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Abstract  A sorting system has been developed for the separation of small in-shell 
pistachio nuts from kernels without shells on the basis of vibrations generated when 
moving samples strike a steel plate. Impacts between the steel plate and the hard shells, 
as measured using an accelerometer attached to the bottom of the plate, produce higher 
frequency signals than impacts between the plate and the kernels. Signal amplitudes, on 
the other hand, were highly variable and by themselves were not useful for the separation 
of samples. An algorithm was developed using both amplitude and frequency information 
to classify the signals. The algorithm activated an air nozzle to divert in-shell nuts away 
from the kernel stream. A prototype sorter was tested at throughput rates of 0.33, 10, 20, 
and 40 nuts per second using a mix of 10% in-shell and 90% kernels. At the lowest 
throughput rate, classification accuracies were 96% for in-shell nuts and 99% for kernels. 
For throughput rates between 10 and 40 nuts/s, correct classification ranged from 84 to 
90% for in-shell nuts. For kernels, accuracy was 95% at 10 and 20 nuts/s and 89% at 
40 nuts/s.  
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Introduction 
For certain defects, the pistachio industry has adopted high quality standards. For 
example, each ton of shelled kernels is allowed no more than two pieces of shell; a level 
not currently possible using automated sorters. Consequently, after machine sorting the 
product must be manually inspected, which is labor intensive, costly, often inconsistent, 
and potentially un-sanitary. Other defects and foreign material present similar detection 
challenges. Some, such as sticks, are removed with automated color sorters. Improving 
the performance of existing sorters would clearly benefit the industry as well as the 
consumer. Alternatively, new approaches to sorting for certain defects or contaminants as 
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a replacement for expensive existing equipment would also be a benefit. In this spirit, 
efforts are under way to design and construct economical sorting solutions for specific 
tasks, rather than applying expensive one size fits all technology. Haff and Jackson (in 
press) reported a low cost method using optical sensors for sorting in-shell pistachio nuts 
from kernels at a small fraction of the current cost. This work reports a method for 
sorting this same pistachio stream using impact vibration analysis with comparable price 
and accuracy to the optical methods.  

In most cases, the pistachio processing stream is separated between in-shell (nuts still in 
their shells) and kernels (no shells). Each stream undergoes both hands sorting and 
sorting by machines, including color and near infrared (NIR). Monochromatic sorters 
measuring visible wavelengths are most common, but more recently dual-band NIR 
sensors are gaining acceptance. In-shell nuts can be correctly classified as much as 98.6% 
of the time with 99.9% of kernels correctly classified with dual band NIR sensors [1]. 
While this level of accuracy seems impressive, it still falls short of the requirement of no 
more than two shell pieces in a ton of kernels, and even after repeated sorting kernel 
processing streams will generally require hand sorting. Nuts with heavily stained shells of 
approximately the same size as an average kernel, known as small in-shell, are generally 
the problem as they tend to defeat both the color sorters and sizing equipment. The 
method reported here does not rely on color for the detection of the shells and should 
therefore be ideal for solving the small in-shell problem.  

Beyond the use of NIR and color sorters, only a limited amount of research to develop 
non-destructive sorting devices for pistachio nuts has been reported. Ghazanfari et al. [2, 
3] utilized Fourier descriptors and gray level histogram features of two-dimensional 
images to classify pistachio nuts into one of three USDA size grades, as well as 
identifying those having closed shells. In-shell pistachios can thus be classified using 
gray scale images, regardless of whether they have open or closed shells. However, 
processing two-dimensional images is computationally expensive and not readily 
implemented into a real time sorting system requiring a high throughput. Furthermore, 
unless the axial rotation of the nut was mechanically constrained, three images would be 
required to cover the entire surface. A sorting system based on two-dimensional imaging 
is therefore considered uneconomical.  

There has been some research reported describing the use of acoustic signals to classify 
food products. Pearson [4] developed an economical and rapid system for separating 
pistachio nuts with closed from open shell based on the acoustic emission. Several 
researchers have found an inverse correlation between fruit firmness and resonant 
frequency [5, 6]. Most of the acoustical systems developed thus far involve tapping the 
food with a plunger, recording the resulting sound, then digitally processing the 
microphone signal to extract dominant frequency bands or other signal features correlated 
with firmness. Younce and Davis [7] developed such a system to measure firmness of 
cherries using impact acoustics. Sugiyama et al. [8] developed an acoustical firmness 
tester for melons that measured sound transmission velocity. This technique eliminated 
some error caused by size and shape variations in the fruits.  



Very little research is reported using impact vibration analysis for classifying food 
products. One exception is a system that has been developed and implemented to separate 
walnut shell fragments from nut meats based on the vibration induced while impacting a 
steel plate [9]. This system utilized signal duration and peak amplitude of band pass 
filtered accelerometer signals.  

Preliminary experiments for distinguishing in-shell pistachio nuts from kernels were 
unsuccessful using the acoustic emission system of Pearson [4] or a vibration signal 
processing scheme of Delacy et al. [9].  

The objective of this research was to establish the feasibility of using impact vibration 
analysis as a basis for sorting in-shell pistachio nuts from kernels in real time at 
commercial processing plant speeds. A prototype sorter was to be constructed and tested, 
and results compared with other methods previously reported. The sorter should be tested 
for accuracy depending on the throughput rate of the product and compared to existing 
commercially available equipment.  

 
Materials and methods 
A prototype sorting and data collection system was constructed to record the vibration on 
a stainless steel plate due to an impacting nut. The prototype was adapted to sort nuts in 
real time after a signal processing and classification algorithm was implemented. A 
schematic of the system is shown in Fig. 1.  

 
Fig. 1 Schematic of prototype sorting apparatus  

 

Samples of pistachio kernels and in-shell nuts were collected from the hand inspection 
stations at a pistachio processing plant immediately prior to shipping. These samples had 



already passed through color sorters, pneumatic separators, and sizing equipment without 
rejection, implying that the in-shell nuts were, in general, heavily stained and comparable 
in size to the kernels. Kernel weights averaged 583 mg (σ = 110 mg), while the in-shell 
nuts averaged 525 mg (σ = 162 mg).  

A vibratory feeder (FT00, FMC Corp. Homer City, PA) forced the nuts in single file from 
a vibration feeder onto an 80 cm long slide made from stainless steel sheet metal. The 
slide, inclined at 60° above the horizontal, terminated above a steel plate onto which the 
nuts impacted. The steel plate of dimensions 5.08 cm by 5.08 cm by 0.1524 cm (2′′ by 2′′ 
by 0.06′′) was mounted on four rubber vibration dampeners (5822K8, McMaster Carr, 
Elmhurst, IL). The thickness of the steel plate was selected to maximize the signal 
attenuated from the impact without saturating the accelerometer. The dampeners served 
to isolate the plate from external vibrations, such as from the feeder, while increasing the 
elasticity of impact and duration of contact between the nut and the plate. The impact was 
hence somewhat cushioned, resulting in increased feature contrast between kernels and 
in-shell nuts. An accelerometer (9001A, Vibra-Metrics, Princeton Junction, NJ) was 
mounted below the plate using adhesive recommended by the manufacturer of the 
accelerometer (Depend 20251 Kit, Loctite, Rocky Hill, CT). A dual power 
supply/amplifier unit (P5000, Vibra-Metrics, Princeton Junction, NJ) provided 
accelerometer power as well as a ten-fold signal amplification. The output signal, which 
approximately ranged between ±1 V, was offset by 3 V using an op-amp circuit so that 
the entire signal could be captured using a 0–5 V analog-to-digital (A/D) converter.  

The A/D conversion and signal processing was conducted on a high-speed controller 
board (RA, Tern Corp. Davis, CA). The rate of A/D conversion was 250 KHz at 12-bit 
resolution between 0 and 5 volts. Storage of the signal was triggered when the slope of 
the amplified accelerometer signal exceeded 0.1 volts between four A/D samples. After 
triggering, 250 A/D samples were collected and either saved onto a compact flash card on 
the controller board or processed as discussed below.  

A decision algorithm for classifying the vibration impact signals as derived from either 
kernels or small in-shell nuts was developed as follows. First, the raw accelerometer 
signals from 100 kernels and 100 in-shell nuts (the training set of samples) were saved to 
a compact flash card for off-line analysis. Examples of these signals are shown in Fig. HTU2UTH. 
Note that the higher maximum signal amplitude for the in-shell nut of Fig. HTU2UTH is merely 
coincidental. In fact, mean centered maximum signal amplitudes ranged from 400 to 
1200 A/D counts with kernels having slightly higher mean maximum amplitude (755) 
than in-shell nuts (690). The high variability in signal amplitudes was addressed by 
dividing each point in the mean centered signal by the maximum value in each signal. 
This normalization gave each signal a range from −1 to 1. Next, the gradient of the 
signals were computed using a gap of ±1 data point as shown in Eq. 1:  

 (1)
where Gradient(x) is the absolute value of the gradient at sample number x computed 
from the normalized signal (Nsignal) at points x−1 and x + 1. Finally, a 50 bin 
cumulative histogram was computed for all gradient values, giving a mapping that counts 
the cumulative number of observations in all of the bins up to the specified bin. The 



maximum histogram gradient was 0.5 so each bin value represented a 0.01 step in 
gradient value. All gradient values greater than 0.5 were clamped to 0.5 in order to reduce 
the number of histogram bins. Gradient values greater than 0.5 only occurred at one 
instance in the 100 in-shell nuts analyzed, and did not occur in any of the 100 kernels.  

 
Fig. 2 Example mean centered accelerometer signals from a pistachio kernel and an in-shell nut  

 
Average cumulative histograms for in-shell nuts and kernels are shown in Fig. 3. Kernels 
show a higher percentage of low gradients (less than 0.2) while in-shell nuts have higher 
counts of gradient values between 0.2 and 0.4.  

 
Fig. 3 Average cumulative histograms of gradient values for pistachio kernels and in-shell nuts  

 

An iterative stepwise discriminant analysis routine was used to determine the best subset 
of the cumulative histogram bins for use as features for deriving a decision boundary 
between kernels and in-shell nuts in the feature space. All data points were used in the 
selection of features and the computation of group means and covariances. The resulting 
decision algorithm thus consisted of the discriminant function (decision boundary) in the 
feature space into which the gradients extracted from each signal to be classified were 
input.  



After signal processing, feature extraction, and programming of the decision algorithm 
onto the controller board, the performance of the discriminant function was validated by 
processing a separate set of 1,000 samples with the sorting device. This validation set of 
samples was made up of 10% in-shell nuts and 90% kernels. Samples classified as in-
shell were diverted to a separate stream through the activation of an air valve (35A–
AAA–DDBA–1BA, Mac Valves, Inc., Wixom, Mich.). The error in the sorting 
experiments can be divided into two sources: the algorithm itself and the routing of the 
samples into the intended stream. The computation speed of the controller board is such 
that throughput rate is not an issue in the classification stage. However, high throughput 
rates produce errors in the diversion process when more than just the intended sample is 
diverted due to close packing of the nuts. Reducing the duration of the air blast to 
compensate for high throughput requires precise timing and can result in the sample not 
being diverted as intended. To determine the effect of throughput on accuracy, the 
validation samples were processed at rates of 10, 20 and 40 nuts per second and the 
subsequent sorting accuracies were tabulated. Rates were adjusted by adjusting the 
vibration frequency on the feeder to have a desired rate based on a previous 2,000 nut 
count sample used for calibrating the feeder. For each throughput rate, the experiment 
was replicated 10 times with the same validation samples. The average and standard 
deviation of the sorting accuracies were computed.  

In addition, a separate trial was conducted in which 100 in-shell nuts and 100 kernels 
were processed at a rate of approximately one every 3 s. This allowed the accuracy of the 
decision algorithm and the physical diversion process to be determined separately. This 
experiment was also repeated 10 times and the average and standard deviations 
computed. Algorithm error and handling error were thus determined, compared, and 
discussed.  

 
Results and discussion 
The stepwise discriminant procedure selected the cumulative histogram features at bins 
representing gradients of 0.04 and 0.24 as giving the best separation in feature space. 
Discriminant functions comprising 3 or more features did not improve classification 
accuracy over two features. Figure 4 confirms that kernels have higher gradient counts of 
magnitude less than 0.04 and in-shell nuts have higher gradient counts at of magnitude 
less than 0.24. This was to be expected as the vibration signal induced by kernels is much 
smoother than that from in-shell nuts. Smoother signals tend to have a higher occurrence 
of small slopes between data points (gradual vs. abrupt transitions).  



 
Fig. 4 Scatter plot of selected histogram features. The solid lines are the classification boundaries 
specified by Eq. 2. The dashed line is the decision boundary from the discriminant function. Data 
from the training set only  

 

A scatter plot of the two features extracted from the training set is shown in Fig. 4. The 
linear discriminant analysis results using these two features gave 94% accuracy for in-
shell nuts and 99% accuracy for kernels. However, the accuracy for this sample set can 
be improved slightly using a non-linear decision boundary (Eq. 2).  

Classify as in-shell if:  

 

(2)

where G(0.04) is the number of data points having a slope of 0.04 or less and G(0.24) is 
the number of data points having a slope of 0.24 or less. Using Eq. 2 as the decision 
boundary improves accuracy to 98% for in-shell nuts and 100% for kernels on the 
training set.  
The signal processing algorithm and classification scheme defined by Eq. 2 was 
programmed onto the controller board for real time sorting. The signal was stored into 
on-board random access memory after triggering. After 250 points were collected, the 
signal processing and classification was performed. The post signal acquisition 
processing time was 4 ms. Since nuts were traveling at a speed of about 2 m/s upon 
impacting the plate, they would only travel 8 mm in the time it takes to process the 
signal. Results from the sorting experiments where nuts were fed at throughput rates of 
10, 20, and 40 nuts/s are shown in Table 1.  
Table 1 Average sorting accuracies with standard deviations from ten sorting trials comprising 
100 in-shell nuts mixed with 900 kernels  

Feed rate (nuts/s) Nut type 
10 20 40 



Feed rate (nuts/s) Nut type 
10 20 40 

Kernel 95 ± 2% 95 ± 2% 89 ± 4%
In-shell 90 ± 3% 90 ± 4% 84 ± 7%

Regression analysis confirmed a correlation between the feed rate of the nuts and the 
classification accuracy (R 2 = 0.94 for kernels and 0.91 for in-shell nuts). The cause of 
this correlation is presumably close packing of the samples so that more than just the 
intended sample may be diverted by a single activation of the air nozzle. Since the nozzle 
is activated upon detection of an in-shell nut, the amount of error to be expected is 
dependant on the frequency of occurrence of an in-shell nut in the kernel stream. Here, 
the validation sample set comprised 10% in-shell nuts, which is an artificially high 
number. Typically, this is expected to be less than 1% and thus the error rate would be 
reduced. Clearly, when processing a stream of pistachio kernels with high in-shell 
content, reducing the throughput rate would be recommended for best results.  

Table 2 shows the observed classification accuracies for very low throughput rates, which 
represents the accuracy of the algorithm. Also shown is the diversion accuracy. The 
classification accuracy and physical diversion accuracy for kernels were 99 and 98%, 
respectively. While these two mean values are not significantly different, it indicates that 
about 1% of kernels bounce sideways upon impacting the plate and are diverted to the in-
shell stream, even though the air valve is not activated. Also shown in Table 2, it appears 
that approximately 5% of the in-shell nuts are not properly diverted by the air valve. This 
type of error is typical of most sorting machines. About half of the misclassified in-shell 
nuts in this study were observed to either have thin, soft shells, or small shells not 
covering the entire kernel. Hence the nut may have been oriented so that only the kernel 
portion impacted the plate.  
Table 2 Average classification accuracy ± standard deviations and classification plus physical 
diversion accuracy for nuts fed slowly, at an approximate rate of 1 every 3 s  

Nut type Classification accuracy Classification + Physical diversion accuracy 
Kernel 99 ± 1% 98 ± 2% 
In-shell 96 ± 1% 91 ± 1% 

Small in-shell nuts are currently sorted from the kernel stream using commercially 
available dual-band NIR sorters. These have been shown [1] to have better than 99% 
accuracy if equipped with the proper optics. However, these devices cost in the 
neighborhood of $50,000 per channel. The cost of the parts for the system described here 
was approximately $2,000 per channel, and the accuracy of the existing technology can 
be matched by performing a second sorting pass with the new system. Finally, in certain 
cases the new system is expected to detect heavily stained in-shell nuts that are fooled by 
existing technology which rely on color for detection.  

 



Conclusion 
A system has been developed to separate in-shell pistachio nuts from kernel processing 
streams based on the vibration induced on a plate from an impacting nut. The system was 
tested at throughput rates of 0.33, 10, 20, and 40 nuts per second. Sorting accuracies for 
in-shell nuts ranged from 96 to 84% with a strong correlation between accuracy and rates. 
Sorting accuracies for kernels were 99% for the lowest throughput rate of one nut every 
3 s, 95% at 10 and 20 nuts/s, and 89% at 40 nuts/s. Cost for all parts in the system was 
approximately $2,000. The low cost and ability of the system to detect heavily stained 
nuts that are often fooled by color or dual band NIR sorters suggest this system may be a 
useful addition to existing equipment to help deliver kernel product free of in-shell nuts.  
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