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ABSTRACT

A machine vision system capable of performing identification of corn kernel profile for shape and
oreakage was developed for automated grain quality inspection. The profile of corn kernel was resampled
into a sequence of one-dimensional digital signals from its binary image. Shape parameters were selected
Oy analyzing the kernel profile and were sent into a machine learning algorithm to train for a shape
mempership function of broken versus whole kernel status. This system provided successful
£93% and 91% for whole and broken kernels, respectively.
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INTRODUCTION

The profile shape of corn kernel is very important for both variety classification and quality
nspection involving the detection of broken versus whole kernel status. Presently, the classification of
the profile shape of corn kernel is rarely performed because it would involve tedious human inspection
and would require highly trained inspectors. The inspection for corn quality, e.g. kernel breakage, is

ime consuming process even on relatively small 50 gram samples. Such tests will not be useful

classification and quality inspection system, high-speed real-time classification of profile shapes of corn

(SRS

xernels is 2 fundamental requirement.

Machine vision has long been used to extract profile shape features of the grain kernel for variety
classification and quality inspection. Zayas er al. (1985, 1986, 1989) used machine vision system to
extract the morphological profile shape features and used these features to discriminate wheat classes and
varieties with a correct classification rate of over 80% for most wheat varieties. They used shape features
like kernel dimensions (Iength, width, erc.) and a kernel dimension-based profile shape descriptor. Lai

(1986) used similar techniques to extract morphological profile shape features from cereal grain
ernels and to identify cereal seed types by their profile pattern. Sapirstein er al. (1987) and Neuman

(1987) classified cereal grains using the morphological profile shape features of the grain which
extracted trom digitized binary images of grain. Features such as kernel geometric dimensions and
iTier spectrum profile descriptors were used as classification criteria. Ding er al. (1990) used a set
of 1 symmetry factors along the principle axis of corn kernels to classify the corn kernel breakage
along the edge area. It was reported that the profile symmetry method correctly classified approximately
88% of both whole and broken kernels. Zayas er al. (1990) used a set of morphological parameters to
discriminate whole corn kernels from broken corn kernels. Statistical discriminant functions from SAS
procedurss were used to perform shape discriminant analysis. The results shown that the corn kernel
morphological parameters could accurately discriminate whole kernels from broken kernels.
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and reliable kernel profile shape classifier was needed. The classifier requires a
nrofile shape features and shape categories of the kernel to learn an accurate profile

: or membership function). The relationship between shape features and shape
< and not describable with one or two simple parameters or discriminant functions
ires contain high-level background noise due to data collecting and processing
continuous real number attributes. Such a relationship would be difficult to learn

A neural network classifier was used to learn the relationships between kernel shape features and

kernsl shape categories. Neural networks are capable of learning concepts that are not linearly separable
¢h dealing with uncertainty, noise, and random situations. Neural networks have been used to

2 classify the shape differences of agricultural products. Brandon er al. (1990) used a
rpropagation paradigm to build a neural network classifier for carrot tip shape classification into
classifier learned from the carrot tip shape features by counterpropagation. The

rier coefficients of the kernel profile for the crown end kernel sides as shape features. Their
-ark corn kernel whole/broken classifier was built from the neural network model and had a
succassful classification rate of 95% for both whole and broken kernels.

OBJECTIVES

The objective of this research was to develop a neural network-based corn kernel profile shape
discrimination svstem which could accurately classify different kernel shapes for determining broken

1

versus whole karnel status.

MATERIALS AND METHODS

Image Acquisition
Image Svstem: A Matrox Electronic System Ltd. Model Image-1280 real-time image processing

board' and a Image-RTP real-time processor were used to collect images from a SONY Model XC-711
CCD RGB 768(H) x 493(V) color camera which included a C-mount adapter to support a Micro-Nikkor
£/2.8 55 mm lens. The image processing board included a TMS34020 local central processing unit

{CPU). a color digitizer with a resolution of 1024 x 1024 pixels with 8-bit/pixel for each RGB color

‘our frame buffers with 1024 x 1024 pixels with 8-bit/pixel each, and a 64K 24-bit statistical
UT; and an 8K 16-bit neighborhood processor LUT. The real-time processor included
ic unit (ALU) processing element, a statistical processor, and a neighborhood processor.

names are mentioned in this publication solely for the purpose of providing specific
ention of a trade name, proprietary product or specific equipment or company does not
antee or warranty by the University of Illinois and does not imply approval of the name
= exclusion of other products that may be suitable.
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! The whole corn kernel was segmented from the background and the quality-related regions
ware isolatad from the corn kegnel by shresholding spocific components of either red, green, and blue

awration tensity (HSI) images. Only the green image was used in this research.
rnel and the quality-related regions were binarized, labeled and stored in separate regions

of interest (ROD on the same frame buffer of the image board for further analysis.

Lilumination: A cylindrical lighting chamber internally coated with a flat white enamel paint was
&d o provide ditfuse reflected light to specimens within the chamber, Casady and Paulsen, (1989).
Light was provided by two GE EYC 75W quartz halogen bulbs operated at 10.0 V DC which provided
& color temperature of 3200°K. The bulbs were driven by a Brute IT 600 regulated DC power supply
capabie of providing an output voltage deviating by less than +0.1% from the set point under varying
voitage input conditions of 105 to 130 V AC.

Standardization: Standardization for geometric size and for color was performed. Digital images
vere represented by an array of pixels. Each pixel was rectangular in shape, but was not a clearly
specified size. Each pixel represents a certain amount of distance in the horizonal and vertical direction
mage. To calibrate the system, a rectangular aluminum plate, which was 1 cm x 2 cm, was placed
T the camera and compared to the numbers of pixels in length, width, and area for an image of the
Calibration factors with units of mm/pixel were determined for the row length and column length
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Similariy. a calibration factor with units of mm?®/pixel was calcuiated to represent the
te area occupied by each pixel. The camera f-stop value was set to a point mid-way between
and + and the distance from the camera lens to the kernel surface was maintained constant at 180 mm
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View of Objects: The view of maize kernels from a camera is limited to a fixed direction. With
camera and fixed camera position, a machine vision system views oniy a limited region of the
ace of a kernel. For dimension measurements, maize kernels were measured alternately with the
rm side up or down. Kernels were placed individually on a dark blue background of smooth glass
the camera and were turned manually.
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Kernel Profile Shape Descriptions
Based on domain knowledge of corn kernel shape related to whole or broken kernel status, 34
morphological features were selected for kernel profile shape description. These shape features of a corn
included 16 local maximum curvatures along the whole perimeter, 13 Symmetry ratios along the
MaJOr axis, 3 aspect ratios of the kernel, 1 roundness ratio of the kernel, and 1 for area in pixels of the

kernei.

Local Maximum Curvatures: The corn kernel edge was sampled from binarized corn kernel
imagss. The one-dimensional profile signal was the distance from the centroid of the kernel to the kernel
at 2 constant sampling angle, A6, and Af = 2x/N, where N is the total number of sampling points
along the kernel edge. Figure I. N = 128 was used for the whole kernel.

The first edge sampling point was found by searching with the fast lire 2>.ching Bresenham
algorithm, Hegron (1988), along the direction at § = 0, which was 7/2 (90°) from the longitudinal axis
(major axis) of the kernel image. Then the next edge point was found by searching in the neighborhood
of the pravicusly found edge point after moving a counterclockwise angle increment of A§. The sampling
procedure was continued until the whole perimeter was sampled. The sampled kernel edge, p(k), was
split into 16 segments starting at k = Q according the initial experiment results. The curvatures at each
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kernel perimeter were calculated by the function:

sampling point on the

cpm]  [Ep®]|
gl < R g
iK 4K

Where k = 0. 1. 2. ..., N-1: x(k) is the curvature at the sampled edge point p(k); px(k) and p,(k) are the
x- and v-coordinate positions of the sampled edge point p(k), respectively. The 16 local maximum
curvatures were found from each of the 16 kernel edge segments.

Figure 1. Corn kernel centroid, axes, and edge points sampled.

Syvmmetrv_Ratios: The symmetry ratio along the major axis was defined as the ratio of the
distance from the kernel centroid to the sampled edge point i, p(i), to the distance from the kernel
entroid to the sampled edge point ], p(j). The sampled edge point i and j were located on opposite sides
+f the major axis, respectively, and had the same angle between the major axis. Based on the initial
gxperiment results, 13 pairs of sampled edge points were used to calculate the symmetry ratios and these
0 and were equally distributed towards the crown and tip cap end,

(9]

O

points were chosen starting at k =
respectively.

Other Shape Features: The area, aspect ratios, and roundness of a kernel were also used to
describe the profile shape of the cormn kernel. The kernel size was obtained directly from the object area
exiracted by the primitive feature extraction algorithm. The aspect ratio was defined as the ratio of the
length of the major axis to the length of the minor axis which was perpendicular to the major axis. In
this reszarch, three minor axes were used. One minor axis passed through the kernel centroid, and the
other two axes were located on each side of the centroid at equal distances from the centroid
epproximately 1/4 of the major axis length). The roundness was defined as the ratio of the kernel area
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t0 the kernel perimeter. These features were calculated by using previously developed feature extraction
algorithms (Paulsen er af.. 1992) and sent to the host computer as the input of a neural network classifier.
The neural network classifier used was a multi-layer feed-forward network. It had one input layer, one
output layer, and two hidden layers. The detailed structure of the neural network classifier is given in

(e following two SSCuons.

Backpropagation (Neural Learning)

Backpropagation was used as neural learning algorithm to build the neural network classifier for
corn kernel profile shape classification. Backpropagation, also called the generalized delta rule
(Rumelhart er al.. 1986), is a well-known procedure and has been tested on several large-scale problems
(Sejnowski and Rosenberg, 1987; Tesauro and Sejnowski, 1989).

The= backpropagation training algorithm is an iterative gradient algorithm designed to minimize
he mean square error across all of the actual outputs of a multi-layer network and all of the desired
outputs. The backpropagation training algorithm is given as follows:

Initialize all weights and node offsets to small random values,
WHILE (error > desired error) OR (epochs < assigned epochs) DO
Present input vector and desired output vector;
Calcuiate actual output vector;
Adjust weights for all patterns (input/output pairs).

The actual output of the multi-layer network is given in Equation 2:

i

0 .=
T+ exp( _(Z Weilpt + O ) -

_ is the output of node j in layer k for pattern (input/output pair) p, O,y is the output of node

Pt

i in laver k-1 for pattern p, w,; is the weight connecting node i in layer k-1 to the node j in layer k, 6

» runable threshold or bias for node j in layer k. The weights of each node are adjusted after

The desired neural network was iteratively trained on a set of training exemplars until the
tolerance range of the mean square error was reached. The neural network classifier was obtained by
building a software neural network simulator from the weights of the learned network by using the

relationship of Equation 2.

Corn Kernel Shape Identification
To build the neural network classifiers, 450 corn kernels from the commercial market channel

ampled as a training set. These 450 kernels included 226 whole kernels and 224 broken kernels.
whole kernels included 54 large round kernels, 37 small round kernels, 55 long flat kernels, 50 short
rnels, and 30 small flat kernels with sharply pointed tip cap ends. The broken kernels included
kernels with crown tops broken, 70 kernels with longitudinal breaks, and 50 kernels with tip cap ends
broken. The morphological profile shape features of each kernel were extracted both with the germ side
up and with the germ side down using the real-time feature extraction algorithms and saved, associated
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with its shape category, into a file for future training. In this research, three neural network classifiers
were built from the same training set. The neural network classifiers included whole kernel shape
classifier. broken kernel shape classifier, and whole/broken kernel classifier.

Shape of Whole Kernels: Five profile shape categories were defined for the whole corn kernels.
The whole kernsl categories included large round kernels. small round kernels, long flat kernels, short
Sa: kecnels. and small flat kernels with sharply pointed tip cap ends. A four layer neural network (Figure
=\ which had 34 input nodes (34 shape features), 5 output nodes (5 whole shape categories), 80 nodes
the first hidden laver, and 24 nodes for the second hidden layer, was trained to build the whole kernel

Shaps of Broken Kernels: Three profile shape categories were defined for the broken corn
\ernels: crown tops broken, longitudinal breaks, and tip cap ends broken. The crown tops broken was
the most frequendy occurring broken category and included flat crown broken, angular crown broken,
and minor crown damage. A four'layer neural network (Figure 2), which had 34 input nodes (34 shape
atures), 3 ourput nodes (3 broken shape categories), 80 nodes for the first hidden layer, and 24 nodes
- the second hidden layer, was trained to build the whole kernel shape classifier.

Whole Kernels versus Broken Kernels: For corn kernel breakage inspection, two shape categories
were defined, whole and broken. A four layer neural network (Figure 2), which had 34 input nodes (34

shape fearures), 2 output nodes (whole and broken kernel categories), 80 nodes for the first hidden layer,

Quidds

snd 24 nodes for the second hidden layer, was trained to build the whole kernel shape classifier.

Hidden layer 1
(80 nodes)

Hi%ien ]gyer 2
k) Output Layer

(5, 3, or 2 nodes)

Shape features Corn kernel
s PO shape
Sgg?hms . categories

The flows chart of the neural learning and corn kernel profile shape classification procedures is

i
given in Figure 3.
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Figure 3. Procedure for neural learning and corn kernel shape classification.

RESULTS AND DISCUSSION

To test the neural network-based machine vision corn kernel profile shape classification system,
thres corn varieties. Variety 1, Variety 2, and Variety 3, were used in this research. Variety 1 was from
+n unknown hard corn variety. Variety 2 was from commercial corn samples. Variety 3 was from an
unknown soft corn variety. Comn kernels were presented under the camera individually with either germ

de down or up. The morphological shape features were extracted with the real-time feature extraction
O

rithms and put into an array as the input vector of the neural network classifier.
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Shape of Yhole Kernels
Whole kernels from the three corn varieties (Variety 1, Variety 2, and Variety 3) were tested
ing the neural network whole kernel profile shape classifier. The kernels were separated into five shape
tegories, large round, small round, long flat, short flat, and small flat with sharply pointed tip cap ends
1 human inspactor according to their profile shapes. Then, kernels were randomly selected from each
jape. Category; and 80. 40, 80, 80, and 40 kernels were selected for the large round, small round, long
ort flat, and small flat with sharply pointed tip cap ends shape categories, respectively. The

ssification results of the machine vision system are given in Table 1.
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Basad on the kernel profile morphological features, the whole kernel neural network profile shape
classifier had an accuracy rate 0f 93%, 94%, 96%, 95%, and 94% for large round, small round, long
fAat. short flat. and small flat with sharply pointed tip cap ends for whole kernel shapes, respectively.
The false classification among the shape categories was caused by the similar profile shape of a few
vernsls which crossed into other shape categories. For example, some kernels in the large round and



short flar categories had exactly the same profile if their kernel thickness was not measured. The false
1

a
lassifications could be reduced by adding another camera (side view of the kernel) in the vision system
and adding shape features from xernel side view to the neural network classifier.

Table 1. Accuracy of Whole Kernel Profile Shape Classification Using a Neural Network Classifier.

LR SR E SE S8
Variety L
Classified as LR 74 0 0 0 0
Classified as SR 0 38 0 0 3
Classitied as LF 1 0 i 2 0
Classified as SF 5 0 2 78 0
Classitied as SS 0 2 1 0 37
Variaty 2:
Classified as LR 7D 0 0 3 0
Classified as SR 0 38 0 0 1
Classified as LF 0 0 76 1 0
Classified as SF S 0 2 76 0
Classified as SS 0 2 2 0 39
Variety 3:
Classified as LR 74 0 0 2 0
Classified as SR 0 37 0 0 3
Classified as LF 0 0 7 3 0
Classified as SF 6 0 3 75 0
Classified as SS 0 3 0 0 B
Total classification accuracy  93% 94% 96 % 95% 94 %

Where : LR = large round kernels

SR = small round kernels

LF = long flat kernels

SF = short flat kernels

S5 = small flat kernels with sharply pointed tip cap ends.

The processing time of the whole kernel profile shape classification was about 1.5 seconds from
the live image to the final classification result.

Shape of Broken Kernels
Broken kernels from the three corn varieties (Variety 1, Variety 2, and Variety 3) were tested

using the neural network broken kernel profile shape classifier. The kernels were separated by a human
inspector into three shape categories, crown tops broken, longitudinal breaks, and tip cap ends broken
according to their breakage characteristics. Then, kernels were randomly selected from each shape
category; and 120. 80, and 40 kernels were selected for the categories of crown tops broken, longitudinal
breaks. and tip cap ends broken, respectively. The classification results of the machine vision system are

given in Table 2.
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Based on the kernel profile morphological features, the broken kernel neural network profile
<hane classifier had an accuracy rate 0f93%. 91%, and 92% for crown tops broken, longitudinal breaks,
and tip cap ends broken kernels, respectively. The false classification among the shape categories was

caused by the abnormal breakage shape which made the feature extraction algorithm fail to find the
correct longitudinal axis of the kernel.

¢ 2. Accuracy of Broken Kernel Profile Shape Classification Using a Neural Network Classifier.

Tabl
CTB LB TEB
Variety. 1:
Classified as CTB 114 S 3
Classified as LB 5] 74 0
Classified as TCB 1 1 37
Variery 2z
Classified as CTB 111 ) 3
Classified as LB 6 73 3
Classified as TCB 3 2 37
Variety 3: :
Classified as CTB 110 6 4
Classified as LB 6 72 0
Classified as TCB 4 2 36
Total classification accuracy 93% 91% 92%

Where : CTB = crown tops broken
LB longitudinal breaks
TCB = tip cap ends broken.

The processing time of the broken kernel profile shape classification was about 1.5 seconds from
the live image to the final classification result.

Ui

Whole Kernels versus Broken Kernels

Samples of 180 whole and 180 broken kernels were randomly chosen from the three corn
varisties (Variety 1, Variety 2, and Variety 3), and were tested using the neural network whole/broken
xernel classifier. The whole kernels included an evenly distributed number of large round, small round,
long {lat, short flat, and small flat kernels with sharply pointed tip cap ends. The broken kernels included
an evenly distributed number of kernels with crowns broken straight across the crown end, angular crown
breeks, minor crown breaks, longitudinal kernel breaks, and kernels with tip cap ends broken. The
Slassification results of the machine vision system are given in Table 3.

Based on the kernel profile morphological features, the whole/broken kernel neural network
classifier had an accuracy rate of 93% and 91% for the whole and broken kernels, respectively. The
classification of whole kernels as broken was caused by the abnormal shape of some short thick
kernels (particularly small thick kernels) whose profiles were very similar to those of broken pieces. The
talse classification of broken kernels as whole was caused by kernels with tip cap half missing, which
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- similar ® sher whole smail found %erdels® and kernels with some chips missing but still had
¥ intact profile. These false classifications could be reduced by considering isolation of the exposed
@ starch ared &s 2 broken whole parameter (it was not used in this research since it was not a shape-

ble 3. Accuracy of Whole/Broken Corn Kernel Inspection Using a Neural Network Classifier.

Whole kernels Broken kernels

Variety 1:

Clazssitied as whole 165 17

Classitied as broken 15 163
Variety 2;

Classified as whole 169 15

Classified as broken 11 165
Variety 3:

Classified as whole 167 16

Classitied as broken 13 164
Total classification accuracy 93% 91%

The processing time of the corn kernel whole/broken inspection was about 1.5 seconds from the
live image to the final classification result. The software-" 1sed neural network classifier took about 0.2
second and the time would increase with the increasiug of the neural network size and structure

CONCLUSIONS

Based on the corn kernel morphological profile shape features, the neural network whole kernel
shape classifier provided a successful classification of 93%, 94%, 96%, 95%, and 94% for kernels within
¢ round. small round, long flat, short flat, and small flat with sharply pointed tip cap end shape
categories, respectivelv. The neural network broken kernel shape classifier provided a successful
lassi of 93%. 91%, and 92% for kernels with crown tops broken, longitudinal breaks, and tip
ken, respectively. The neural network whole/broken kernel classifier provided a successful
3% and 91% for whole and broken kernels, respectively.

The processing time for each of the three classifications was about 1.5 seconds from the live
ication result. The software-based neural network classifier took about 0.2
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