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ABSTRACT

Insect resistance to Bacillus thuringiensis (Br) toxins is of great concern because these toxins are
being used in plant genetic transformation. Widespread use of the toxins in transgenic plants
could lead to rapid onset of insect resistance not only to the toxins expressed in plants, but to
conventional foliar applications of the toxins. This could seriously compromise the long-term
value of this safe, environmentally-benign insecticide. Effective management of resistance
depends in part on understanding the mechanisms involved in insect adaptation to these toxins.
As research on insect responses to Bz toxins has increased, it appears likely that there are multiple
resistance mechanisms. A large amount of data suggests that changes in toxin-binding events
may lead to resistance development, either by changes in the receptor or in the affinity of
binding. Recent evidence indicates that toxin solubility and/or proteinase activation in the insect
midgut may be involved in some types of resistance. Postbinding events, such as receptor
aggregation, pore formation, ionic fluxes, and insect recovery may also be involved. Multiple
toxins, refugia, and high toxin doses have been proposed as strategies for minimizing resistance
development. These practices will be discussed in light of what is known about resistance
mechanisms, together with implications of cross resistance among Bt toxins.
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INTRODUCTION

Insect resistance to insecticides poses a serious agricultural and public health problem. More
than 500 cases of pesticide resistant insects and mites have been described (Georghiou, 1990).
Bacillus thuringiensis (Bt) has not escaped this problem. In the laboratory, at least eleven insect
species have been selected for resistance to Bt 8-endotoxins. These include Plodia interpunc-
tella (Hiibner) (McGaughey, 1985), Cadra cautella (Walker) (McGaughey and Beeman, 1988),
Plutella xylostella (Linnaeus) (Kirsch and Schmutterer, 1988), Heliothis virescens (Fabricius)
(Stone et al., 1989; Gould et al., 1995), Trichoplusia ni (Hiibner) (Estada and Ferré, 1994),
Spodoptera littoralis Boisduval (Muller-Cohn et al., 1994), Spodoptera exigua (Hiibner) (Moar
et al., 1995), Leptinotarsa decemlineata (Say) (Whalon et al., 1993), Chrysomela scripta
Fabricius (Bauer et al., 1994), Culex quinquefasciatus Say (Georghiou and Vasquez, 1982; Gill
et al., 1992), and Aedes aegypti (Linnaeus) (Goldman et al., 1986). Of even greater concern is
the recently reported field resistance of Plutella xylostella where Bt sprays have been inten-
sively used (Kirsch and Schmutterer, 1988; Tabashnik et al., 1990; Hama et al., 1992; Shelton
etal., 1993).
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Genetically engineered Bt-plants are in commercial use. These plants offer several advan-
tages over conventional insecticide application for controlling pests. However, widespread
plantings of such genetically engineered crops will result in increased exposure to toxins, and
may result in increased selection pressure for resistance. Continuous exposure to Bt probably
accounts for the cases of resistance that have developed in the field. Resistance to Bf was first
detected in Plodia interpunctella, an insect that infests stored grain products. Grain storage
facilities provide a closed environment for the toxin and the pest, so that successive generations
of the pest encounter a continuously high selection pressure. Discovery of resistance in the field
in Plutella xylostella is also predictable in light of the ecology of the insect and the intensive use
of Bt sprays. Plutella xylostella has low mobility and high reproductivity, and responded
quickly to the selection pressures that were presented with repeated field applications of Br. In
species of insects that migrate freely and/or have low rates of reproduction, selection pressure
for resistance may be less, at least delaying the onset of serious problems.

The mode of action of Br is complex, and there are several different physiological or
behavioral opportunities for resistance to occur. Bt produces insecticidal crystal proteins
(ICP’s) that must be solubilized and further processed by gut proteinases in order to bind to
protein receptors in the guts of susceptible insects. Increasing evidence predicts that recep-
tor/toxin aggregation leads to pore formation, followed by ionic imbalance and septicemia in
the midgut cells. Although several different resistance mechanisms have been proposed (Gill
et al., 1992), the most likely ones to date involve changes in Bt receptors or solubilization-
activation of the crystal proteins. Receptor-mediated mechanisms may include the loss of Bt
toxin binding sites, increases in non-specific binding not related to toxicity, and reduction in
toxin/receptor aggregation associated with pore formation. Solubilization and/or proteinase-
mediated resistance mechanisms could involve changes in gut pH or in proteinases involved in
protoxin activation. Changes in gut physiology that cause a reduction in toxin solubility,
ineffective toxin activation, or enhanced toxin and/or receptor-toxin degradation also would
lead to insect adaptation to the toxins. Understanding the physiological basis for resistance
development in different insect species exposed to different toxin formulations will provide the
basis for more effective toxin selection and utilization.

Receptor mediated mechanisms
Studies in lepidopteran insects have indicated that toxin binding affinity to midgut receptors is
responsible for toxin sensitivity or specificity among several different species (Knowles and
Ellar, 1986; Haider and Ellar, 1987; Hofmann et al., 1988a,b; Van Rie et al., 1989, 1990a,b;
Ferré et al., 1991; Thara et al., 1993; Estada and Ferré, 1994; Ballester et al., 1994). Hofmann et
al. (1988b) first established a relationship between binding affinity and differential toxicity in
studies on the specificity of two 8-endotoxins toward Pieris brassicae (Linnaeus) and Manduca
sexta (Linnaeus). Subsequent studies by Van Rie et al. (1989, 1990a) confirmed the role of
specific receptors in determining susceptibility to lepidoptera-specific protoxins. In studies of
the specificity of various toxins toward Spodoptera littoralis, Manduca sexta, and Heliothis
virescens, a high degree of heterogeneity was found among binding sites. They proposed that
some sites may bind a single toxin whereas others may bind two or more toxins. Similarly,
specific toxins may bind to more than one site in some insect species.

Itis generally assumed that Br toxins must bind to the insect’s gut membrane in order to be
toxic (Ferré et al., 1991). There is growing evidence, however, that binding alone does not
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account for toxicity (Garczynski et al., 1991; Bravo et al,, 1992; Ferré et al., 1995 ; Lee et al.,
1995; Masson et al., 1995). For example, Lee et al. (1995) described multiple binding sites in
Heliothis virescens for several Bt toxins, with some Br receptors not actually involved in
toxicity.

Evidence for receptor-mediated resistance development involves changes in the midgut
receptors that bind toxins (Table 1). In studies of Plodia interpunctella, Van Rie et al. (1990b)
used '“I-labeled S-endotoxins combined with larval midgut brush border membrane vesicles
(BBMV) to correlate decreased receptor binding affinity and susceptibility to Br toxin
CryIA(b). In resistant Plodia interpunctella, binding sites for CryIC toxin remained functional
and the insects were still susceptible to CryIC toxin.

Examination of Bt toxin binding in Plutella xylostella, using techniques similar to those used
with Plodia interpunctella, revealed a similar resistance mechanism. Resistant Plufellg
xylostella collected in the Philippines were insensitive to CryIA(b), and membrane binding
studies showed a reduced binding affinity for the toxin (Ferré et al., 1991). These insects were
susceptible to CryIB and CryIC, with corresponding membrane binding to the toxins. Similar
results were reported by Bravo et al. (1992) using immunohistology.

However, other data indicate that Bz-resistant strains of Plutella xylostella from Hawaii,
Florida, and the Philippines differ in the nature or degree of changes in binding. Using a novel
technique called surface plasmon resonance, toxin binding was studied in resistant insects from
the Philippines and Hawaii. While there was a reduction in CryIA(c) binding sites, no difference
in binding affinity for CrylA(c) was reported (Masson et al., 1995). A Hawaiian colony of
Plutella that was resistant to all three CryIA toxins exhibited reduced binding of CryIA(c) in
BBMYV assays (Tabashnik et al.,, 1994a). However, histological examination revealed binding
of all CryIA toxins in the same strain (Escriche et al., 1995). Yet, a study on insects from Florida
indicated that resistance is due to changes in binding of CryIA(b) (Tang et al., 1996). Escriche
et al. (1995) found reduced binding of CryIA(b) and CryIA(c) in this Florida strain, further
emphasizing the differences between geographically isolated strains. These variable results
may be an indication of biodiversity among different populations, and they may also indicate
that more than one mechanism of resistance can occur within a single species.

Initially, binding studies in Heliothis virescens indicated that factors other than toxin binding
were involved in resistance development to Br. In a strain of Heliothis virescens resistant to
CryIA(b) that had been expressed in Pseudomonas Sluorescens, a decrease in binding of
CryIA(b) and CrylA(c) was presumably compensated for by an increase in binding site
concentration (MacIntosh et al., 1991). Gould et al. (1 992) found that development of resistance
to CrylA(c) by Heliothis virescens Wwas not toxin-specific and could not be related to changes in
midgut receptors, However, recently it was discovered that CryIA(a) toxin did not bind to
BBMYV from a strain of Heliothis virescens resistant to CryIA(c) (Lecetal., 1995). These mixed
results suggest that altered binding may be involved in resistance development of some strains
of Heliothis virescens, but other mechanisms may also be involved.

Binding of CryIC toxin to BBMYV of CryIC-resistant Spodoptera exigua was lower in both
binding affinity and maximum binding when compared to that of the susceptible strain (Moar
et al., 1995). No differences in binding site concentration were observed, but non-specific
binding increased in the resistant strain. Increases in non-specific binding could compete or
interfere in specific high-affinity binding (Moar et al., 1995).
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These studies indicate that, while binding alterations may provide one mechanism of insect
resistance to Bt toxins, other mechanisms may also contribute to resistance development in
some insects. Furthermore, multiple mechanisms likely exist in some resistant strains. This

scenario greatly complicates efforts to understand the genetics and progression of selection for
resistance in the field.

g of CrylC

Solubilization/proteinase mediated mechanisms

In addition to specific receptors for toxins, the initial processing of Bt toxins in the insects’ guts
is probably a factor in susceptibility to Bt toxins. Processing of ICP’s in the insect gut involves
solubilization and activation of the crystal proteins. Although activation was previously consid-
ered unique to lepidopteran-specific ICP’s, recent evidence indicates that there may be some
processing or activation involved with CryIlIA Coleoptera-active toxins as well (Martinez-
Ramirez and Real, 1996).

Gut proteases from different insects process Bt proteins differently and may influence their
target specificity (Haider et al., 1986; Jaquet et al., 1987; Lecadet and Martouret, 1987; Haider
and Ellar, 1987; Van Fankenhuyzen et al., 1991; Ogiwara et al., 1992). Studies by Haider et al.
(1986) demonstrated that activation of Bt subsp. colmeri (now designated aizawai) inclusions
by gut proteases from mosquitoes yielded proteins toxic primarily to mosquito cell lines, while
gut proteases from Pieris brassicae yielded proteins toxic primarily to lepidopteran cells. In a
subsequent study, Haider and Ellar (1987) found that trypsin activation of subsp. aizawai
protoxin yielded toxins that bound to membrane proteins in lepidopteran cells, but not to
dipteran cells. When the trypsin-activated toxins were further treated with Aedes aegypti gut
proteases, a slightly smaller protein resulted that bound a membrane protein from Aedes
albopictus (Skuse) cells, but not to lepidopteran celis.

Others have also speculated that the complement of proteinases in an insect gut determines
at least in part the specificity of Bt toxins. Bai et al. (1990) studied the gut proteinases of three
insect species, Pieris brassicae, Mamestra brassicae (Linnaeus), and Spodoptera littoralis.
They found a direct correlation between the toxicity of Bt subsp. thuringiensis and gut protein
concentration or proteinase activity. In vivo studies to determine whether insect-specific differ-
ences in gut proteases might influence the specificity of activated toxins have been inconclusive

- No difference in binding of either CrylA(b) or CrylIA(c) toxin
- No differences in binding affinities of CryIA(b) and CrylA(c)

— No difference in binding site concentration

— 2-fold decrease in maximum bindin

— No binding of CryIA(a)
— 5-fold decrease in K4

1251_labeled toxins and BBMV
125 tabeled toxins and BBMV
125 labeled toxin and BBMV

CryIA(b), CrylA(c)

2 (Jacquetet al., 1987, Lecadet and Martouret, 1987, Van Frankenhuyzen et al., 1991).
& The first indirect evidence of a proteinase involvement in Bt resistance was found in a
o Bt resistant strain of Plodia interpunctella. Midgut proteinase activity from susceptible and
< Li Bt kurstaki-resistant strains of Plodia interpunctella were similar (Johnson et al., 1990). How-
E’ 8 ) ever, a study of resistant insects selected with Bt subsp. entomocidus revealed much lower
soluble gut proteinase activities, and these gut extracts processed Bt protoxin less efficiently
than midgut proteinases from the susceptible parent strain or a strain resistant to Bt subsp.
= kurstaki (Oppert et al., 1994). Examination of the electrophoretic pattern of gut proteinases in
< a the three strains indicates the absence of a major serine proteinase in the entomocidus-resistant
5 N strain (unpublished data). Since serine proteinases are involved in the activation of Bt protoxin
g S k] (Oppertetal., 1996), lack of a critical Bt-activating enzyme could contribute to toxin resistance.
ga %"‘E The linkage of the absence of proteinase activity in the entomocidus-resistant strain with Bt
3 3 S é resistance is currently being examined.
% g :;nig Some resistant ins.ects may not only be able to retard th.e activat.ion of Bt toxins, ‘t?ut they may
‘;; § (’%5 also degrade the activated toxin faster than the susceptible strains. Differences in CrylA(b)

(HD-73; Gould et al., 1992)
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protoxin processing were described in Bt-resistant Heliothis virescens (Forcada et al., 1996).
Not only did enzymes from an HD-73-resistant strain process the protoxin slower, they also
hydrolyzed the toxin faster than those from a susceptible strain. Recent evidence indicates the
increase in toxin degradation due to an increase in gut protease specific activity of fifth instar
Spodoptera littoralis may account for the loss of sensitivity of fifth instar larvae to CryIC
(Keller et al., 1996).

Other proteinase-mediated mechanisms, such as proteinase interaction with Bt receptors,
have yet to be explored.

Implications in resistance management strategies

Microbial agents such as Bt have great potential in integrated pest management (IPM) pro-
grams. If they are solely used to replace existing pesticides, however, these agents could
eventually induce resistance responses in insects. Transgenic plants may only be effective if
IPM programs are designed to reduce selection pressure through reduced exposure to Bt.
Strategies that have been proposed to slow the development of resistance include the use of high
toxin doses, refugia for susceptible insects, and multiple toxins (Gould, 1988; McGaughey and
Whalon, 1992). These specific recommendations are discussed in relationship to our current
knowledge of resistance mechanisms.

High toxin dose

The use of very high doses of toxin evenly expressed in plants throughout the growing season
may offer a viable means for managing resistance. This approach assumes that resistance is due
to a single major gene and is recessively inherited. The strategy is to use a dose that is sufficient
to kill 100% of the heterozygous insects, which are the most abundant carriers of resistance.
Doses that are 2030 times that needed to kill 99% of the susceptible insects are suggested. This
approach is being recommended along with refuges to produce susceptible insects that will
mate with the relatively rare homozygous resistant insects that occur.

Incorporation of sufficiently high amounts of toxins appears possible in some plants but
perhaps not in others (Tabashnik, 1994). Also, in cotton there are indications that the toxin titer
decreases toward the end of the growing season. This in itself could promote a late-season
buildup of resistant insects. Another problem with the high toxin dose approach is that, while
one concentration of Bt toxin may be the correct “high dose” for some target pests, other
secondary or incidental pests may be innately more tolerant of the toxin (MacIntosh et al.,
1990). These problems must be adequately addressed in order to use high toxin doses effec-
tively in resistance management.

Refugia for susceptible insects
By minimizing the exposure of a target species to an insecticide, through both spatial and
temporal refugia, its long-term efficacy may be preserved. Susceptible insects emerging from a
refuge can reduce resistance development by diluting the gene pool of resistant insects. In order
to be effective, the refuge must be arrayed in time and space to assure that susceptible insects
are produced at the proper time and place to mate with selected populations from the transgenic
CTopS.

Gould and Anderson (1991) suggested that planting resistant and susceptible plants in close
proximity would provide a refuge from Bt toxin selection. There is some indication that Bt
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TABLE 2

Insect cross resistance to Bt toxins

Response

Selection
toxins

aizawai CrylA(a) CrylA(b) CrylA(c) CryIB CrylC CriylE CiylF CrylH CryllA

Insect (Reference)
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plants interspersed with non-Bt plants will not be as effective as separate plantings of non-Bt
plants near a Bt field (Mallet and Porter, 1992; Halcomb et al., 1996), particularly where pests
move between plants. The size of an effective refuge is currently being debated. Recommenda-
tions range from 4-25% of plantings to consist of non-Br plants. Incorporation of smaller
refuges will place more emphasis on such factors as synchronization of mating and distribution
patterns of non-B¢ plants in the field. More research is needed on actual Br refugia in order to
make effective decisions on their use in prevention of resistance.

The success of a temporal refuge, such as alternately planting Bt and non-Bt plants, depends
on the stability of resistance once Bt selection is no longer applied. In general, susceptibility to
Br increases slowly once Bt selection is terminated, and the reversion to susceptibility is
incomplete (Tabashnik et al., 1991, 1994a; Hama et al., 1992; McGaughey and Beeman, 1988;
Sims and Stone, 1991; Rahardja and Whalon, 1995). However, Tabashnik et al. (1994a) found
that reversal to susceptibility in one kurstaki-resistant strain of Plutella xylostella was rapid and
complete. Yet this same strain was rapidly reselected for resistance, indicating that the genetic
component for resistance was still present in the population. Rapid reselection for resistance has
been recognized as a problem with chemical insecticides for over 30 years (Abedi and Brown,
1960; Keiding, 1967). Another study of Plutella xylostella found continued increases in
resistance after repeated exposure to high concentrations of Bt subsp. kurstaki, and resistance in
one of the selected colonies remained high after more than 20 generations without Bt selection
(Tabashnik et al., 1995). This work not only implied that resistance was not due to a single
locus, but it also suggested that at least one genotype responsible for resistance to Bt was stable.

Multiple toxin strategies and cross resistance

Multiple toxin strategies have been proposed to prevent resistance to Bt toxins (Georghiou,
1990; Stone et al., 1991; Van Rie, 1991). The number of Bt strains in public or private
collections is estimated in the tens of thousands (Lambert and Peferoen, 1992), providing a
wide choice of toxins. However, some Bt toxins that share sequence homology may have
similar toxicity mechanisms. There is also a concern that multiple resistance may arise rapidly
ifindividual resistance mechanisms have already been selected in different populations, mixing
of resistance genes has occurred with mating, and then selection pressure is applied with more
than one toxin (Grafius, 1995).

Genetic engineering has been employed to design Br “hybrid” toxins that incorporate
multiple toxin domains to enhance host spectrum and toxicity. Transfer of a CryIC toxicity
domain to CrylE resulted in a new protein that had enhanced activity against Spodoptera exigua
(Bosch et al., 1994). Domain III of CryIC, a major determinant of toxicity to Spodoptera exigua
and Mamestra brassicae, was substituted into CryIA(b) (Maagd et al., 1996). The hybrid
protein had enhanced activity against Spodoptera exigua when compared to the parental
CryIA(b) and CryIC proteins. Hybrid toxins might also be useful in resistance management
programs as alternatives to toxins that no longer kill insects.

The success of multiple toxins in preventing resistance primarily depends on the extent of
cross resistance among the toxins (Table 2). A relatively narrow spectrum of cross resistance
was described in Plodia interpunctella that were selected for resistance to Dipel, a commercial
formulation of the HD-1 isolate of subsp. kurstaki (McGaughey and Johnson 1987). The insects
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were resistant to 8-endotoxins of 32 isolates of subspp. thuringiensis, kurstaki, and gallerige,
but they remained susceptible to some degree to at least 15 isolates of subspp. kenyae
entomocidus, aizawai, tolworthi, and darmstadiensis. CrylA toxins, a major component of
subsp. kurstaki, have 82-90% homology in their amino acid sequences (Hofte and Whitley,
1989). Therefore, cross resistance among Preparations containing CryIA toxins would be
expected to be high. Apparently, the strains that were still active against the resistant insects
contained :oxins other than the CryIA-type.

Unfortunately, subsequent work has shown that Cross resistance among toxins does occur in

In cross resistance studies on field populations of Plutellg xylostella, Tabashnik et al, (1993)
reported that resistance to By subsp. kurstaki caused minimal Cross resistance to subsp. aizawai,
as expected because of the CryIA component of the subsp. aizawai toxins, However, in a later
study they reported significant cross resistance to CryIF (Tabashnik et al., 1994b), probably due
to the fact that CryIF is 70—72% homologous to CrylA toxins (Bauer, 1995). A field population

using Bt subsp. aizawai or entomocidus, which contain CryIC and CryID as well as CrylA
toxins, tended to be rather broadly cross resistant to most By toxins, which reflected the broader
toxin composition of the subsp. aizawai and entomocidys endotoxins.

Selection for resistance using individual toxins will more likely enable better understanding
of cross resistance. Trichoplusia ni selected for resistance to CryIA(b) were not cross resistant

resistance in field populations than formulated materials that contain multiple Ci'y proteins
along with spores,

So far, no general patterns of cross resistance are apparent. Each insect species and each Bt
toxin used for selection may present a different cross resistance pattern. Furthermore, receptor
binding patterns may not always be indicative of cross resistance patterns. This suggests that
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