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Abstract

BACKGROUND: Biopesticides containing Cry insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are effective
against many lepidopteran pests, but there is a lack of Bt-based pesticides for efficient control of important coleopteran pests.
Based on the reported increase in Bt toxin oligomerization by a polypeptide from the Cry3Aa receptor cadherin in Tenebrio
molitor (Coleoptera: Tenebrionidae), it was hypothesized that this cadherin peptide, rTmCad1p, would enhance Cry3Aa toxicity
towards coleopteran larvae. To test this hypothesis, the relative toxicity of Cry3Aa, with or without rTmCad1p, against damaging
chrysomelid vegetable pests of China was evaluated.

RESULTS: Cry3Aa toxicity was evaluated in the spotted asparagus beetle (Crioceris quatuordecimpunctata), cabbage leaf beetle
(Colaphellus bowringi) and daikon leaf beetle (Phaedon brassicae). To assess the effect of rTmCad1p on Cry3Aa toxicity, neonate
larvae were fed Cry3Aa toxin alone or in combination with increasing amounts of rTmCad1p. The data demonstrated that
Cry3Aa toxicity was significantly increased in all three vegetable pests, resulting in as much as a 15.3-fold increase in larval
mortality.

CONCLUSION: The application of rTmCad1p to enhance Cry3Aa insecticidal activity has potential for use in increasing range
and activity levels against coleopteran pests displaying low susceptibility to Bt-based biopesticides.
c© 2011 Society of Chemical Industry
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1 INTRODUCTION
The spore-forming gram-positive bacterium Bacillus thuringiensis
Berliner (Bt) is an environmentally safe biological insecticide.1

During sporulation, Bt produces one or more crystal (Cry) proteins,
which are stored as insoluble crystalline inclusions. Bt-based
pesticides have been used worldwide for more than 60 years
to control agricultural and forestry pests, and account for more
than 90% of all biopesticides.2 Bt toxins are also expressed in
transgenic Bt crops to provide pest control with reduced chemical
pesticide applications.3 – 5

In China, the production and application of Bt has developed
quickly in the past 20 years, with the use of Bt formulations
increasing from less than 0.3 million kg in 1985 to 30 million kg
in 2005.6 At present, the application of Bt has been extended to
the production of vegetables. However, almost all Bt commercial
formulations used in China have been based on Bt kurstaki, which
contains five crystal proteins, Cry1Aa, Cry1Ab, Cry1Ac, Cry2A and
Cry2B.7 These Bt toxins are effective against lepidopteran pests
on important cruciferous vegetable crops such as cabbage and

cauliflower,6 but are not effective in controlling coleopteran pests.
In comparison, commercial Bt-based pesticide products targeting
coleopteran pests are based on Bt san diego or tenebrionis
expressing the Cry3Aa toxin.
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The mode of action of Bt insecticidal Cry toxins has been
extensively studied in lepidopteran larvae.8 A generally accepted
mode of action for Cry toxins describes the sequential steps
of protoxin activation, specific binding and cell toxicity.9 Both
the required activation and, more importantly, binding steps
confer remarkable pest specificity to Cry proteins.10 Ingested
insecticidal crystal proteins are activated to a toxic form by
proteinases from the digestive insect gut fluids. After crossing
the peritrophic matrix, activated toxins bind to specific receptor
proteins on the midgut microvilli. In lepidopterans, several insect
midgut proteins have been proposed as Cry toxin receptors.
Specifically, Cry1A receptor functionality has been demonstrated
for cadherin proteins from Bombyx mori,11 Manduca sexta,12,13

Ostrinia nubilalis14 and Heliothis virescens.15 Alterations of toxin-
binding motifs within lepidopteran cadherin genes are genetically
linked to Cry1Ac resistance in H. virescens,16,17 Helicoverpa
armigera18 and Pectinophora gossypiella.19,20 More recently, Chen
et al.21 identified a putative cadherin Bt receptor in Aedes aegypti,
and Fabrick et al.22 identified the first functional Cry toxin receptor
cadherin from a coleopteran insect, Tenebrio molitor (Coleoptera:
Tenebrionidae), suggesting similarities in the mode of action of
Cry toxins across insect taxonomic orders.

According to the model proposed by Bravo et al.,23 Cry toxin
binding to cadherin facilitates further proteolytic processing nec-
essary for toxin oligomerization. Toxin oligomers display high
affinity for aminopeptidase or alkaline phosphatase, secondary
receptor proteins attached to the cell membrane by a glyco-
sylphosphatidylinositol (GPI) anchor.23 Binding to these secondary
receptors concentrates toxin oligomers in specific membrane re-
gions called lipid rafts, where toxin oligomers insert and form
pores that result in cell death by osmotic shock.24 An alternative
model suggests that Cry toxin binding to cadherin receptors ac-
tivates intracellular pathways leading to cell death.13 Notably, in
both models, cadherin is a critical contact point for Cry toxins that
is pivotal for intoxication.

In agreement with the crucial role of cadherin for Cry
intoxication, some cadherin peptides fed with Cry toxins evidently
compete for toxin binding and cause a reduction in toxicity
in H. armigera25 and M. sexta.26 In contrast, different cadherin
peptides have been demonstrated to enhance Cry toxicity
against several insect pests. For example, a fragment of the
BtR cadherin (CR12-MPED) from M. sexta, corresponding to
cadherin ectodomain 12 and containing a critical toxin-binding
region,12 enhanced the activity of Cry1A toxins by promoting
toxin oligomerization.27 Another peptide containing the putative
toxin-binding site of an Anopheles gambiae cadherin receptor for
Cry4Ba potentiated Cry4Ba toxicity in A. gambiae larvae.28 Similar
Cry toxicity enhancement effects were discovered for fragments
of cadherin from H. armigera29 and Diabrotica virgifera virgifera.30

A protein fragment containing the predicted toxin-binding
region from T. molitor cadherin, rTmCad1p, was demonstrated
to bind Cry3Aa toxin specifically and promote Cry3Aa toxin
oligomerization.22 This cadherin fragment also increased Cry3Aa
toxicity in T. molitor larvae.31 To evaluate whether rTmCad1p
can potentiate Cry3Aa toxicity in field pests, heterologously
expressed rTmCad1p was used with Cry3Aa in bioassays of
relevant coleopteran pests of vegetables in China, including the
spotted asparagus beetle (SAB), Crioceris quatuordecimpunctata,
the cabbage leaf beetle (CLB), Colaphellus bowringi, and the
daikon leaf beetle (DLB), Phaedon brassicae.32 – 34 The present
data demonstrate that rTmCad1p can be used significantly
to enhance Cry3Aa toxicity against several coleopteran field

pests that currently have limited available control options. More
importantly, the use of rTmCad1p as Cry3Aa enhancer may reduce
the amount of toxin needed for effective control, lengthen residual
activity and delay the onset of resistance in target insects.

2 MATERIALS AND METHODS
2.1 Source of insects
Adult SAB were obtained from the Changping Asparagus
Experimental Station (Beijing). An SAB colony was maintained
on asparagus plants within a controlled environmental chamber.
Eggs of CLB and DLB were kindly provided by Jiangxi Academy of
Agricultural Sciences (Jiangxi, China) and Huazhong Agricultural
University (Wuhan, China) respectively. Eggs were incubated at
26 ± 2 ◦C, and newly hatched larvae were used for bioassays. All
insects were maintained at 26 ± 2 ◦C and 70% relative humidity
with a 14 : 10 h light : dark photoperiod.

2.2 Preparation of Bt Cry3Aa toxin
Using PCR, 20 B. thuringiensis strains from laboratory stocks
were screened with primers targeting the cry3Aa gene (accession
number AY728 479): BamHI-F (5′-GGA TCC atg ata aga aag gga
gga aga-3′) and SacI-R (5′-GAG CTC tta att cac tgg aat aaa ttc a-3′).
Using the BamHI and SacI sites located at the 5′ and 3′ ends of the
amplicons, the amplified cry3Aa gene was cloned into the pET-28a
(Novagen, San Diego, CA) expression vector. To generate adequate
BamHI and SacI sites for cloning the cry3Aa gene, the pET28a vector
was excised with XbaI and BamHI and ligated with a linker produced
by annealing two oligonucleotides (oligo1: cta gaa ata att ttg ttt
aac ttt aag aag gag, and oligo2: gat cct cct tct taa agt taa aca aaa tta
ttt). The ligated plasmid was transformed into E. coli. BL21 (DE3),
and recombinant vectors were verified by sequencing. Selected
clones harboring the cry3Aa gene were inoculated in LB (Luria-
Bertani) medium containing 50 µg µL−1 kanamycin and incubated
with vigorous shaking (∼250 rpm) at 37 ◦C. When the OD600 was
between 0.6 and 1, IPTG was added to a final concentration of
1 mM, and the culture was incubated for three additional hours.
Cells were harvested by centrifugation (12 000 g for 1 min) and
sonicated in ice-cold 1 M NaCl, 5 mM EDTA and 1% Triton X-100.
Cell lysates were centrifuged (12 000 rpm for 10 min), and the
precipitate was resuspended in PBS buffer (137 mM NaCl, 2.7 mM
KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4). The Cry3Aa protoxin
was examined by sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE) and quantified by densitometry using
a GS-800 calibrated densitometer and Quantity One image analysis
software from Bio-Rad Laboratories (Hercules, CA) and bovine
serum albumin standards ranging from 0.1 to 2.0 µg.

2.3 Preparation of T. molitor rTmCad1p peptide
A 582 bp region from the TmCad1 cDNA (nucleotides 3963
to 4548), subcloned into pET151-D-TOPO expression vector
(Invitrogen, Carlsbad, CA), was used to generate the pET151-
rTmCad1p construct.22 Transformed ArcticExpress (DE3) RP E. coli
(Stratagene, La Jolla, CA) cells were used for large-batch (20 L)
production of the peptide (GenScript Corporation, Piscataway,
NJ). The protein was expressed as inclusion bodies and was
solubilized and purified by affinity chromatography under hybrid
conditions, as previously described.22 The approximate 30 kDa
purified peptide was dialyzed against peptide buffer (10 mM
Tris/HCl, pH 8.0, 0.01% Triton-X-100) and concentration evaluated
by 10% SDS-PAGE and densitometry comparisons with known BSA
standards. Peptide was lyophilized for storage at −80 ◦C.
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2.4 Insect bioassays
Each bioassay was conducted with 20 neonate larvae per replicate
and three replicates per concentration. Larval mortality was
determined after 96 h of exposure; larvae were considered dead
if they did not respond to contact. All bioassays were performed
at 26 ± 2 ◦C, 70% relative humidity and a 14 : 10 h light : dark
photoperiod. Controls included larvae exposed to buffer (PBS, pH
7.4) or rTmCad1p alone.

Assays for neonate SAB larvae were conducted on fresh 5–8 cm
long sections of asparagus spears, using a spear dipping method.35

Briefly, the plant section was dipped for 10 s in the solution, held
vertically to allow excess solution to drip off, placed in a drying
rack in a fume exhaust hood to air dry for 1 h and then placed into
a 9 cm diameter plastic petri dish containing a moistened cotton
ball.

Assays for neonate CLB and DLB larvae were conducted on fresh
leaf disks of Chinese cabbage using a modified leaf method.34

Briefly, cabbage leaves were rinsed with water, air dried and
cut into the appropriate size (6 cm diameter circle). The pieces
were then completely submersed into different concentrations of
Cry3Aa toxin for 10 s, air dried and placed onto a 9 cm diameter
disk and cushioned with a wet filter to maintain humidity.

To test the effect of rTmCad1p on Cry3Aa toxicity towards
SAB, CLB and DLB larvae, neonate larvae of each species were
exposed to a single Cry3Aa concentration alone (1.5, 0.2 and
0.5 µg mL−1 for SAB, CLB and DLB respectively) or in combination
with increasing mass ratios of Cry3Aa : rTmCad1p, including 1 : 1,
1 : 5 and 1 : 50. From these assays, the optimum Cry3Aa : rTmCad1p
ratio for Cry3Aa toxicity enhancement was determined to be 1 : 5
for all species. This ratio was used in bioassays to quantify the
effect of rTmCad1p on the 50% lethal concentration (LC50) for
each species.

2.5 Data analysis
Mortality values were corrected for background mortality using
Abbott’s formula,36 and LC50 values were calculated by EPA
probit analysis using POLO-PC (LeOra Software, Berkeley, CA).37

The enhancement factor, defined as the ratio of the lethal
concentration of Cry3Aa alone to the lethal concentration of
Cry3Aa mixed with cadherin peptide, was determined for each
of the combinations. Non-overlapping 95% confidence intervals
were used to establish significance. Pairwise chi-square analysis
was performed to analyze the effect of the enhancer in the
dose–response bioassay using log transformed dose data. For
bioassays comparing a fixed concentration of toxin with different
ratios of rTmCad1p, pairwise chi-square analysis was performed,
and mortalities between treatments were considered significantly
different if P < 0.05.

3 RESULTS
3.1 rTmCad1p enhances Cry3Aa toxicity to SAB, CLB and DLB
larvae
To evaluate the Cry3Aa potentiating activity of rTmCad1p,
increasing amounts of rTmCad1p were combined with a Cry3Aa
toxin concentration causing 10–20% larval mortality (depending
on species). As shown in Fig. 1A, rTmCad1p significantly enhanced
Cry3Aa toxicity against SAB larvae at low toxin : peptide ratios.
Specifically, 1 : 1 and 1 : 5 mass ratios resulted in 80% mortality,
as opposed to 16% mortality with Cry3Aa alone. Mortality from
exposure of SAB larvae to rTmCad1p peptide alone was not

Figure 1. rTmCad1p enhances Cry3Aa toxicity against neonate larvae of
SAB (A), CLB (B) and DLB (C). In panels A, B and C, the Cry3Aa concentrations
were 1.5, 0.2 and 0.5 µg mL−1 respectively. In all panels, PBS buffer control
and 10 µg mL−1 rTmCad1p were not toxic. Mortality was scored after
96 h of exposure. Different letters above the error bars indicate significant
differences between means (chi-square analysis, P < 0.05).

significantly different from controls. Similarly, rTmCad1p also
increased Cry3Aa toxicity against CLB larvae (Fig. 1B). In this case,
the 1 : 5 Cry3Aa : rTmCad1p ratio resulted in the highest mortality
(62%), which was significantly greater than with Cry3Aa alone
(8%). Even though Cry3Aa toxin caused relatively higher mortality
for DLB larvae (more than 20%) compared with other species, a
1 : 5 toxin : peptide ratio significantly increased toxicity to almost
80%. These data indicated that rTmCad1p significantly enhanced
Cry3Aa toxicity against larvae of SAB, CLB and DLB. Based on the
levels of enhancement observed, 1 : 5 was selected as the optimum
mass ratio of Cry3Aa : rTmCad1p for further testing.

3.2 Estimation of Cry3Aa toxicity enhancement
by rTmCad1p
In order to accurately quantify the specific Cry3Aa toxicity
enhancement effect of rTmCad1p in SAB, CLB and DLB larvae,
bioassays were performed to calculate the Cry3Aa LC50 values
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Table 1. Effect of rTmCad1p on Cry3Aa toxicity to neonate SAB, CLB
and DLB larvae

Treatment Insect

LC50
(95% CL)a

(µg mL−1)
Slope
(± SE)

Enhancement
factorb

Cry3Aa SAB 3.82 (3.07–4.62) 2.44 (±0.28)

Cry3Aa +
rTmCad1pc

SAB 0.25 (0.19–0.31) 2.39 (±0.29) 15.3

Cry3Aa CLB 1.11 (0.61–1.59) 2.96 (±0.39)

Cry3Aa +
rTmCad1p

CLB 0.14 (0.08–0.20) 2.98 (±0.39) 7.9

Cry3Aa DLB 1.33 (0.73–1.90) 2.96 (±0.38)

Cry3Aa +
rTmCad1p

DLB 0.31 (0.23–0.38) 2.84 (±0.42) 4.3

a LC50, concentration causing 50% mortality; 95% CL, 95% confidence
limits.
b Enhancement factor = LC50 with Cry3Aa alone/LC50 with Cry3Aa and
rTmCad1p.
c A 1 : 5 mass ratio of Cry3Aa toxin : rTmCad1p peptide was used for all
Cry3Aa concentrations tested against all three insect species (n = 60
larvae per concentration).

for each species (Table 1). CLB and DLB larvae were most
susceptible to Cry3Aa, with LC50 values of 1.11 and 1.33 µg mL−1

respectively (Fig. 2). In comparison, SAB larvae were slightly
less susceptible, with an estimated LC50 of 3.82 µg mL−1. When
Cry3Aa was combined with fivefold mass excess of rTmCad1p, the
dose–response curves shifted to those of the lowest Cry3Aa doses
(Fig. 2), providing further evidence for the enhancement of Cry3Aa
toxicity by rTmCad1p. When comparing the LC50 values for Cry3Aa
toxin alone or in combination with rTmCad1p, the highest toxicity
enhancement was detected for SAB larvae (more than 15-fold),
while lower but significant effects were detected for CLB and DLB
larvae (7.9- and 4.3-fold respectively).

4 DISCUSSION
The present data are the first report on the enhancement of
Cry3Aa toxicity against chrysomelid larvae by a peptide from
T. molitor TmCad1 cadherin containing at least one Cry3Aa
binding site. This finding supports recent reports demonstrating
Cry toxicity enhancement by polypeptide fragments from host
insect cadherins. Furthermore, an optimum molar ratio of toxin to
peptide was identified that results in the highest levels of Cry3Aa
toxicity enhancement against three important species of beetle
vegetable pests.

Several peptides based on putative cadherin receptors have
been reported to enhance Cry toxicity against lepidopteran,29,38

dipteran28,30 and coleopteran30 larvae. Even though a polypeptide
based on a cadherin from D. virgifera was reported to enhance
toxicity of Cry3 toxins towards coleopteran pests,30 this cadherin
has not yet been demonstrated to represent a functional Cry3
receptor. In contrast, the protein fragment used in this work is
based on a functional Cry3Aa receptor.22 Furthermore, increased
Cry3Aa oligomerization in the presence of rTmCad1p, as reported
in Fabrick et al.,22 may be involved in the observed Cry3Aa toxicity
enhancement, as this mechanism also has been proposed for the
enhancement of Cry1 toxins in Lepidoptera by M. sexta cadherin
peptides.39 Previous studies have demonstrated enhancement of
Cry toxins by rTmCad1p against coleopteran and lepidopteran
larvae and increase in toxicity to a Bt-resistant lepidopteran pest

Figure 2. Determination of the Cry3Aa toxicity enhancement by rTmCad1p
in neonate larvae of SAB (A), CLB (B) and DLB (C). Suspensions of Cry3Aa
toxin with or without fivefold molar excess rTmCad1p were fed to neonate
larvae in a spear/leaf dip bioassay. Mortality was scored after 96 h of
exposure. Each data point represents the mean ± standard error of the
results from a bioassay with 60 larvae per concentration. In panels, an
asterisk denotes a significant difference (chi-square analysis, P < 0.05)
between larval mortality with Cry3Aa treatment only and with Cry3Aa plus
rTmCad1p for overlapping toxin doses.

have been observed.31 Therefore, the peptide shows potential for
development into a new and important tool for pest management
in agriculture.

Cry toxin oligomerization was reported as a critical factor for Cry
toxicity.40 However, the correlation between toxin enhancement
and toxin oligomerization has been inconsistent, as a toxin-binding
cadherin fragment that induced Cry1Ac oligomerization was
demonstrated to reduce toxicity in H. armigera.41 An alternative
explanation for the observed Cry toxicity enhancement is that
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cadherin peptides may bind to the microvillae on midgut cells
and attract Cry toxin molecules, increasing the probability of toxin
interaction with receptors.27 This hypothesis is consistent with
a recently proposed model, whereby low-affinity binding of Cry
toxin monomers to binding sites on the brush border epithelium
is crucial for toxicity.42 In the case of rTmCad1p, increased
oligomerization was observed in the presence of T. molitor BBMV in
solution, but in vivo events remain to be determined.22 Although
susceptibility to Cry3Aa was not correlated to the fold levels of
enhancement, the LC50 values for Cry3Aa with rTmCad1p were
similar for all three tested species. This observation suggests that
differences in cadherin binding may explain diverse susceptibility
to Cry3Aa in SAB compared with CLB and DLB. Further research
is needed to determine the specific mechanism responsible for
Cry3Aa toxicity enhancement by rTmCad1p.

Considering that coleopterans are some of the most damaging
pests of many agricultural and forestry crops, there is an
urgent need to develop effective biopesticides against these
insects. Enhancers of Bt toxicity represent an opportunity to
improve currently available commercial products into more
effective control agents against diverse pests. The present work
demonstrates the potential for use of a cadherin-based peptide as
an enhancer for Cry3Aa-based products in controlling chrysomelid
pests.

5 CONCLUSIONS
The present data support the use of rTmCad1p in combination
with Cry3Aa toxin for control of coleopteran vegetable pests.
The observation that rTmCad1p can reduce the amount of Cry3Aa
required for efficacy suggests that selection pressure by Cry3Aa will
be reduced and correlates with the reduction in Cry1Ac resistance
in Pectinophora gossypiella by rTmCad1p.31 This discovery provides
a novel strategy to enhance insecticidal activity and delay insect
resistance in coleopteran pests to Bt-toxin-based biopesticides or
transgenic crops.
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