
Transactions of the ASAE
� 2001 American Society of Agricultural Engineers 409Vol. 44(2): 409–419

DESIGN OF AN OPTICAL WEED SENSOR 
USINGPLANT SPECTRAL CHARACTERISTICS

N. Wang, N. Zhang, F. E. Dowell, Y. Sun, D. E. Peterson

ABSTRACT. Spectral characteristics of stems and leaves of various crop and weed species were studied using a diode–array
spectrometer. Five feature wavelengths were selected to form color indices as input variables to a classification model for
weed detection. The feature wavelengths also served as the basis for design of an optical weed sensor. Based on experimental
data, color indices insensitive to illumination variations were designed and tested on the sensor. Laboratory tests showed that
the sensor identified wheat, bare soil, and weeds (several species combined) with classification rates of 100%, 100%, and
71.6%, respectively, for the training data set when the weed density was above 0.02 plants/cm2. The classification rates for
the validation data set were 73.8%, 100%, and 69.9%, respectively. When the density of weeds was low, as in the case of a
single weed plant, more than 50% of the weeds were misclassified as soil. Misclassifications between wheat and weeds were
not observed at any weed and wheat densities tested.

Keywords.  Weed, Sensor, Optical sensor, Spectral reflectance, Precision agriculture, Measurement.

raditional approaches to herbicide application are
based on the assumption that weeds are distributed
uniformly in fields. However, most agricultural
fields are spatially variable in weed infestation to a

certain degree. The distribution of weeds, particularly grass
weeds in cereal crops, is often “patchy,” rather than even or
random. Ben and Hamm (1985) pointed out that portions of
cereal crop fields are free of weeds, and weed species found
in different fields of the same crop are often different. The
efficiency of weed control can be improved if herbicides are
applied only over the weed–infested areas. A precision weed
sensor combined with selective spray has great potential to
improve the efficiency.

Detecting weeds in a crop field is a challenging task. With
the advances of computer technologies, machine vision has
been identified as a possible solution for weed detection
(Thompson et al., 1990). Image–based weed sensors
discriminate weeds against soil and crops using shape,
texture, or color features. El–Faki et al. (1997) developed an
image–based weed–detection system using relative color
indices formed by RGB gray levels. The system was less
sensitive to canopy overlay, leaf orientation, camera
focusing, and wind effect than systems based on plant shape
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and texture features. Lee and Slaughter (1998) designed and
tested a real–time, intelligent, robotic, weed–control system
using machine vision. An artificial neural network was
implemented to classify tomato plants and weeds. Shiraishi
and Sumiya (1996) developed a machine–vision–based
plant–identification  system using geometric shape features.
Scarr et al. (1997) reported that analyzing a small,
homogeneously textured subregion within a plant image is a
robust approach for identifying a particular weed species.
Tang et al. (1999) developed an experimental, machine–vi-
sion–based patch sprayer to perform real–time weed density
estimation and variable–rate herbicide application control,
as well as high–resolution weed mapping. Burks et al. (2000)
applied a color co–occurrence method (CCM) using only hue
and saturation statistics to develop a weed classifier, which
classified five weed species with an accuracy of 93%.
Elimination of the intensity statistics greatly reduced the
computation time. Feyaerts et al. (1998) designed a spectral
reflectance sensor using an imaging spectrograph. The
results showed that, under controlled conditions, corn and
sugar beet could be classified against weeds with accuracies
of 90% and 80%, respectively. Tian et al. (1999) developed
an intelligent sensing and spraying system, in which a
real–time machine vision system was integrated with an
automatic herbicide sprayer. Using real–time image–proc-
essing algorithms, coverage density, and wavelet decomposi-
tion, the system detected weed–infested zones (0.254 m �
0.34 m) rather than individual weeds. The overall accuracy
of the sprayer was 100% in bare soil zones, 75% in
weed–infested zones, and 47.8% in crop plant zones. Using
0.5% weed coverage as the control zone threshold, herbicide
savings of 48% could be realized.

Optical sensors using spectral characteristics of plants in
the visible and near–infrared (NIR) wavebands have been
studied. Shropshire et al. (1990) used an optical device to
measure the ratio between reflected red and NIR lights for
weed detection. Felton and McCloy (1992) developed a
sensor to discriminate green plants (weeds) against a
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background of soil and dead plant materials based on visible
and NIR reflectance. Commercial sensors (DetectsprayTM

and WeedSeekerTM) based on this principle were used for
weed control on bare ground, including bare soil, roadsides,
irrigation ditch banks, railroad right–of–ways, paved parking
lots, etc., with a detection rate of higher than 95%
(Blackshaw et al., 1998). Biller (1998) used the Detectspray
system for weed detection and achieved 30% to 70%
reduction in herbicide use. Vrindts and Baerdemaeker (1996)
studied the possibility of classifying soil, crops, and weeds
using spectral responses at a limited number of wavelengths.
The wavelengths were selected through a discriminant
analysis on spectral data of leaves of four crops (potato,
sugarbeet, corn, and chicory), soil, and weeds. Visser and
Timmermans (1996) developed a unique sensor that utilized
fluorescence properties to detect weeds.

The advantages of optical sensors over machine–vision
systems for weed detection are their low cost, simple system
configuration,  and high processing speed. If a limited number
of feature wavelengths can be identified, optical sensors may
prove to be more practical for field implementation.

The objectives of this study were:
1. To investigate the feasibility of weed detection based on

spectral characteristics of crops, weeds, and soil;
2. To select feature wavelengths that can be used to discrimi-

nate weeds against crops and soil effectively;
3. To define color indices insensitive to illumination

intensity;
4. To develop an optical weed sensor; and
5. To test the weed sensor at different weed densities under

laboratory conditions.

PRINCIPLES OF THE 
OPTICAL WEED SENSOR

Design of the optical weed sensor was based on a study of
spectral–reflectance  characteristics of crops, weeds, and bare
soil. These characteristics were measured using a
diode–array spectrometer. For each weed or crop species,
spectral characteristics of stems and leaves were measured
separately as two individual object classes. Soil was treated
as an additional class. These object classes were combined to
form five major object categories: weed stem, weed leaf, crop
stem, crop leaf, and soil. Spectral data were studied to select
feature wavelengths, that is, the wavelengths at which
contrasts in spectral responses between major object
categories became distinct. Color features were defined
using spectral responses at these feature wavelengths in the
form of relative color indices and were used to design an
optical sensor. These color indices were also used to establish
a classification model through statistical discriminant
analysis (DA). The classification model was tested on the
optical sensor to observe its effectiveness in detecting weeds
at different densities.

SPECTRAL CHARACTERISTICS OF PLANTS AND SOIL

Spectral reflectance of 35 plant species, including five
crops (corn, common sunflower, soybean, sorghum, and

wheat), 30 weed species, and bare soil, were measured using
a diode–array spectrometer (DA7000, Perten Instruments,
Inc., Springfield, Illinois). For each plant species, reflectance
spectra of leaves and stems were collected separately at two
growth stages: 3 weeks and 6 weeks from the date of planting.
To provide replicate spectral data, crops and weeds were
planted in three groups, with the dates of planting 2 weeks
apart.

Individual leaf, stem, and soil samples were placed
horizontally on a spectralon disk that was illuminated with
white light generated by the spectrometer via an 8–mm
diameter fiber bundle, which was positioned 13 mm from the
spectralon surface and oriented 45� from vertical. A 2–mm
diameter probe was oriented vertically, 18 mm from the
spectralon surface, to transmit the light reflected from the
sample to the spectrometer, which scanned the reflectance
through the visible (400–750 nm) and NIR (750–1700 nm)
wavebands at 2–nm intervals and at a rate of 30 scans per
second (fig. 1). For each sample, baseline (a spectrum of the
spectralon background) was collected first, and then eight
spectra were collected and averaged. The entire scanning and
processing procedure for a sample took less than 1 second.

The measured light–reflectance first was converted to
light–absorbance (eq. 1):

iria 1log= (1)

where
ri = light reflectance measured at wavelength i
ai = light absorbance at wavelength i
The light–absorbance data were then transformed to a

binary format that is readable by GRAMS/32 (Galactic
Industries Corp., 1996), a spectroscopic software package
combining data importing, processing, viewing, organizing,
and accessing capabilities, and were normalized using the
standard normal variate (SNV) method to remove the effects
of light scattering caused by diffused reflection (eq. 2):
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Figure 1. Device used to measure spectral
characteristics of plants and soil.
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where
ai(SNV) = normalized light absorbance at wavelength i
a = mean absorbance of the spectrum
s = standard deviation of absorbance of the 

   spectrum.

SELECTION OF FEATURE WAVELENGTHS

Normalized light absorbance data for three weed
species—kochia (Kochia scoparia), redroot pigweed
(Amaranthus retroflexus), and flixweed (Descurainia
sophia)—and for hard red winter wheat and soil were used in
the selection of feature wavelengths. These weed species
were the most common in wheat fields, and the colors of their
stems were representative of other species. Spectral data
from soil and plants planted at different times and measured
at different growth stages were divided randomly into two
equal–sized sets: the training set for developing the
classification model, and the validation set for testing the
model. Each set consisted of nine object classes: flixweed
leaf, flixweed stem, kochia leaf, kochia stem,
redroot–pigweed leaf, redroot–pigweed stem, wheat leaf,
wheat stem, and soil. Absorbance spectra of the nine object
classes averaged from both training and validation sets are
shown in figures 2 and 3.

Five feature wavelengths (496 nm, 546 nm, 614 nm,
676 nm, and 752 nm) within the visible and NIR wavebands
were selected using a category–contrast method.
Observations of the absorbance spectra of the nine object
classes revealed that, at certain wavelengths, the contrasts
between major object categories were maximized. Such
wavelengths for the contrast between leaf and stem
categories were found at 676 nm and 1452 nm. In general,

light absorbance of plant stems is higher at 1452 nm (NIR
region) than at 676 nm (red region). To the contrary, the
absorbance of plant leaves is generally lower at 1452 nm than
at 676 nm. In fact, this trend was observed across the 35 plant
species studied, regardless of the stem color.

The contrast in light absorbance between leaves and stems
also becomes distinct at 496 nm and 676 nm. The light
absorbance of plant stems is generally higher at 496 nm
(green region) than at 676 nm (red region), while the
absorbance of plant leaves is generally lower at 496 nm than
at 676 nm. In this study, 496 nm and 676 nm were selected
mainly because of the availability of inexpensive, thin–film,
color filters at these wavelengths.

The contrast between green (crop leaves, crop stems, and
weed leaves), red (some weed stems), and brown (soil)
objects signified at wavelengths 546 nm, 614 nm, and
676 nm. Light absorbance continuously increased from
546 nm to 676 nm for green leaves (wheat and weeds) but
decreased for soil. For the reddish stems of kochia and
redroot pigweed, the absorbance decreased from 546 nm to
614 nm, reached a minimum value at 614 nm, and increased
from 614 nm to 676 nm. The trend for flixweed was slightly
different. However, it still was distinguishable from the trend
of the leaves and soil. Thus, 546 nm, 614 nm, and 676 nm
were selected as feature wavelengths to form two color
indices.

Absorbance spectra of soil look completely different from
those of plants. A distinct difference between the spectra is
that the light absorbances of all plant categories (weeds and
wheat, stems and leaves) experience a sharp drop from
676 nm to 752 nm. The decrease between these wavelengths
for soil is not significant. Therefore, 676 and 752 nm were
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Figure 2. Spectral absorbance of wheat and soil measured using a diode–array spectrometer: (a) wheat leaf, (b) wheat stem, and (c) soil.
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Figure 3. Spectral absorbance of three weed species measured using a diode–array spectrometer: (a) flixweed leaf, (b) flixweed stem,
(c) kochia leaf, (d) kochia stem, (e) redroot pigweed leaf, and (f) redroot pigweed stem.

used as the feature wavelengths to construct a color index to
categorically  differentiate soil from living plants.

COLOR INDICES

Color indices were formed using the feature wavelengths
in the form of normalized difference:

ji

ji
aa
aa

C +
−

= (3)

where ai and aj are light absorbances measured at feature
wavelengths i and j, respectively. The i–j pairs used for four
color indices were {614 nm, 546 nm}, {676 nm, 546 nm},
{676 nm, 496 nm}, and {752 nm, 676 nm}.

PARTIAL LEAST–SQUARES CALIBRATION

The partial least–squares (PLS) calibration method was
used to decompose the spectra into a set of “variation spectra”
that represent the changes in absorbance within the spectral
range. PLS performs the decomposition on both spectral and

feature data simultaneously, so that the calibration models
established are related directly to the features of interest. In
this study, mean values of the color indices for each class
were used as the feature data, and the spectra (preprocessed
using the SNV procedure at the feature wavelengths) were
used as the spectral data to enter the PLS procedure into the
GRAMS/32 program. The procedure gave the number of
factors used in the calibration model and the predicted
color–index values for each sample used in the training.

DISCRIMINANT ANALYSIS

Once the calibration model was established, qualitative
DA was used to classify the training spectral data to examine
the effectiveness of the model. Entering the DA were the
color–index values predicted by the PLS model and the
actual classes to which the samples belonged. The predicted,
rather than the actual, feature values were used, because the
PLS model incorporated statistical variation patterns of the
data and, thus, was more robust to noise. The DA gave
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indications of the likelihood of each spectrum to match
different classes. The class receiving the maximum
likelihood was assigned to the spectrum. In this study, DA
was performed using the DISCRIM procedure in the
Statistics Analysis System (SAS Institute, Inc., 1993).

Table 1 gives the classification results for the training data
set. Soil samples were identified correctly with a
classification rate of 100%. Classification rates for wheat
leaves and stems were 57.5% and 65.5%, respectively.
Seventy five percent of kochia stems and 90.9% of redroot
pigweed stems were classified correctly; the rest were
misclassified as stems of other weed species. When stems of
all three weed species were combined into one class, “weed
stem”, the classification rate reached 88%: 22 of 25 samples
were classified correctly as weed stems, and three flixweed
stem samples were misclassified as wheat stems.

MODEL VALIDATION

The classification model was also used to predict
unknown samples from the validation data set (table 2).
Classification results for most classes were similar to those
obtained for the training data set; the exceptions were
flixweed leaves, redroot pigweed stems, and wheat leaves.

SENSOR DESIGN
The weed sensor consisted of an optical unit, a

signal–conditioning  unit, an illumination unit, and a data

acquisition unit. A block diagram of the sensor structure is
shown in figure 4.

OPTICAL UNIT

Design of the optical unit was based on the feature
wavelengths. Six phototransistors installed on a circuit board
formed the light detector. Five of the phototransistors had
inexpensive, thin–film, band–pass, color filters with central
wavelengths equal to the selected feature wavelengths
(496 nm, 546 nm, 614 nm, 676 nm, and 752 nm). The sixth
phototransistor did not have a filter. Signals from this
phototransistor were used to provide reference light intensity.
Light reflected from the object passed through a
double–convex lens with a focal length of 40 cm before
reaching the filters and phototransistors. The distance
between the lens and the object also was 40 cm.

SIGNAL–CONDITIONING UNIT

Current signals from the phototransistors were converted
to voltage signals using conventional current–to–voltage
converters. The signals then were filtered using Butterworth
low–pass filters to reduce noise introduced through the light
source, power supply, and signal transmission line. The
optical unit and signal conditioning circuits were contained
in a plastic box, which was painted black.

ILLUMINATION UNIT

The illumination unit consisted of four 50 W
tungsten–halogen flood lamps with spherical reflectors. The

Table 1. Classification results for the training set of the spectral data using PLS–DA classifier.

To

Class Fwl Fws Kcl Kcs Rrl Rrs Soil Whl Whs Total

Fwl 7 1 0 0 3 0 0 1 0 12
58.3% 8.3% 0 0 25% 0 0 8.3% 0 100%

Fws 0 4 1 2 0 0 0 0 3 10
0 40% 10 20% 0 0 0 0 30% 100%

Kcl 0 1 4 0 0 0 0 0 0 5
0 20% 80% 0 0 0 0 0 0 100%

Kcs 0 1 0 3 0 0 0 0 0 4
0 25% 0 75% 0 0 0 0 0 100%

From Rrl 5 0 1 0 5 0 0 6 0 17
29.4% 0 5.9% 0 29.4% 0 0 (35.3) 0 100%

Rrs 0 0 0 1 0 10 0 0 0 11
0 0 0 9.1% 0 90.9% 0 0 0 100%

Soil 0 0 0 0 0 0 5 0 0 5
0 0 0 0 0 0 100% 0 0 100%

Whl 6 0 4 0 7 0 0 23 0 40
15% 0 10% 0 17.5% 0 0 57.5% 0 100%

Whs 1 4 3 2 0 0 0 0 19 29
3.5% 13.8% 10.3% 6.9% 0 0 0 0 65.5% 100%

Total 19 11 13 8 15 10 5 30 22 133
14.3% 8.3% 9.8% 6.0% 11.3% 7.5% 3.8% 22.6% 16.5% 100%

Fwl = Flixweed leaf Fws = Flixweed stem
Kc = Kochia leaf Kcs = Kochia stem
Rrl = Redroot pigweed leaf Rrs = Redroot pigweed stem
Whl = Wheat leaf Whs = Wheat stem
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Table 2. Classification results for the validation set of the spectral data using the PLS–DA classifier.

To

Class Fwl Fws Kcl Kcs Rrl Rrs Soil Whl Whs Total

Fwl 2 0 0 0 6 0 0 2 2 12
16.7% 0 0 0 50% 0 0 16.7% 16.7% 100%

Fws 0 4 0 0 0 0 0 1 4 9
0 44.4% 0 0 0 0 0 11.1% 44.4% 100%

Kcl 0 0 5 0 0 0 0 0 0 5
0 0 100% 0 0 0 0 0 0 100%

Kcs 0 0 0 3 0 0 0 0 0 3
0 0 0 100% 0 0 0 0 0 100%

From Rrl 2 0 1 0 9 0 0 4 0 16
12.5% 0 6.2% 0 56.3% 0 0 25% 0 100%

Rrs 0 0 0 3 0 7 0 0 0 10
0 0 0 30% 0 70% 0 0 0 100%

Soil 0 0 0 0 0 0 5 0 0 5
0 0 0 0 0 0 100% 0 0 100%

Whl 3 0 5 0 10 0 0 21 0 39
7.7% 0 12.8% 0 25.6% 0 0 53.9% 0 100%

Whs 0 7 0 1 0 0 0 0 21 29
0 24.1% 0 3.5% 0 0 0 0 72.4% 100%

Total 7 11 11 7 25 7 5 28 27 128
5.5% 8.6% 8.6% 5.5% 19.5% 5.5% 3.9% 21.9% 21.1% 100%

Fwl = Flixweed leaf Fws = Flixweed stem
Kc = Kochia leaf Kcs = Kochia stem
Rrl = Redroot pigweed leaf Rrs = Redroot pigweed stem
Whl = Wheat leaf Whs = Wheat stem
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Figure 4. Structure of the optical weed sensor.

lamps were fixed on a special frame so that the light beams
joined at the object to be measured. To provide variable
illumination intensity, a large–power rheostat was connected
in series with the lights to adjust the current.

DATA ACQUISITION UNIT

A DAS 1801ST–DA data acquisition system (Keithley
Instruments, Inc., Cleveland, Ohio), installed in a 166 MHz
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Pentium computer, and TestPoint software (Capital
Equipment Corp., 1995) were employed for the laboratory
test. The TestPoint program performed A/D conversion and
data processing. The program also displayed the average
values and Fourier spectra of the signals. The data were
stored in files for further processing.

SENSOR TESTS
Two tests were conducted on the sensor: a color–index test

and a weed–density test. Both tests were conducted in a
laboratory. The color–index test compared two types of color
indices and selected the color index that was less sensitive to
illumination variation. The test data also were analyzed to
examine the effectiveness of the sensor in detecting weeds.
Nine weed species—kochia, flixweed, redroot pigweed, field
bindweed (Convolvulus arvensis), field pennycress (Thlaspi
arvense), shepherds purse (Capsella bursa–pastoris), joint
goatgrass (Aegilops cylindrica), Japanese brome (Bromus
japonicus), and downy brome (Bromus tectorum)—as well as
hard red winter wheat and soil were used in the test. These
weed species are the most common in Kansas wheat fields.

The goal of the weed–density test was to study the ability
of the sensor to detect weeds at different weed densities. Five
weed species were used in this test—kochia, flixweed,
redroot pigweed, field bindweed, and field pennycress.
These species were chosen because they were representative
of different weed stem colors as well as different foliage
shapes. An optical weed sensor measures light reflected from
all objects within the sensor’s field of view, including weeds,
wheat, and soil. The signal from the sensor represents an
integral effect of these reflections. If objects with specific
color features, such as weeds with reddish stems, are to be
detected,  the sensor must be capable of extracting this feature
from different backgrounds. The factors influencing the
sensor signals include: (1) intensity, orientation, and spectral
characteristics  of the illumination source; (2) position,
orientation,  and spectral characteristics of the optical sensor;
(3) spectral–reflectance characteristics and geometry of the
objects to be detected (weeds); (4) spectra–reflectance
characteristics  and geometry of other objects (crops, weed
leaves, soil, and crop residues) in the background; and (5)
coverage area of the objects to be detected (weeds) in the
sensor’s field of view. For the weed density test, the number
of weeds appearing in the sensor’s field of view was altered,
thus changing condition (5), the weed coverage area, while
maintaining conditions (1) through (4) basically unchanged.

PLANT SAMPLE PREPARATION

For the color–index test, weeds and crops were planted in
small containers in a greenhouse. The diameter of the
containers was 12.7 cm, and generally, 10 plants were planted
in each container. Thus, the plant density within the container
was approximately 0.08 plants/cm2. To allow replications of
the experiment, five containers were planted for each plant
species. Tests were conducted 21 days after the planting date.
Samples of kochia, wheat, and bare soil are shown in figure 5.

For the weed–density test, the plant density in a container
with 10 plants (0.08 plants/cm2) was defined as the “full”

(a)

(b)

(c)

Figure 5. Samples used in the color–index test: (a) kochia,
(b) wheat, and (c) bare soil.

density. “Half” density (0.04 plants/cm2), “quarter” density
(0.02 plants/cm2), and single–plant were achieved by manual
thinning. Two containers were thinned to each density for
each species. Data collected from the two containers were
used for training and validation, respectively. Figure 6 shows
redroot pigweed at the four densities.

COLOR–INDEX TEST

During this test, the sensor was mounted on a boom, which
was installed in front of a test tractor. In order for the sensor
to “see” both stems and leaves, it was mounted at an
inclination angle of 45� from the ground. The distance
between the sensor and the plants was maintained at 40 cm.
To avoid any influence of light reflected from surrounding
objects, walls were constructed using black boards to make
a “dark room” (fig. 7). Wheat, bare soil, and nine species of
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                                            (a)                                              (b)                                                      (c)                                                      (d)

Figure 6. Redroot pigweed at different densities:| (a) “full” density (0.08 weed/cm2), (b) “half density” (0.04 weeds/cm2),
(c) “quarter” density (0.02 weeds/cm2), and (d) single–plant (0.008 weeds/cm2).

Figure 7. Experiment setup for the color–index test.

weeds were tested in a random order. Each test was replicated
five times using the five containers, among which three were
selected randomly as the training data set and the remaining
two as the validation set. The total number of observations
collected during the color–index test was 5,413. Each
observation included six signals from the six phototransis-
tors. Each signal was averaged from 1,000 readings acquired
within a period of 0.1 s. An observation was discarded if the
reference light–intensity signal was below a threshold level
of 0.5 V. Variable illumination intensity was achieved by
changing the resistance of the rheostat, which was connected
in series with the lights.

Two types of color indices were compared. Type–I color
indices (eq. 4) were in the form of normalized difference and
were similar to the color indices given in equation 1:

ji

ji
rr
rr

C +
−

= (4)

where ri and rj are reflecting light signals acquired from
phototransistors behind the band–pass optical filters with
central wavelengths of i and j, respectively. The i–j pairs used
for four color indices were {614 nm, 546 nm}, {676 nm,
546 nm}, {676 nm, 496 nm}, and {752 nm, 676 nm}.

The design of type–II color indices considered the effect
of “dark current” on the stability of the color indices under
varying illuminations. The dark–current effect can be
observed in figure 8: the zero light–intensity measurements
from two phototransistors did not join at the origin of the

Figure 8. Effect of dark current on phototransistor signals:null–signal
points of two phototransistors do not join at the origin. The straight

line is the linear regression line.

coordinate system, which was supposed to be the null–signal
for both phototransistors.

Type–II color indices were defined as

C = (ri – rj –b)/ r0 (5)

where
ri and rj = reflection–light signals acquired from

phototransistors behind the band–pass optical
filters, with central wavelengths of i and j,
respectively.

r0 = the reflection–light signal acquired from the
phototransistor without a filter.

b = the intercept of the linear regression line using
    r0 and (ri – rj) as the independent and dependent
   variables, respectively.

The i–j pairs used for type–II color indices were the same
as those used for the type–I indices.

The classification model was trained to differentiate three
object classes using the training data set: weeds, wheat, and
bare soil. Data for nine weed species were grouped as
“weeds.” Weed stems and leaves were all included in this
class because, in reality, they could not be separated from
each other. First, the intercept (b) of each color index was
derived through a linear regression analysis between (ri – rj)
and r0 using data derived for all object classes. Values of color
indices were then calculated for each observation using
equation 3. The color–index values and classes were used to
enter the DA to establish the classification model. The model
was evaluated using the validation data set.
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WEED–DENSITY TEST

During this test, soil was used as the background of plants.
Wheat and five weed species at four density levels (full, half,
quarter, and single–plant) and bare soil were tested in a
random order. The test was conducted at variable light
intensity. The measurement procedure was identical to that
for the color–index test. A total of 5,332 observations were
taken.

The classification model was trained using data in the
training set at all density levels. The procedure for training
was the same as that for the color–index test. The
classification model was examined using the validation data
set.

RESULTS AND DISCUSSION
COLOR–INDEX TEST

Figure 9 shows the experimental data for a type–I color
index. The index value did not remain constant when the
illumination intensity varied. When a type–II color index was
used, the color index value was stable within a wide range of
illumination intensity (fig. 10). Thus, type–II color indices
were used to develop the classification model.

The classification results using the training and validation
data sets are summarized in tables 3 and 4, respectively.
Using type–II color indices, the sensor successfully
identified wheat with high classification rates of 98.3% and
83.1% for the training and validation data sets, respectively.
The classification rates for weeds were 64.3% and 62.5%,

Figure 9. Measured type–I color index.

Figure 10. Measured type–II color index.

Table 3. Classification results for the training data set using type–II
color indices.

To

Class Bare Soil Weed Wheat Total

Bare soil 299
98.7%

4
1.3%

0
0

303
100%

From Weed 501
18.9%

1701
64.3%

444
16.8%

2646
100%

Wheat 0
0

6
1.7%

338
98.3%

344
100%

Total 800
24.3%

1711
52.0%

782
23.8%

3293
100%

Table 4. Classification results for the validation data set using type–II
color indices.

To

Class Bare Soil Weed Wheat Total

Bare soil 163
79.5%

42
20.4%

0
0

205
100%

From Weed 543
30.9%

1097
62.5%

115
6.6%

1755
100%

Wheat 0
0

27
16.9%

133
83.1%

160
100%

Total 706
33.3%

1166
55%

248
11.7%

2120
100%

respectively. These results were derived under a difficult
circumstance in which nine weed species with very different
spectral characteristics were lumped as “weeds” and the
illumination intensity varied over an extremely wide range
during the tests. Misclassifications occurred mainly between
bare soil and weeds and were probably due to the similarity
between the colors of soil and reddish weed stems and, for
some samples with small weeds, the large area occupied by
soil within the sensor’s field of view.

If the weed species were not grouped, the classifier was
forced to identify 11 individual classes (nine weed species,
bare soil, and wheat). The results showed that the highest
classification rate (73.0%) occurred for redroot pigweed,
which was apparently due to its extremely red stems. The
classification rates for wheat and bare soil were around 60%
and 70%, respectively.

WEED–DENSITY TEST

Results of the density test are summarized in tables 5 and
6. For the training data set (table 5), the classifier trained for
three classes (bare soil, weeds, and wheat) successfully
classified 100% bare soil (175 observations) and wheat
(897 observations) at all four density levels. For weeds at the
full, half, and quarter densities, 58.7% of observations were
identified correctly at these density levels, and 12.9% were
identified as single–plant weeds. Combining these two cases,
71.6% were successfully identified as weeds, and the
remaining 28.4% were misidentified as bare soil. Of the
457 observations for single–plant weeds, only 45.8% were
classified correctly, and the remaining 54.2% were classified
as bare soil. As the density of weeds was reduced, soil
covered a larger portion of the sensor’s field of view, and it
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Table 5. Classification results for the training data set at four plant densities.

To

Weeds Wheat

Class Bare Soil wd_fhq wd_sg wh_fhq wh_sg Total

175 0 0 0 0 175
Bare soil 100% 0 0 0 0 100%

wd_fhq 927 1913 422 0 0 3262
28.4% 58.7% 12.9% 0 0 100%

From
Weeds

wd_sg 541 0 457 0 0 998
54.2% 0 45.8% 0 0 100%

wh_fhq 0 0 0 723 0 723
0 0 0 100% 0 100%

Wheat
wh_sg 0 0 0 0 174 174

0 0 0 0 100% 100%

Total 1643 1913 879 723 174 5332
30.8% 35.9% 16.5% 13.6% 3.3% 100%

wd_fhq = Weeds at the full, half, and quarter density levels.
wd_sg = Weeds at the single–plant density level.
wh_fhq = Wheat at the full, half, and quarter density levels.
wh_sg = Wheat at the single–plant density level.

became increasingly difficult for the sensor to identify the
weeds by color features alone.

For the validation data set (table 6), the classifier again
successfully identified all the observations for bare soil.
Among the 3,521 observations for weeds at full, half, and
quarter densities, 73.8% were identified as weeds, and 26.2%
were misclassified as bare soil. Of the 1,028 observations of
single–plant weeds, only 41.2% were recognized as weeds,
and the rest were misclassified as bare soil. The classification
rates for the 730 wheat observations were not as good as those
for the training data set. Of the 561 wheat observations at the
full, half, and quarter densities, 69.9% were correctly
classified, and the remaining 30.1% were misclassified as

bare soil. All the observations for single wheat plants were
misclassified as bare soil.

For both training and validation data sets, all
misclassifications  occurred between plants (weeds and
wheat) and bare soil. In no case were weeds misclassified as
wheat or wheat misclassified as weeds. This result seemed to
be natural, because the plants were surrounded by soil, and
reducing plant density enlarged the portion of soil within the
sensor’s field of view. The fact that, during the weed–density
test, the classifier did not make any mistake between wheat
and any of the five weed species tested, even when the wheat
and weeds were at similar densities and had similar canopy
coverage, was encouraging because it strongly supported the

Table 6. Classification results for the validation data set at four plant densities.

To

Weeds Wheat

Class Bare Soil wd_fhq wd_sg wh_fhq wh_sg Total

207 0 0 0 0 207
Bare soil 100% 0 0 0 0 100%

wd_fhq 922 2296 303 0 0 3521
26.2% 65.2% 8.6% 0 0 100%

From
Weeds

wd_sg 605 0 423 0 0 1028
58.9% 0 41.2% 0 0 100%

wh_fhq 169 0 0 392 0 561
30.1% 0 0 69.9% 0 100%

Wheat
wh_sg 169 0 0 0 0 169

100% 0 0 0 0 100%

Total 2072 2296 726 392 0 5486
37.8% 41.9% 13.2% 7.2% 0 100%

wd_fhq = Weeds at the full, half, and quarter density levels.
wd_sg = Weeds at the single–plant density level.
wh_fhq = Wheat at the full, half, and quarter density levels.
wh_sg = Wheat at the single–plant density level.
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hypothesis that differences in spectral characteristics
between wheat and weeds can be picked up by the optical
sensor.

Although the optical weed sensor detects weeds mainly
based on color features, its performance is inevitably affected
by other factors, including geometric and morphological
factors, of weeds, crops, and soil. When weeds are very small,
light reflected from the weed stems contributes very little to
the sensor’s signal, no matter how distinct the color of the
stems may be. For different weed locations within the
sensor’s field of view, signals received by different
phototransistors may vary, causing variations in calculated
color indices. This is mainly because of the strong
directionality  of the phototransistors. Further study is needed
to determine the effective sensing area of the sensor and the
dependence of the sensor’s performance on locations of
weeds within the effective sensing area. In addition, the
sensor needs to be trained under more difficult conditions,
such as low weed densities and mixed wheat and weeds
within the effective sensing area, to strengthen the detection
power.

CONCLUSIONS
Based on a study of spectral characteristics of weeds,

wheat, and bare soil, five wavelengths (496 nm, 546 nm,
614 nm, 676 nm, and 752 nm) were selected as the feature
wavelengths for the design of an optical weed sensor.
Normalized color indices, compensated for the dark–current
effect of the phototransistors, were found to be insensitive to
variations in illumination.

When nine species of weeds were grouped as “weeds” to
train the sensor, the classification rate of the sensor for the
training data set reached 98.3%, 98.7%, and 64.3% for wheat,
bare soil, and weeds, respectively. The classification rates for
the validation data set were 83.1%, 79.5%, and 62.5%,
respectively.

When the weed density was above 0.02 plants/cm2, the
classifier identified the weeds with classification rates higher
than 70% for both the training and the validation data sets.
The classification rate reduced to below 50% when only a
single weed appeared on the soil background. The remaining
weeds were misclassified as bare soil. During the
weed–density test, no misclassification between weeds and
wheat was found.
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