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AGRICULTURAL engineers are al­
ways searching for an optimum. As 

research and design techniques become 
more sophisticated, and with inexpen­
sive computing time more readily avail­
able, methods of searching for this op­
timum can rely more on precise mathe­
matical expressions and less on opin­
ions and guesses. The search techniques 
presented here are used when it is im­
possible or impractical to solve directly 
for the optimum value. In fact, in many 
cases the function to be optimized is 
unknown, as in an experimental prob­
lem where, for instance, the environ­
mental humidity for maximum livestock 
performance is desired. A problem 
where it may be impractical to solve 
directly is one that is described by a 
complex equation or by a series of 
equations and tabular data which may 
be empirical. These search techniques 
are valuable for such problems that can­
not be optimized by other techniques, 
such as setting the derivative equal to 
zero or by linear programming. 

The only requirements are that a 
value of the function can be determined 
for any given set of variables and that 
the function is "well-behaved" (no un­
bounded or multiple peaks, etc.). 

Search and Research in Design 

While these techniques are particu­
larly valuable in research, they are also 
useful to the design engineer. Research 
and design are not two separate activi­
ties of engineers. Every good design in­
volves research, whether it be only a 
thorough literature search or a long-
term research and development pro­
gram. 

Design e n g i n e e r s a re finding in­
creased value in mathematical simula­
tion techniques. When the performance 
of a machine or process can be simu­
lated with a fair degree of accuracy, 
simulated testing programs take only 
minutes, and computing costs are prac­
tically negligible compared to physical 
testing costs. Real experiments cannot 
be eliminated safely, of course, but their 
length and cost can be greatly reduced. 

Some of the research techniques de-
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scribed here have been used by the 
senior author in a research program 
aimed at optimizing the performance 
of various types of grain driers. A simu­
lation model consisting of a thin-layer 
drying equation, a mathematical repre­
sentation of the psychrometic chart, 
equilibrium relative humidity data, and 
heat-balance equations was developed 
to predict the continuous performance 
of a given drier. With the simulation 
model, the computer determined the 
final moisture content while operating 
with a particular set of operating con­
ditions — air temperature, airflow rate, 
grain-flow rate, bed depth, and initial 
moisture content. 

Before u s i n g mathematical-search 
techniques, it was difficult to predict a 
set of operating conditions that resulted 
in the desired final moisture content. 
With the methods presented here for 
finding the zero of a function, it was 
possible to determine systematically a 
set of drying conditions which resulted 
in the desired final moisture with only 
four or Rve computer trials. For this 
determination, one of the variables was 
varied (holding the others constant) 
until the desired result was obtained. 
These search methods made it easy to 
determine how each variable affected 
the solution of the overall problem. 

The drying methods were then op­
timized by using the multidimensional 
search techniques presented here. 

METHOD FOR DETERMINING ZEROS 

OF FUNCTIONS 

The zero (or root) of a function is 
that value of the independent variable 
x such that y, the dependent variable, 
is equal to zero. The function f(x) — 
y, where y is a desired value of y, is 
also a function of x. Thus these methods 
can be used to find x for any desired 
value of y. 

The methods presented here can be 
used to find the zeros of unknown func­
tions. Method I is readily explained by 
a graphical illustration and can be used 
on convex or concave functions. Method 
II is a mathematical procedure that is 
especially adaptable for use in a digital 
computer and can be used with any 
single-valued continuous function. For 
curved functions, these methods will 
converge faster than linear interpolation 
since they account for the curvature of 
the unknown function. 

Method I. Zeros of Convex and 
Concave Functions 

This method was presented by Bell­

man and Dreyfus (1) * * and developed 
further by the senior author. The 
method utilizes the properties of a con­
vex (concave) curve, that is, a straight 
line joining any two points on a convex 
(concave) curve is above (below) the 
curve, and the extension of this line 
in either direction is below (above) the 
curve. 

The problem is to reduce the maxi­
mum length of interval which includes 
the desired zero, given that the un­
known function is monotonically de­
creasing (increasing), continuous, and 
convex (concave) in the interval [a, Z?] 
and that f(a) > 0 and f(b) < 0. The 
only stipulation on this function is that 
it can be evaluated for any value of 
f(x) in the interval. The interval is 
sequentially reduced until the investi­
gator is satisfied the resulting f(x) value 
is sufficiently close to zero. 

Procedure for Graphically Finding the 
Zero of an Unknown Convex Monotoni­

cally Decreasing Functionf 

1 Refer to Fig. 1. Draw a straight 
line from f(a) to f(b). Call the inter­
cept of this line and the x-axis point W. 
The zero, x*, is in the interval [a? W ] . 
Let e represent the maximum deviation 
from zero for which the experimenter 
will accept y = f(x) as being suffi­
ciently close to zero (\y\) < e) . 

2 Arbitrarily select a value of x in 
the remaining interval (a good choice 
is at midpoint) and evaluate f(x) . 

3 If f(x) > e go to step 4. 
— e — f(x) — e x is the desired 

value. 
f(x) < — e go to step 5. 

4 Refer to Fig. 2. Draw a straight 
line from f(a) through f(x). Call the 
intercept of this line with the x-axis 
point S. Draw a straight line from 
/(x) to f(b). Call the intercept of this 
line with the x-axis point W'. The zero, 
x*, is in the interval [S, W' ] . Redefine 
the point x as point a and go to step 2J. 

5 Refer to Fig. 3. Draw a straight 
line from f(a) to / ( x ) . Call the inter­
cept of this line with the x-axis W . 
Draw a straight line through f(x) to 
f(b). Call the intercept of this line 
with the x-axis point S'. Let point S 
be the larger of a and S'. The zero, x*, 
is in the interval [S, W' ] . Redefine the 
point x as point b and go to step 2.J 

t The operations can be described mechanically 
by using similar triangles. 

t f(S) and f(W') were not evaluated, there­
fore, S and W' cannot be used as boundary 
points. 

Fig. 2 and 3 show that this method 
is very powerful in reducing the maxi-
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mum i n t e r v a l which i n c l u d e s the 
zero x*. 

Method I can be used with four 
types of curves — convex or concave 
and either monotonically increasing or 
decreasing. However, in order to use 
this method systematically in the com­
puter, different sets of equations have 
to be used for each curve type. An 
alternate method is to transform (re­
flect about the axis) the different curve 
types to a single type. However, the 
curve type has to be known. 

Method II. Zeros of Unknown 
Functions Using an Interpolating 
Polynominal 

This method was developed by the 
senior author to p r o v i d e a g e n e r a l 
method for finding the zero of any sin­
gle-valued continuous function. The 
method uses Aitken's algorithm for an 
interpolating polynominal (2) and is 
more adaptive to mathematical analysis 
than Method I, especially in a digital 
computer. 

The method systematically predicts 
where the zero of the unknown curve is 
located based on all of the previous ob­
servations. In general, after n + 1 ex­
periments, the prediction is equivalent 
to solving for the nth order equation 
through the n + 1 observed points, and 
the zero of this equation is the pre­
dicted zero of the unknown function. 

Procedure for Finding the Zero of Any 
Single-Valued Continuous Function 

Step 
1 Arbitrarily select two values of the 

independent variable (Call them xt and 
x2) in the vicinity of the desired x and 
evaluate / (*i) and f(x2). Let e repre­
sent the maximum deviation from zero 
for which the experimenter will accept 
y = f(x) as being sufficiently close to 
zero. 

2 Reindex and arrange the x and y 
observations in order of increasing y 
values in a table as shown below. The 
table appears as it would be after n ob­
servations. 

FIG. 1 Initial conditions for Method I. 

f(a) , 

An example problem and solution is 
presented below to illustrate the pro­
cedure for Method II. The function 
evaluations were arbitrarily selected by 
the authors for this illustration. 

Example problem: 

Refer to Fig. 4. The equivalent 
curves are drawn for illustration. 

Step 

1 Let x-i = 0, x2 = 15, e = 
y1 = - 8 , y2 = 9. 
2 x 1 

0 0 
15 15 7.059 

0(9) - 1 5 ( - 8 ) 

1, then 

y 
- 8 

9 

7.059 
FIG. 2 Method I graphical procedure if 
f(x) > 0. 

9 - ( - 8 ) 
This step is equivalent to solving for 

the intercept of curve 1 and the x axis. 
Curve 1 is a straight line through the 

two points. 
3 y = /(7.059) = - 5 

y is not in the range ± 1 . 
2 x | \ y 

FIG. 3 Method I graphical procedure if 
f(x) > 0. 

Let xn = xh i= 1,2,3, . . . n 
Each column is calculated from the x 

column immediately to its left. Calcu­
late 

Y _ ( * j - i , j - i ) ( y i ) - ( * i , j - i ) ( y j - i ) 

for /=2 ,3 , . . . n 
i=j,j-\-l, . . . n 

xnn is the best estimate of the de­
sired x. 

3 Evaluate y = f(xnn). If —e — y 
— e, xnn is the desired answer. If not, 
repeat step 2 using y = f(xnn) as an­
other observation. 

0 
7.059 

15.000 

0 
7.059 18.824 

15.000 7.059 14.622 

•^22 
0 ( - 5 ) - 7 .059( -8 ) 

- 5 - ( - 8 ) 
0(9) - 1 5 ( - 8 ) 

18.824 

X Q Q 

9 - ( -
18.824(9) 

I) 
7.059 

7.059 ( - 5 ) 

14.622 
9 - ( - 5 ) 

This step is equivalent to solving for 
the intercept of curve 2 and the x axis. 
Curve 2 is a second-order curve through 
the three points. 

3 y = /(14.622) = 6 
y is not in the range of ± 1 . 

2 X 

0 
7.059 

14.622 
15.000 

0 
7.059 

14.622 
15.000 

18.824 
8.355 
7.059 

14.065 
14.622 12.951 

y 
- 8 
- 5 

6 
9 

X 

x l 

X2 

x 3 

• 
• 
. 

x. 
1 

• 
• 
• 

'x 
n 

X l l 

X21 

X31 
• 
• 
• 

X i l 
• 
• 
• 

x i 

nl 

X22 

X32 

x i 2 

Xn2 

X33 
• 

• 
• 

X . ^ • • • 

i 3 

x « • • • 
n3 

x i i 
• 

x . 
n i 

• 
X 

nn 

Y 

y l 

y 2 

y 3 
• 
• 
• 

*t 
• 
• 
. 

y n 

This step is equivalent to solving for 
the intercept of curve 3 and the x axis. 
Curve 3 is a third order curve through 
the four points. 

3 y = /(12.951) = 4 
y is not in the range ± 1 . 

FIG. 4 Graphical solution for Method II. 
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X 

0 
7.059 

12.951 
14.622 
15.000 

0 
7.059 

12.951 
14.622 
15.000 

18.824 
8.634 
8.355 
7.059 

13.163 
14.065 
14.622 

11.359 
11.996 10.085 

y 
- 8 
- 5 

4 
6 
9 

This step is equivalent to solving 
for the intercept of curve 4 and the 
x-axis. 

Curve 4 is a fourth order curve 
through the five points. 

3 y = /(10.085) = 1 
y is in the allowable range; there­
fore, the best estimate of the 
zero, x*, is 10.085. 

UNIMODAL SEARCH TECHNIQUES 

Unimodal search techniques can be 
used to find the optimal value of an 
unknown function when it can be as­
sumed that the surface under consider­
ation has only one peak or that there 
are not any false peaks. 

A function is unimodal if, from every 
point on the surface, a strictly rising 
path exists which leads to the optimal 
value or peak. In m u l t i d i m e n s i o n a l 
searches, this path does not have to be 
straight. 

Single variable search is important 
to the understanding and use of multi­
dimensional search methods. One-di­
mensional searches are used in some of 
the multidimensional searches. 

It is the purpose of this paper to pre­
sent workable methods and illustrations 
for each of these procedures. Detailed 
developments of the methods are pre­
sented by Wilde (3) . 

Single Variable Search 

The problem is to find the maximum 
of an u n k n o w n unimodal f u n c t i o n , 
given that the maximum is defined be­
tween two limits, i.e., a — x* — b. A 
function is unimodal if f(x) increases 
as x increases from a to x* and f(x) in­
creases as x approaches x* from b. 

The interval of the x axis where the 
optimum is known to exist is called the 
"interval of uncertainty." Before any 
evaluations are made, the length of the 
interval of uncertainty is (b—a). After 
the second and every following evalua­
tion, a portion of this interval can be 
eliminated from consideration. When 
maximizing, i f / (x 2 ) > /(xx) (Fig. 5 ) , 
the region from a to x1 can be elim-

H-H+ 

mated since f(x) is unimodal. Like­
wise, if / (xx) > f(x2) (Fig. 6 ) , the 
region from x2 to b can be eliminated. 

Simultaneous Search 

Simultaneous search is used when all 
of the experiments or evaluations, / ( x ) , 
are performed at the same time. The 
procedure consists of equally spacing 
the n evaluations along the interval of 
uncertainty. This procedure does not 
take advantage of the unimodality of 
the function and is inefficient. After 
the n experiments are performed, and 
assuming the function is unimodal, the 
investigator can reduce the interval of 

"~2 (b-a) ' 
uncertainty to 

n-1 
, or the length 

of the two intervals adjacent to the 
best f(x) value. Referring to Fig. 7, 
and assuming the function is unimodal, 
it can be asserted that the optimum lies 
between xk_x and x k + 1 where / (x k) 
was the best f(x) evaluation. 

^— interval of uncertainty after 
n simultaneous experiments 

FIG. 7 Simultaneous search with n ex­
periments. 

Sequential Search 

Sequential search techniques use the 
results from previous experiments to 
determine the location of the next ex­
periment. The methods presented con­
sist of various procedures for locating 
the next experiment in the interval of 
uncertainty. The purpose is to reduce 
the interval with the fewest number of 
experiments. The rate of reduction of 
the interval of uncertainty does not de­
pend on the outcome of any experi­
ment. The methods minimize the max­
imum interval of uncertainty. 

Let e (epsilon) represent the least 
separation between two experiments for 
which a difference between f{x1) and 
f (x2) can be detected, i.e., / (x) •¥= 
f(x ± e) . Experimental and computa­
tional errors should be considered when 
e is determined for an experiment. 

H-hH-hh 

A Dichotomous search consists of 
placing a pair of experiments in the 
center of the interval of uncertainty. 
The two experiments are placed a dis­
tance e apart and part of the interval 
is eliminated from consideration based 
on the outcome of the two experi­
ments. The procedure is repeated un­
til the interval of uncertainty is suf­
ficiently small. 

^ 1 , , 

1 , 
\*—• U - i -

FIG. 8 Dichotomous search with four ex­
periments. 

In general, after n (an even number) 
experiments, the interval of uncertainty 
is equal to a fraction [2~(n/2) + (1 — 
2"(n/2)) e] of the original interval. 

A Fibonacci search is based on the 
value of e and the number of experi­
ments that are to be performed. A Fi­
bonacci series is described by Fibonacci 
numbers defined as follows: F0 = Fx = 

FIG. 5 Remaining Interval of uncertainty FIG. 6 Remaining interval of uncertainty 
when f(x2) > f(xi). when f(xi) > f(x2). 

1. Fk = Fk~i + Fk_2, k = % 3, 4, 
. . . . The Fibonacci series t Q, r^ r 2, 
. . . is 1, 1, 2, 3, 5, 8, 13, 21, or each 
number is the sum of the two numbers 
preceding it. The Fibonacci search meth­
od consists of placing the first experiment 

a fractional distance r ^ i ± ^ ^ 
L Fn 

from one end of the interval of uncer­
tainty, and the second experiment the 
same distance from the other end, 
where n is the number of experiments 
that are to be performed. The function 
f(x) is evaluated for the two experi­
ments, and part of the interval is elim­
inated. The third (and each conse­
cutive) experiment is placed symmetri­
cal to the one in the remaining interval, 
f(x) is evaluated, and part of the inter­
val is eliminated. The procedure is re­
peated until n experiments have been 
performed. A simple method for this 
symmetrical placement is to use the 
following equation: x = a + b — xh, 
where a and b are the lower and upper 
limits of the interval of uncertainty, and 
xb is the x value that resulted in the 
best f(x). After the n sequential ex­
periments have been performed, the 
interval of uncertainty is a fraction 

^—^— of the original interval. 
F 
*• n —I 

Following is an example problem and 
the solution: Use the Fibonacci search 
technique to optimize the unimodal 
function shown in Fig. 9. (Normally 
the function is not known but is given 
here for illustrative purposes). Use the 
figure to evaluate the function at each 
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FIG. 9 Arbitrary function for Fibonacci 
search example problem. 

of the x's. Perform 5 experiments and 
let e = 0.02. 

F 4 + ( - l ) n € 
Using the formula x± 

Fr> 
( - 1 ) 5 (0.02) 

= 4.98/8 = 0.6225 
for the location of the first experiment 
and x = a + b — xb for each following 
experiment, the table below shows the 
sequence of events for this optimization. 

ing that k discrete x values are arranged 
so that the resulting function is uni-
modal, the search consists of locating 
the first two experiments at the num­
bered x values corresponding to the two 
largest Fibonacci numbers (1 , 1, 2, 3, 
5, 8, 13, 21, . . . ) included in the k 
possible x's which are numbered 1 
through k. The next step consists of 
adding dummy variables to the se­
quence of x values in order to have a 
total of F n — 1 values, where F n is the 
first Fibonacci number greater than k. 
After the first two experiments are per­
formed, a portion of the interval is elim­
inated as in the previous search meth­
ods, and the next experiment is per­
formed symmetrical to the one in the 
remaining interval. The procedure is 
repeated until the best value of the 
function is obtained with the two ad­
jacent values of the function evaluated. 

Exp. 

1 

2 

3 

4 

5 

a 

0 

0 

0 

0.2450 

0.3775 

xb 

0.6225 

0.3775 

0.3775 

0.4900 

b 

1.000 

1.000 

0.6225 

0.6225 

0.6225 

X 

0.6225 

0.3775 

0.2450 

0.4900 

0.5100 

f(x) ? f(xb) 

f(x) > f(xb) 

f (x) < f (xb) 

f (x) > f (xb) 

f (x) < f (xb) 

Therefore, 

x = 0.6225 

xb = 0.3775, b = 0.6225 

a = 0.2450 

a = 0.3775. ̂  = 0.4900 

b = 0.5100 

Thus the optimum is in the interval 
[0.3775, 0.5100]. The length of the 

remain-interval of uncertainty is the 
same as the theoretical interval 

1 + F 3 e 1 + 3 (0.02) 
0.1325. 

The Golden Section Search technique 
is very similar to the Fibonacci search, 
but does not depend on the number of 
experiments or the e value. In fact, 
this method is the same as the Fibonacci 
search, except the first experiment is 

placed a fraction — — = 0.6180340 
l + y 5 

of the distance from one end of the 
interval of uncertainty, and the experi­
menter can perform as many experi­
ments as he desires. The interval re­
maining after n experiments is a fraction 

of the original interval 
1 +V5-

of uncertainty. 

The golden section is known as a 
division of a segment into two unequal 
parts so that the ratio of the whole to 
the larger is equal to the ratio of the 
larger to the smaller. 

Lattice Search is used when only a 
certain number of discrete x values are 
possible. An example is how many 
salesmen should a company assign to a 
territory to maximize the company's 
profit. Since it is impossible to get a 
fraction of a salesman, only a discrete 
number of salesmen is possible. Assum-
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Example Problem and Solution 

If a manufacturing company can as­
sign up to ten salesmen to a territory, 
how many should they assign to maxi­
mize the company's profit? Assume that 
the profit function is unimodal. The 
solution consists of adding two dummy 
salesmen to the ten possible so that 
there are F 6 — 1 = 12 possibilities. 

Next, the company should evaluate 
their profit with F 4 = 5 and F 5 = 8 
salesmen. 

If the company finds that it is more 
profitable to have 8 salesmen than five, 
the next evaluation should be made 
with 10 salesmen (symmetrical to 8 in 
the interval 6 to 12). One possible se­
quence of making further evaluations 
is shown in Fig. 10. 

FIG. 10 One possible sequence of events 
for a lattice search with ten possibilities. 

To illustrate the power of these vari­
ous one-dimensional-search techniques, 
the following table shows the fraction 
of the original interval remaining after 
twenty e x p e r i m e n t s have been per­
formed : 

FRACTION OF ORIGINAL INTERVAL RE­
MAINING AFTER TWENTY EXPERIMENTS 

Simultaneous search 
Sequential search 

Dichotomous search 
Fibonacci search 
Golden search 
Lattice search* 

1 / 10 

1 / 1,024 
1/10,946 
1 / 9,349 
1/17,710 

* With 20 experiments, one value can be se­
lected from up to 17,710 possible values, assum­
ing the values are arranged so that the function 
is unimodal. 

For most one-dimensional searches, 
the Golden section is preferred by the 
authors because of its power and sim­
plicity. While the number of experi­
ments to perform can be calculated for 
the Fibonacci and the Golden section 
methods, the Golden section method 
does not require this calculation and 
does not depend on the e value. How­
ever, there is a slight reduction in power 
over the Fibonacci search. 

Multivariate Search 

The transition from one-dimensional 
to multivariable search encounters many 
difficulties. With unknown functions, 
the gradient and tangent plane at any 
point cannot be obtained directly, but 
have to be approximated by perform­
ing a series of experiments in the neigh­
borhood of the point in question. With 
one or two independent variables, it is 
relatively easy to visualize and illus­
trate methods of seeking an optimum, 
but with more variables it is impossible 
to operate with functions except in a 
purely mathematical sense. The num­
ber of possible solutions and difficul­
ties in optimization increase very rapid­
ly as the number of variables increase. 

For each one of the search tech­
niques presented, the method is briefly 
described and a step-by-step procedure 
for performing a m u l t i d i m e n s i o n a l 
search is given. Each method is illus­
trated by graphically showing how the 
method optimizes an ellipsoidal contour 
in two dimensions. The advantages and 
disadvantages of the method and an 
estimate of the number of experiments 
necessary are given. 

All of the search techniques are il­
lustrated with the same example prob­
lem. For methods of illustration, the 
function of the example problem will 
be known. With a known function, the 
tangent plane at any point and the 
maximum along any line in space can 
be evaluated by using first derivatives. 
In practice, this simplification will gen­
erally not be possible, but is used here 
to illustrate how the methods perform 
with an ellipsoidal functional. The ex­
ample problem used does not neces­
sarily illustrate all of the characteristics 
of the methods, but is used only to il­
lustrate how the method is performed. 

A linear approximation to the tangent 
plane and thus the gradient line and 
contour tangent can be obtained at any 
point x0 x2, xk) by the 
following procedure, where k is the 
number of independent variables, 

1 Evaluate y(x0) 
2 Let Xi = (x1} x2, . . . , xi_1, 

t\. + cl, M + l? " 1 • .1? -~l-f-17 

Evaluate t/(x*t) 
Let At/i = y(xi) 

for i = 1, 2, 

. . , xk) 

y(x0) and mi 
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A linear approximation of the tangent 
plane at x0 is 

k 
At/ = 2 mjA*j, where AXj = Xj 

; = i 
- xoj and At/ = */ - t/0. 

where Xj is the new value of variable / 
and y is the resulting height of the 
tangent plane. 

The contour tangent plane is deter­
mined by setting At/ equal to zero. The 
gradient line at point x0 can be ex­
pressed parameterically as 

x — (x1 + \ml9 x2 + \m2, . . . , 
xk + Xmk). 

Thus, with this representation of the 
gradient line, the value of each x vari­
able is determined by the value of pa­
rameter X. 

In practice, the experimenter should 
further investigate the neighborhood 
of the optimum point after the search 
techniques presented here are used. A 
second-order approximation of the op­
timum should be made to see if a bet­
ter value is nearby or if the "optimum" 
is a saddle point. A detailed method 
for making a second-order approxima­
tion of the surface is presented by 
Wilde (3) . 

Contour Tangent Elimination 

As previously illustrated, after fc + 1 
experiments have been performed in 
the neighborhood of a point, the tangent 
plane at that point can be approxi­
mated. The contour tangent at any 
point x0 is the hyperplane such that 
At/ = 0 (if the response surface is rep­
resented by the tangent plane, the value 
of the function remains the same as at 
point x0). The contour tangent elimina­
tion method consists of eliminating the 
areas where At/ < 0 from the experi­
mental region. 
Following is the step-by-step procedure 
for the contour t a n g e n t elimination 
method: 

1 Define the feasible region. 
2 Select an arbitrary point x, prefer­

ably in the center of the feasible region, 
and approximate the tangent plane At/ 
at this point. 

3 Eliminate the region defined by 
At/ < 0 from the feasible region. 

4 Return to step 2 and repeat until 
the remaining feasible region defines 
the optimum to the experimenter's satis­
faction. 

Example Problem and Solution 

Optimize the function shown in Fig. 
11 using the contour tangent elimina­
tion method. Do not use the plotted 
contours to select new arbitrary points, 
as the functional is usually unknown. 
At the starting point xl9 the tangent 
plane is evaluated, and the region be­
low the contour tangent plane elim­
inated from consideration. Another arbi­
trary point x2 is selected and the re­

gion below its contour tangent plane is 
eliminated. The same procedure is per­
formed for points x3, x4? . . . until the 
optimum value is obtained. 

FIG. 11 An illustration of the contour 
tangent elimination method. 

Advantages of contour tangent elimina­
tion method: 

1 The method is simple and is fairly 
straightforward. 

2 If the centroid of the feasible re­
gion is used as the new point, one-half 
of the feasible region is eliminated with 
each iteration. 
Disadvantages of contour tangent elim­
ination method: 

1 The method guarantees that the 
optimum will be found only if the func­
tion is strongly unimodalj. 

2 With each iteration, it becomes 
more difficult to find new arbitrary 
starting points and increasingly difficult 
to locate the centroid of the feasible 
region. With two variables, the feasi­
ble region can be plotted and the cen­
troid found quite easily, but with more 
variables it becomes almost impossible. 

3 The experimenter has many con­
straints and often he does not know 
how to evaluate them. 
Number of experiments for contour 
tangent elimination method: 

k + 1 experiments for each iteration, 
where k is the number of independent 
variables. 

Gradient Method 

The "gradient method" or "method 
of steepest ascent" consists mainly of 
mathematically climbing the response 
surface by moving up the surface using 
the steepest slope. This is very similar 
to an explorer walking to the top of 
a mountain when he cannot see the top. 
He continues to climb by walking up 
the steepest slope until he reaches the 
top. If the response surface is unimodal, 
the gradient method will eventually 
reach the summit of the surface. 
Step-by-step procedure for the gradient 
method: 

1 Select an arbitrary starting point x. 
2 Approximate the gradient line and 

represent it in the form (x1 + 

t A function is strongly unimodal if a straight 
line running to the optimum, x, from any point 
in the experimental region is a rising path. 

Xm1? x2 + \m2, . . . , xk + Xmk) 
and p e r f o r m a one-dimensional 
search maximizing y as A varies. 
The methods for approximating the 
gradient line and performing one-
dimensional searches are described 
above. 

3 Set x = (*! + A*ra1? x2 + X*m2, 
. . . , xk + X*mk), where X* is the 
optimal X as determined by the 
one-dimensional search. Return to 
step 2 and repeat until the maxi­
mum is obtained. 

Example Problem and Solution: 
Optimize the function shown in Fig. 

12 using the gradient method. The 
gradient line at point p0 is approxi­
mated and the high point (p2) along 
this line is determined by a one-dimen­
sional search; p3 is located at the high 
point of the gradient line from p 2 ; p4 

is located at the high point of the gradi­
ent line from p3 , and so forth, until the 
optimum point is obtained. 

FIG. 12 The gradient method illustrated. 

Advantages of gradient method: 
1 The method can be used on any 

unimodal function. 
2 The method will work in the pres­

ence of experimental error. 
3 Gradient methods will inherently 

stay away from saddle points. 

Disadvantages of gradient method: 
1 Convergence depends on choice of 

scales; ascent methods will even­
tually find the peak, and if the 
scales are selected wisely, conver­
gence can be rapid. (For best 
choice of scales, make the contours 
as nearly spherical as possible.) 

Number of Experiments for Gradient 
Method: 

k + 1 experiments and one one-di­
mensional search for each iteration. 

Sectioning or the Method of Sectional 
Search 

This simple scheme consists of alter­
ing only one independent variable at a 
time and maximizing using a one-di­
mensional search until t h e c r i t e r i o n 
ceases to improve, changing to the next 
variable, and repeating until no further 
improvement is obtained. When all of 
the variables have been used, the proc­
ess is repeated again until no further 
improvement is made between subse­
quent searches of all of the variables. 
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Step-by-Step Procedure for Sectioning 
Method: 

1 Select an arbitrary starting point x0. 
2 Maximize the function by allowing 

one independent variable to vary 
while holding all of the other vari­
ables constant. Use a one-dimen­
sional search to find the maximum. 

3 Set this variable at the value that 
resulted in the best value, and al­
low the next variable to vary. Max­
imize the function by the one-
dimensional s e a r c h t e c h n i q u e . 
Repeat until all of the variables 
have been used. 

4 Go to step 2 above and repeat the 
sequence until no further improve­
ment is obtained. 

0 Variable x. 

FIG. 13 Method of sectional search il­
lustrated. 

Example Problem and Solution: 

Optimize the function shown in Fig. 
13 using the M e t h o d of S e c t i o n a l 
Search. From the arbitrary starting 
point p0, the function is maximized over 
all values of xl9 while holding x2 con­
stant. x± is set equal to the value that 
resulted in the best function value, and 
the function is maximized over variable 
x2. The procedure is continued by 
varying xly then x2, xlf x2, and so forth 
until no further improvement is ob­
tained. 

Advantages of sectional search: 
1 The method is simple and easy to 

perform. 
2 Performance does not depend on 

choice of scales. 

Disadvantages of sectional search: 
1 In some cases, the method will not 

reach the maximum, even when 
the contours are convex (strong 
interaction between some of the 
variables). 

2 The method will not guarantee 
convergence to the optimal solu­
tion. Therefore, the method is not 
suitable unless the experimenter 
knows in advance that ridges are 
absent. 

Number of experiments for sectional 
search: 

k, one-dimensional searches for each 
iteration. 

Pattern Search Technique 

The Pattern Search Technique is an 
optimizing method which has good 
ridge-following characteristics and re­
quires only very simple calculations to 
perform. The technique is based on 
the hopeful conjecture that any set of 
moves which have been successful dur­
ing early experiments will be worth try­
ing again. This method uses a set of sim­
ple rules and the experience from past 
observations to direct its next moves. 

The search technique automatically 
adjusts the length and direction of its 
next excursion, depending on its suc­
cess in past adventures. The pattern 
search technique operates by starting 
at an arbitrary starting point and then 
climbing up the response surface in the 
direction that gives improvement, ex­
trapolating in this direction, and then 
repeating and making corrections in its 
direction as it goes. 

Step-by-Step Procedure for the Pattern 
Search Technique: 

1 Select a step size d{ for each in­
dependent variable x{, (i = 1, 2, 

2 Select an arbitrary starting point,, 

Set /' = 1, p = p0 and evaluate 

yip)-
3 For any i, find y(p + d^e^, where 

et is the ith unit vector in the car­
tesian basis. 
If y(p + d^j) > yip), set p = p 
+ diei 

If y(p + d^e^) — yip), evaluate 
yip - d^i) 

If y(p - d^) > y(p), set p 
= p - d^i 
If yip - d^i) ^ y(p), go on 
to the next variable. 

Repeat this step for all of the vari­
ables: i = 1, 2, 3, . . . , k. 

4 Set pj = p and p = 2 pj — p$-\ 
tfy(Pj) >2/(Pj- i )> s e t / = / + 1 > 
evaluate y{p) and repeat step 3 
again. 
I f yipyi - J / ( P J - I ) » s e t Pi = P J - I 
= p and reduce the step size d{ 

for each variable. Evaluate y(p) 
and repeat step 3 again. 

Continue until no more improvement is 
obtained with a preselected minimum 
step size for each variable. 

Example Problem and Solution 

Optimize the function shown in Fig. 
14 using the pattern search technique. 
From the arbitrary starting point p0, 
steps are made in the xt and x2 direc­
tions, which indicate an improvement 
to point pv From point pl9 an extra­
polation of length p± — p0 is made in 
the direction of improvement, and steps 
are made again to determine point p2. 
From point p2, an extra-polation is 
made, but no improvement is obtained; 
therefore, the step size is reduced (¥2) 

and steps are made in the xx and x2 

directions andsoforth until the optimum 
is obtained. 

FIG. 14 Pattern search technique illus­
trated. 

Advantages of the Pattern Search 
Technique: 

1 The method is powerful on straight 
ridges. 

2 Method is simple and requires very 
simple calculations. 

3 Performance does not depend on 
the choice of scale. 

Disadvantages of the Pattern Search 
Technique: 

1 Performance is sensitive to the 
step size and the speed at which 
the grid is reduced to resolve the 
ridge. 

2 Pattern search measurements are 
always taken in directions parallel 
to the coordinate axes, and for cer­
tain contours it could miss the 
ridge entirely. 

Number of Experiments for Pattern 
Search Technique: 

The method required k + 1 success­
ful searches, but not more than 2 
k + 1 experiments for each itera­
tion. 

Partan or the Method of Parallel 
Tangents 

Partan is a method of exactly finding 
the optimum of concentric ellipsoidal 
contours in a fixed small number of ex­
periments. The master strategy is based 
on certain global properties of ellip­
soids. Although the method was de­
signed for ellipsoidal functions, it is 
very powerful on nonellipsoidal con­
tours. It has certain ridge-following 
properties that make it very attractive, 
especially when the ridges are straight. 
Partan can climb like the gradient 
method, but it accelerates its search in 
the direction the gradient method is 
headed, thus increasing its effective­
ness for straight ridges and ellipical 
contours. There are three versions of 
partan (steep ascent, g e n e r a l , and 
scale invariant), with each version hav­
ing a slightly different method of se­
lecting the direction of the next move. 
All three of the methods are essentially 
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the same, especially in the number of 
experiments that have to be performed, 
but the steep ascent method has the ad­
vantage that if the scales of k of the 
variables are the same, the method will 
converge in 2(k—l) less one-dimen­
sional searches. 
Step-by-step procedure for accelerated 
ascent partan: 

1 Locate point p2 at the high point 
of the gradient line from any arbi­
trary starting point p0. 

2. Locate point ps at the high point 
of the gradient line from point p2. 

3 Locate p4 at the high point along 
the unique line that passes from 
point p0 through point p3 . 

4 Locate p5 at the high point of the 
gradient line from point p4. 

In general, for even-numbered i 
step i 

Locate point Pi+i at the high point 
of the gradient line from point pv 

step i+1 
Locate point p i + 2 at the high point 

along the unique line that passes from 
point p i_ 2 through point p i + i -

If the surface consists of concentric 
ellipsoidal contours, continue for 2k— 1 
steps (the optimal solution will be ob­
tained) where k is the number of in­
dependent variables. If any of the axes 
of the ellipsoidal system are equal, the 
method will reach the optimum sooner. 

If the contours are nonellipsoidal, 
continue until the neighborhood of the 
optimum is reached or until no further 
improvement in the solution is ob­
tained. 
Example problem and solution: 

Maximize the function shown in Fig. 
15 using the method of parallel tan­
gents. Point p0, p2, and ps are the same 
and are determined by the same pro­
cedure used for the gradient method 
example. From point p3 , a one-dimen-

DISCHARGE 
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ceedings of the American Society of Civil Engi­
neers 89:105-115, 1963. 

4 Corbett, Don M. and others, Stream gaging 
procedure. U.S. Geological Survey Water-Sup­
ply Paper 888, Washington: U.S. Government 
Printing Office, 1943. 

5 Frazier, A. H. Care and rating of current 

FIG. 15 Method of parallel tangents il­
lustrated. 

sional search is performed along the 
line from point p0 through point p3 . 
Point p4 , the high point on this line, 
is the optimum value because the 
method of parallel tangents locates the 
optimum in 2k—1 = 3 one-dimensional 
searches when the surface has concen­
tric ellipsoidal contours. 

Advantages of Partan Search 
Technique: 

1 The method finds the optimum in 
a fixed small number of experi­
ments when applied to concentric 
ellipsoidal contours. 

2 Even though the method was de­
signed for ellipsoidal contours, it 
has all the advantages of the gradi­
ent method a n d has p o w e r f u l 
ridge-following characteristics that 
make it attractive even for non-
ellipsoidal contours. 

3 It can be made invariant to scale 
changes. 

4 It is effective in finding and fol­
lowing straight ridges. 

Disadvantages of Partan Search 
Technique: 

1 The method requires a relatively 
large amount of stored information. 

meters. 3rd edition, Washington, D.C.: U.S. 
Geological Survey, 1957. 

6 Grover, Nathan Clifford and Hoytt, W. G. 
Stream gaging. 

7 Kolupaila, Steponas, Bibliography of hy-
drometry. Notre Dame: University of Notre 
Dame Press, 1961. 

8 Liddell, William Andrew, Stream gaging. 
New York: McGraw-Hill, 1927. 

9 Murphy, Edward C. Accuracy of stream 
measurements. U.S. Geological Survey Paper 95, 
Washington: Government Printing Office, 1904. 

10 Pierce, C. H. Investigations of methods 
and equipment used in stream gaging. U.S. Geo­
logical Survey Water-Supply Paper 868-A, Wash­
ington: U.S. Government Printing Office, 1941. 

2 The method involves calculations 
that are far from simple. 

Number of experiments for Partan 
Search Technique: 

k tangent plane measurements (k + 
1 experiments/tangent plane) and 2 
k — 1 one-dimensional searches, where 
k is the number of independent varia­
bles. 

For most multidimensional searches, 
the gradient method is preferred by the 
authors because it can be used on any 
unimodal function and will work in the 
presence of experimental error. While 
pattern search and the method of sec­
tional search are simple and easy to 
perform, they could, for certain con­
tours, miss a ridge entirely because their 
measurements are always taken in di­
rections parallel to the co-ordinates 
axes. Partan is a very powerful search 
method, but requires large amounts of 
stored information and calculations that 
are far from simple. 

In the event that an experimenter 
does not know enough about a response 
surface to assume that it is unimodal, 
the authors s u g g e s t that u n i m o d a l 
search techniques be used several times 
with different starting points to check 
for unimodality. If all of the explora­
tions lead to the same summit, it ap­
pears that the surface may be unimodal. 
If not, more starting points should be 
used to determine the number of false 
peaks. If there appear to be many 
peaks, unimodal search techniques are 
not applicable. 
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