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CLASSIFICATION OF CLOSED− AND OPEN−SHELL PISTACHIO

NUTS USING VOICE−RECOGNITION TECHNOLOGY

A. E. Cetin,  T. C. Pearson,  A. H. Tewfik

ABSTRACT. An algorithm using speech recognition technology was developed to distinguish pistachio nuts with closed shells
from those with open shells. It was observed that upon impact with a steel plate, nuts with closed shells emit different sounds
than nuts with open shells. Features extracted from the sound signals consisted of mel−cepstrum coefficients and eigenvalues
obtained from the principle component analysis (PCA) of the autocorrelation matrix of the sound signals. Classification of
a sound signal was performed by linearly combining the mel−cepstrum and PCA feature vectors. An important property of
the algorithm is that it is easily trainable, as are most speech−recognition algorithms. During the training phase, sounds of
nuts with closed shells and with open shells were used to obtain a representative vector of each class. During the recognition
phase, the feature vector from the sample under question was compared with representative vectors. The classification accura-
cy of closed−shell nuts was more than 99% on the validation set, which did not include the training set.
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n acoustical sorting system was developed by
Pearson (2001) to separate pistachio nuts with
closed shells from those with open shells. The
sorting system included a microphone, digital

signal−processing hardware, material handling equipment,
and an air−reject mechanism. Upon impact with a steel plate,
nuts with closed shells emitted different sounds than nuts
with open shells. In Pearson’s study (2001), linear discrimi-
nant analysis was used to classify nuts using three features ex-
tracted from the microphone signal during the first 1.4 ms
after impact. One of the discriminant features was the inte-
grated absolute value of the microphone output signal during
the first 0.11 ms after impact. The other two features were the
number of data points in the digitized microphone signal, be-
tween 0.6 and 1.4 ms after impact, having a slope and signal
magnitudes below different preset threshold levels. Classifi-
cation accuracy of this system was approximately 97% with
a throughput rate of approximately 40 nuts/s. Although the
frequency spectra from acoustics emitted from closed− and
open−shell nuts were found to have general differences, sim-
ple features from the frequency spectra (frequency corre-
sponding to largest magnitude, and combinations of
individual spectra magnitudes) were not found to be as useful
for accurate classification of nuts (Pearson, 2001). Currently,
closed−shell pistachio nuts are removed by mechanical de-
vices, which have a lower classification accuracy (~95%) and
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can damage kernels in open−shell pistachios by pricking
them with a needle. The needle hole can give the appearance
of an insect tunnel and cause rejection by the consumer. The
acoustic−based system does not cause such damage. In-
creased sorting accuracy of the acoustic sorter, coupled with
low cost of the hardware, enables a payback period of less
than one year.

In automatic speech recognition, words are usually
recognized as a series of sub−word sounds called phonemes
(Gold and Nelson, 2000). There can be several phonemes in
a typical word, so the extraction of features must be
continually performed in adjacent and sometimes overlap-
ping short−time windows. A typical word may last about one
second, and the corresponding speech signal for one word
may contain 10,000 or more digitized samples. This signal is
divided into short−time windows of 10 to 30 ms duration,
containing about 250 samples each. In order to capture and
identify all phonemes of a word, a set of features is necessary
from each short−time window. Given a sequence of features
obtained from an utterance, a pattern classifier is used to
determine the final result. In speech recognition, a set of
hidden Markov models or neural networks (Gold and Nelson,
2000; Quatieri, 2001) determines the corresponding word in
the vocabulary of the recognition system. Parameters of the
hidden Markov models are estimated from the feature vectors
of the training data. In speaker identification, Gaussian−mix-
ture models determine the speaker among a set of speakers
from the feature vectors (Furui, 1981; Reynolds and Rose,
1995).

The most common features used in modern speech−recog-
nition systems are called mel−cepstrum coefficients. These
features are extracted from the speech signal with the help of
short−time Fourier transforms (Quatieri, 2001; Young, 1996;
Jabloun et al., 1999; Erzin et al., 1995). The concept of
cepstrum, which is a discrete cosine transform of the
log−spectrum of a signal, was introduced as a signal analysis
tool by Tukey in the 1960s (Oppenheim and Schafer, 1975).
It is used in many applications ranging from noise removal
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in audio to signal and image reconstruction from partial
Fourier domain information (Quatieri, 2001; Cetin and
Ansari, 1988). Mel−cepstrum is a modified version of the
cepstrum and was designed to exploit the human auditory
system by dividing the frequency domain in a non−uniform
manner during cepstrum computation.

In addition to mel−cepstrum coefficients, eigenvalues
obtained from principle component analysis (PCA) of the
autocorrelation  matrix of sound signal data sets are common-
ly used feature vectors for modeling the spectrum of sound
signals. Similar to every other automatic recognition algo-
rithm, PCA−based systems also consist of two phases:
training and recognition. In the training phase, feature
vectors representing each data class are estimated from the
training data. In the recognition phase, the feature vector of
the current data is compared with the representative feature
vector of each class. Principle component analysis has been
widely studied in signal processing. Turk and Pentland
(1991) used PCA projections as feature vectors to solve the
problem of face recognition in images, using Euclidean
distance as the similarity function. In this approach, the
correlation matrix of the training data is first obtained, and its
eigenvalues and eigenvectors are determined.

In this study, a new classification algorithm based on
discriminating features used for voice−recognition systems is
proposed for distinguishing acoustical impact emissions
from pistachio nuts with closed and open shells. Given that
voice recognition systems were developed as a generic
signal−processing method to recognize a large vocabulary of
words from a variety of speakers, this method has the
potential to broaden the number of applications currently
possessed by the acoustic sorter, as this same method can be
applied to many different applications (Quatieri, 2001). In
contrast, the specific algorithm developed by Pearson (2001)
for recognizing open− and closed−shell nuts is specific to this
one application.

MATERIALS AND METHODS
SORTING SYSTEM

The experimental setup is described in detail in Pearson
(2001). The system was designed to feed pistachio nuts to an
impact surface, acquire the sound signal upon impact,
process the data, and then divert the product into either an
open−shell or closed−shell stream. The impact plate was
made of a 50.8 mm wide by 50.8 mm thick polished stainless
steel bar. The large thickness was required to minimize
vibrations of the bar when impacted by a pistachio nut. A
highly directional microphone (ME67 with K6 powering
module, Sennheiser Electronics Corporation, Old Lyme,
Conn.) was used to minimize the effect of ambient noise. The
sound data was sampled at 250 kHz with a digital signal
processing card (model 310, Delanco Spry, Rochester, N.Y.).

When a pistachio impacted onto the plate, the microphone
output signal ranged from 0 to ±0.7 V. Data acquisition
began when the microphone output rose above 0.085 V. This
threshold level was sufficient to trigger acquisition on
virtually all nuts while preventing false triggering from
ambient sound. Data acquisition continued for 1.4 ms after
triggering, producing 350 data points. Impact sounds from
sets of 300 closed− and 300 open−shell nuts (Kerman variety,
6% moisture dry basis, 2000 harvest) were collected from the

pistachio process stream just before mechanical closed− and
open−shell separation. This set of nuts contained a variety of
nut sizes (11 to 15 mm diameter). Nuts are not usually sized
before open− and closed−shell separation, so no effort was
made to obtain nuts of a specific size. Pistachio processors
control moisture content of the nuts to keep them between 5%
and 7% to maintain quality (Kadar et al., 1980). Nuts within
this range of moisture do not exhibit different acoustic
properties (Pearson, 2001). Finally, Kerman variety nuts are
the only variety of commercial importance in the U.S.;
therefore, other varieties were not studied. Training and
recognition of nut−split types was carried out with different
subsets, as will be discussed later. After training on this set
of nuts, the algorithm was applied to three additional sets of
nuts (each containing 300 open shell and 300 closed shell)
having different size categories. One set contained relatively
small nuts (10 to 13 mm diameter), a second set contained
medium nuts (12 to 14 mm diameter), and a third set
contained large nuts (13 to 16 mm diameter).

FEATURE EXTRACTION

Three different sets of features were used for classifying
pistachio sounds as open or closed shell:
� Eigenvalues from PCA of the mel−cepstrum coefficients

alone.
� Eigenvalues from PCA of sound amplitudes alone. Sound

data (x) was normalized by the Euclidian norm of each
sound vector, and the absolute value of sound samples was
used instead of actual sound samples, i.e., xn(l) = | x(l) | /
|| x ||, l = 1, 2, 3,..., N is used in PCA analysis instead of actu-
al sound samples, x(l).

� Eigenvalues from PCA of both the normalized sound am-
plitudes linearly combined with eigenvalues from PCA of
the mel−cepstrum coefficients.

MEL−CEPSTRUM COMPUTATION

The duration of the impact sound from pistachio nuts is
much shorter than a typical word and some phonemes;
therefore, only one short−time window, of duration 1.4 ms,
was used, and only one set of mel−cepstrum coefficients was
computed for each nut. Let x be a vector containing N sound
samples; mel−cepstrum coefficients are obtained by the
following computations:
� Discrete Fourier transform (DFT) x^ of the data vector x

is computed using the FFT algorithm and a Hanning win-
dow.

� The DFT ( x^) is divided into M non−uniform sub−bands,
and the energy (ei, i = 1, 2,..., M) of each sub−band is esti-
mated. The energy of each sub−band is defined as
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^ , where p and q are the indices of sub−band

edges in the DFT domain. The sub−bands are distributed
across the frequency domain according to a “mel−scale,”
which is linear at low frequencies and logarithmic thereaf-
ter. This mimics the frequency resolution of the human
ear. Below 10 kHz, the DFT is divided linearly into
12 bands. At higher frequency bands, covering 10 to
44 kHz, the sub−bands are divided in a logarithmic man-
ner into 12 sections. In this case, the Fourier domain is di-
vided linearly into 12 bands below 10 kHz, and the
frequency range covering higher frequencies from 10 to
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44 kHz is divided in a logarithmic manner into 12 sections.
Therefore, more emphasis is given to low−frequency in-
formation than to high−frequency data. In other words, the
DFT coefficients are grouped into M = 24 sub−bands in a
non−uniform manner.

� The mel−cepstrum vector (c = [c1, c2,..., cK]) is computed
from the discrete cosine transform (DCT) (Ahmed et al.,
1974):
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��M , k = 1, 2,..., K (1)

where the size of the mel−cepstrum vector (K) is much small-
er than data size N. The mel−cepstrum sequence is a decaying
sequence for sound signals. A value of 20 was chosen for K,
as coefficients with an index greater than K = 20 are usually
negligible.  The DCT has the effect of compressing the log−
spectrum, thereby providing a small set of coefficients repre-
senting most of the variance of the original data set. Another
advantage of the DCT is that it is close to the optimum Karhu-
nen−Loeve transform (Jayant and Noll, 1984) of highly cor-
related random processes; thus, it approximately
de−correlates the mel−scale logarithmic sub−band energies.
The basis of the DCT resembles the basis of the Karhunen−
Loeve transform, which is obtained by eigen−analysis of the
autocorrelation  matrix of the data. De−correlated coeffi-
cients are more suitable to modeling than correlated coeffi-
cients. In automatic speech and speaker recognition, it is
observed that mel−cepstrum coefficients (ck) give better rec-
ognition performance than sub−band energies (ei) or logarith-
mic sub−band energies, log(ei) (Quatieri, 2001).

PRINCIPLE COMPONENT COMPUTATION

Let C be the correlation or covariance matrix:
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mm xxxxEC −−=  (2)

where x represents the random sound vector, and xm is the
mean of x. The matrix C is an N × N matrix, where N is the
size of data vector x. The eigenvectors of this matrix repre-
sent the projection axes, or eigen−sounds of the data, and the
eigenvalues represent the projection variance of the corre-
sponding eigen−sound. Large eigenvalues of C are usually
chosen as feature vectors, as these explain most of the vari-
ance of the original data set before the transformation.

The correlation matrix is estimated from the training set
of L sound vectors (x1, x2,..., xL) as follows: Let X = [(x1 − xm)
(x2 − xm)... (xL − xm)] be the matrix of the training vectors
obtained by concatenating the sound vectors. The mean
vector (xm) is the average vector of the data set. An estimate
of C is given by Ce = XXT. The rank of matrix Ce is less than
or equal to L. Usually, the training vectors are linearly
independent of each other; therefore, Ce has L non−zero
eigenvalues:

kkk
T u�uXX = , k = 1, 2,..., L (3)

where �k and uk are the eigenvalues and eigenvectors of Ce,
respectively. The largest L� out of L eigenvalues are usually
selected as a representative set of data, and the corresponding
eigenvectors are used in the PCA analysis−based recognition
systems.

Projections of a sound vector (x) onto the first L1
eigenvectors define a feature vector representing the signal x:

1
,2,1, ... Lxxxx ωωω= [ω ]  (4)

where ).(, mkkx xxu −⋅=ω
In some practical situations, Ce is too large for eigenvalue

and eigenvector estimation. This was the case with the
pistachio data set used in this study, as x contains N = 350
sound samples. This difficulty can be overcome by noting
that the eigensystem of XTX has the same non−zero
eigenvalues as Ce, since XXTXuk = �kXuk, where �k and uk are
the eigenvalues and eigenvectors of Ce, respectively. As a
result, the reduced eigensystem of LxLT RXX ∈  can be
solved instead of Ce, as the size of the training set (L) is
usually less than the number of samples (N) in each data
vector (x). The new eigenvalues are the same as eigenvalues
of the original system, but eigenvectors are wk =Xuk.

TRAINING PHASE

In the pistachio recognition case, there are two classes of
data: open shell and closed shell. Assume there are L/2
closed−shell nut sounds (x1, x2,..., xL/2) and L/2 open−shell
nut sounds (xL/2+1,..., xL). In the training phase of the
algorithm, this data is projected onto the eigenvectors, and
the results are averaged to find a representative feature vector
for each class. Let �o be the representative feature vector of
open−shell nuts:

,2,1, ... oooo ωωωω
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Similarly, let �1 be the representative feature vector of
closed−shell nuts:

1,12,11,11 ... Lωωω=ω ][  (7)

where �1,k is obtained, as in equation 6, from the rest of the
training data set.

The training phase of the algorithm is completed when �o
and �1 are obtained from the training data set. Training was
attempted with L/2 values of 5, 10, 15, 18, 20, and 30 nuts
from each split category, and 280 nuts from each split type
that were not used in the training set were used to validate the
classification accuracy. However, in the case where 30 nuts
from each split type were used in the training set, the
remaining 270 nuts were used to validate classification
accuracy in the recognition phase. In all cases, except where
five nuts from each split type were used in the training set
(L/2 = 5), only the eigenvectors corresponding to the 10
largest eigenvalues were used to find the representative
vectors of closed− and open−shell nuts, i.e., the size of the
feature vector was L1 = 10. For the training case where L/2 =
5, only the five largest eigenvalues were computed, i.e., L1 =
5.

RECOGNITION PHASE
During the recognition phase of the algorithm, features are

extracted from the current sound data and compared with the
representative  feature vectors of each class. Given a vector
of sound data (x), its projection (�x) onto the eigenvectors
(uk) is computed using equations 4 and 5. Then, the distance
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between this feature vector (�x) and �o and �1 is computed.
If:

1ω−ω<ω−ω xox  (8)

then it is assumed that the current sound vector (x) belongs
to the open−shell nut class. Otherwise, it is assumed that it
belongs to the closed−shell nut class.

MEL−CEPSTRUM BASED PCA OF SOUND DATA

In this case, the correlation matrix is defined in terms of
the mel−cepstrum vectors instead of the sound vectors:

( )( )[ ]T
mm ccccEC −−=  (9)

where cm is the mean of the mel−cepstrum vectors. This time,
matrix C is a K × K matrix, where K is the size of the mel−
cepstrum vector (c). Matrix C is estimated as follows: Ce =
XXT, where X = [(c1 − cm) (c2 − cm)... (cL − cm)] is the matrix
of the training vectors obtained by combining the mel−cep-
strum vectors of L training sounds. The mean vector (cm) is
the average vector of the data set. Eigenvalues (�k) and eigen-
vectors (vk) of Ce are computed as in equation 3. Training and
recognition phases are the same as above, except that the
sound vectors are replaced by mel−cepstrum vectors. During
the recognition phase, the impact sound of a nut is used to
compute the corresponding mel−cepstrum vector (c) using
equation 1. Then, its projection onto the first L1 eigenvectors
of Ce is computed as follows:

,2,1, ... cccc ωωωω = [
1

L ] (10)

where ( )mkkc ccv −⋅=ω , . The Euclidian distances to repre-

sentative vectors of each class ac ω−ω   and bc ω−ω  are
computed to classify the nut sound. The representative vec-
tors �a and �b of each class are defined as in equations 5 to
7, except that the training sound vectors are replaced by their
mel−cepstrum vectors:
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and ci represents the training mel−cepstrum vectors of the
open−shell nuts. Similarly, the vector �b is obtained using the
training vectors of the closed−shell nuts.

For the case in which both eigenvalues from PCA of the
sound amplitudes and eigenvalues from PCA of mel−cepstral
features are used together, a feature vector representing
eigenvectors of the sound data was computed using equations 4
and 5. This vector was compared to the representative vectors
of each class, and distances were computed as in equation 8.
Then, a mel−cepstrum vector representing the same sound data
was computed and compared with the mel−cepstrum vectors of
each class. A final decision was based on the sum of the sound
amplitude−based PCA and the mel−cepstral analysis−based
PCA. We simply linearly combined the distances to the
representative vectors to reach a final decision, i.e., we

compared acox ω−ωβ+ω−ωα  with  1x +ω−ωα

bc ω−ωβ   to determine if the nut was an open−shell nut or
a closed−shell nut. In this case, the weights � and � were simply
set to 1.

It should be pointed out that the computational cost of this
scheme during the recognition phase is not high. During the
recognition phase, L1 inner products are computed. Com-
putationally expensive eigen−analysis is only carried out
during the training phase, which can be implemented off line
(Kuhn et al., 2000).

RESULTS AND DISCUSSION
Average frequency spectra from closed− and open−shell

pistachio nuts are shown in figure 1. Closed−shell nuts have
a broader frequency spectra, with a notable dip near 7 kHz.
It appears that the mel−scale should be very suitable for
distinguishing closed− and open−shell pistachios, as most of
the impact sound energy lies at low frequencies, as shown in
figure 1.

In table 1, classification results based on PCA of sound
amplitudes are presented. The first column lists the number
of training sounds for each class. The second and third
columns list the percentage of correctly classified closed−
and open−shell nuts in the validation set containing
280 sounds, except for the bottom row in which the
validation set size was 270 because 30 nuts were used for
training.

Only two out of 280 closed−shell nuts were misclassified
in all cases, corresponding to 99.3% recognition accuracy for
closed−shell nuts. The number of misclassified open−shell
nuts decreased as the number of training sounds increased, up
to the case in which 20 sound vectors were used in training
each representative vector. Beyond this level, improvement
in the recognition performance was not observed.

Figure 1. Spectra of impact sounds. The top plot was obtained by averag-
ing the spectra of impact sounds of 20 open−shell nuts and the bottom by
averaging 20 closed−shell nuts.
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Table 1. Classification results for PCA of sound amplitudes. The second
and third columns present the percent of correctly classified closed−
and open−shell nuts in a validation set containing 280 impact nuts.

No. of Training Nuts Closed Open

5 99.3 87.9
10 99.3 92.1
15 99.3 91.4
18 99.3 92.1
20 99.3 92.5

30[a] 99.3 92.5
[a] The validation set consisted of 270 nuts.

Table 2. Classification results for PCA of mel−cepstrum coefficients.
The second and third columns present the percent of correctly

classified closed− and open−shell nuts in a
validation set containing 280 sounds.

No. of Training Nuts Closed Open

5 76.7 100
10 82.9 100
15 91.8 100
20 93.2 100

In table 2, classification results based on PCA of the
mel−cepstrum coefficients are presented. The first column
lists the number of nuts used for training for each class. The
second and third columns list the percentage of correctly
classified closed− and open−shell nuts in the validation set
containing 280 sounds. Open−shell nuts were correctly
classified in all cases.

The method based on PCA features of sound amplitudes
classified closed−shell nuts more accurately than open−shell
nuts. On the other hand, the method based on mel−cepstral
features classified open−shell nuts more accurately than
closed−shell nuts, as shown in table 2. The most accurate
recognition results were obtained when PCA of sound
amplitudes was combined with mel−cepstral features, as
summarized in table 3.

The number of misclassified open−shell nuts dropped to
four, which corresponds to 98.6% recognition accuracy in
open−shell nuts when the training set comprised 20 closed−
shell nuts and 20 open−shell nuts (bottom row of table 3).
Recognition accuracy of the closed−shell nuts remained the
same (99.3%) after linear combination. This approach is
similar to the use of a compound feature vector for
representing speech data (Young, 1996). For example, a
common software for developing voice−recognition sys-
tems, Hidden Markov Tool Kit (HTK), uses both mel−cep-
strum and differential cepstrum, as well as signal energy, in
recognition.

Applying the PCA of sound amplitudes combined with
mel−cepstral features algorithm to sets of nuts having
different sizes yielded comparable results, as shown in
table 4. The medium−sized nuts had the highest accuracy, but
only by approximately 2.5% over the closed−shell small and
large nuts. Accuracy for the open−shell nuts varied only by
0.7% for the three nuts sizes. The average accuracy for all
three size categories and the mixed set were 96.8% for closed
shell and 98.9% for open shell. Using the same four data sets,
the discriminant analysis routine described by Pearson
(2001) classified the open−shell nuts with an average
accuracy of 96.8% and the closed−shell nuts with an average
accuracy of 98.8% (table 4). Thus, the method developed in
this study appears to offer similar classification accuracy as

Table 3. Classification results for both PCA of sound amplitudes and
mel−cepstrum coefficients. The second and third columns present

the percent of correctly classified closed− and open−shell nuts
in a validation set containing 280 sounds.

No. of Training Nuts Closed Open

5 99.6 96.8
10 99.3 98.2
15 99.3 98.2
20 99.3 98.6

Table 4. Classification results for both PCA of sound amplitudes and
mel−cepstrum coefficients using 20 training nuts and applied to nuts

from different size categories. The results from the discriminant
method (Pearson, 2001) applied to the same nuts are given for

comparison purposes. The values represent the
percent of correctly classified nuts.

Nut

PCA of Sound Amplitudes
and Mel−Cepstrum

Coefficients

Discriminant
Method

(Pearson, 2001)Nut
Size[a] Closed Open Closed Open

Small 95.4 98.9 98.7 97.7
Medium 97.9 99.3 100 94.0

Large 94.6 98.6 98.3 98.3
Mixed 99.3 98.6 98.0 97.0

Average 96.8 98.9 98.8 96.8
[a] Small = 10−13 mm dia., medium = 12−14 mm dia., large = 13−16 mm

dia., and mixed = 11−15 mm dia.

the discriminant analysis method. However, since the accura-
cies of the two methods are very close, a large amount of data
would be needed to determine which method is most accu-
rate. The primary advantage of the method developed in this
study is that it is much more easily trained, and since it is
based on methods used to distinguish characteristics of
speech, it is perhaps more adaptable to other applications.

CONCLUSION
A method, based on voice−recognition technology, was

developed for detecting open− and closed−shell pistachio
nuts based on their impact acoustics. The method appears to
be as accurate as the method developed by Pearson (2001).
Most importantly, this method is easily trainable and may
work for other types of pistachio defects or inspection of
other agricultural products. This will be the basis of future
study.
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