice weevils was not sufficiently accurate in predicting the number of fragments in flour samples
below the FDA action level. Using 130 fragments as the action level, 83.3% of the samples that
contained 0, 35, and 75 fragments were correctly classified as havingo130 fragments, and 90% of
the samples that contained 150 and 300 fragments were correctly classified as having more than
130 fragments.
The absorbance spectra (Fig. 2) show higher absorbance at all wavelengths for the wheat flour

without fragments. However, significant overlap in individual spectra across all wavelengths
indicates that absorbance at one specific wavelength could not be used to detect insect fragments
in wheat flour. Important wavelengths bands indicated by the beta coefficients occurred around

Fig. 1. Correlation of actual number of insect fragments (x) to number of fragments predicted using NIR absorption

spectra (y) from wheat flour samples (y ¼ 20:97þ 0:815x; R2 ¼ 0:80; N ¼ 200). Mean7SD of 40 replicates per

fragment concentration in wheat flour.
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890, 1120, 1220, 1370, 1530, and 1630 nm (Fig. 3). These regions correspond to third, second, and
first overtones of CH groups (Murray and Williams, 1990). These absorbance regions, in general,
agree with those reported by Ghaedian and Wehling (1997) and Dowell et al. (1998) when
detecting the presence of insects inside wheat kernels. Although these latter researchers used NIRS
to detect hidden insects inside grain kernels, it is not surprising to find that the absorbance
regions they reported agree with our data, because the same cereal and insect species were used in
each study.
Absorption differences in the flour may be due to the presence of insect cuticle in the test

samples. Cuticle contains both chitin and lipid, and several researchers have previously reported
the influence of these components on the C–H absorption region (Ridgway and Chambers, 1996;
Ghaedian and Wehling, 1997; Dowell et al., 1998, 1999). Spectra of b (1–4)-linked hexasaccharide

Fig. 2. Typical absorption spectra of flour with and without insect fragments.

Fig. 3. Beta coefficients showing important wavelengths used by partial least-squares calibration to classify flour with

and without insect fragments.
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and of a 2-acetamido-2-deoxy-D-glucopyranoside derived from crab chitin showed absorbance
peaks at E1178 and 1500 nm (Dowell et al., 1998). Both of these wavelength bands were
important in classification models in our study.
Cuticular lipids of insects are composed of hydrocarbons, esters, ketones, epoxides, alcohols,

fatty acids, sterols, and triacylglycerols (Jackson et al., 1974; Blomquist and Dillwith, 1985).
Insect cuticular lipids of the rice weevil constitute about 0.08% of the fresh weight of the weevil,
and contain n-alkanes and n-alkadienes (Baker et al., 1984). CH3 and CH2 groups are common
chemical constituents of most lipid classes, particularly the long-chain hydrocarbons. Spectra of
cuticular lipids of the rice weevil showed absorbance peaks around 1130 and 1670 nm (Dowell
et al., 1999); these peaks correspond to CH3 first and second overtones. Both wavelength regions
were important in our classification model (Fig. 3). Thus, it is possible that the NIRS system may
be detecting minor differences in lipid composition among the test samples.

3.2. Detection of insect fragments using the AOAC 972.32 flotation method

The number of insect fragments added to flour samples correlated highly with the number of
insect fragments recovered from these samples using the standard flotation method (R2 ¼ 0:98).
The mean percentage recovery for all fragment levels was 93.6%, this being similar to the mean
percentage recovery reported by Glaze and Bryce (1994). The average time required for analysis of
an individual sample using the flotation method was about 2 h.

3.3. Comparison of NIRS and the standard flotation method for detecting insect fragments in flour

Although the flotation method is very sensitive at the FDA action level, this technique is time
consuming (around 2 h/sample) and expensive. In contrast, although NIRS currently lacks the
sensitivity of the flotation method, it is rapid (o1min/sample), does not require sample
preparation and could easily be automated for a more sophisticated sampling protocol for large
flour bulks. Moreover, ongoing advances in the capabilities and sensitivities of both mid-IR and
NIR spectrophotometers may allow insect fragment detection at or below the defect action level,
and this method should be re-examined in the future as the technology advances.
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