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RAPID SINGLE-KERNEL NIR MEASUREMENT 
OF GRAIN AND OIL-SEED ATTRIBUTES

P. R. Armstrong

ABSTRACT. A single-kernel near infrared (SKNIR) instrument was designed and tested for rapid measurement of corn and
soybean attributes. The design was centered on achieving a spectral collection rate of 10 kernels/s, which limited integration
times of the spectrometer to 30 ms. A spectrum of an individual kernel was collected as it slid along the length of a glass tube
and was illuminated by multiple lamps. PLS regression models, developed to predict constituents from spectra, resulted in
models with standard errors of cross validation (SECV) of 0.93% dry basis moisture content (MCdb) for corn, 0.32% MCdb
for soybean moisture content, and 0.99% for soybean protein content. RPD values for these models were 4.4 for corn moisture
content, 7.3 for soybean moisture content, and 4.9 for soybean protein content. RPD values were defined as the ratio of the
standard deviation of the reference data to the SECV for each model. Multiplicative scatter correction improved predictions
for soybean moisture and protein content but not for corn moisture content. These results indicate that reasonable predictions
can be made at fast NIR scan rates.
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se of near-infrared reflectance (NIR) or transmis-
sion (NIT) spectroscopy within the grain industry
is well established for bulk sample measurement
of major constituents. More recent work in NIR

spectroscopy has focused, in part, on single-kernel NIR
(SKNIR) measurement where detection of attributes at this
level can provide more usable information in some applica-
tions. This is particularly true for determining the variability
within grain samples (Maghirang and Dowell 2003), sorting
for particular attributes, or detecting attributes which may
only be present in a small percentage of the kernels (Maghi-
rang et al., 2003).

Previous research encompassed a broad range of SKNIR
uses. Delwiche and Massie (1996) identified wheat class with
good distinction between red and white classes. Delwiche
(1998) generally had good prediction ability of single-kernel
protein content for different wheat classes, with a standard
error of calibration ranging from 0.513% to 0.648%.
Campbell et al. (2000) concluded that corn classes with
unique starch or amylose content could be classified using
near-infrared transmittance spectroscopy. In other applica-
tions apart from constituent measurement, Maghirang et al.
(2003) classified sound wheat kernels and kernels containing
live insects at pupal, large, medium-sized, and small larval
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stages with 94%, 93%, 84%, and 62% accuracy, respectively.
Fumonisin levels greater than 100 ppm and less than 10 ppm
in corn could be accurately classed as fumonisin positive or
negative (Dowell et al., 2002). Wang et al. (2003) used
SKNIR to classify fungal damage in soybeans. Classification
was very good for the fungal species investigated. Classifica-
tion accuracy of healthy beans and those infected with
Phomopsis spp, C. kikuchii, soybean mosaic virus and
Peronospora manshurica (downy mildew) were 100%, 99%,
84%, 94%, and 96%, respectively. NIR and NIT spectrosco-
py were used by Pearson et al. (2001) to distinguish aflatoxin
in single corn kernels.

High-speed optical sorters can perform some of the
functions of multi-spectral instruments, but the gain in speed
generally results in a loss of precision and sorting accuracy.
Pasikatan and Dowell (2004) used a ScanMasterII 200
high-volume color sorter (Satake-USA, Houston, Tex.) to
segregate wheat by protein. This particular sorter is limited
to a binary sort using two wavelengths, one in the visible and
one in the NIR region, but it has a capacity of several hundred
kilograms per hour. Current SKNIR technology has measure-
ment rates of about one kernel per second. At this rate,
measuring and sorting 1 kg of wheat (approximately 30 × 103

kernels) requires more than 8 h. The limitation on speed is
caused by spectra collection times and the materials handling
system. Improving speed would enhance the use of SKNIR
and allow its use for more routine quality analysis and
screening in a broader range of processing applications.

The purpose of this study was to design and test a SKNIR
instrument that has the ability to collect spectra at a rate of
10 kernels/s and assess the prediction ability for common
constituents.  This provides a benchmark for the prediction of
other constituents which may be more difficult to measure.
This work reports on the methods used to collect spectra and
the results of the developed prediction equations for corn
moisture content and soybean moisture and protein content.

U
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MATERIALS AND METHODS
SINGLE-KERNEL NIR INSTRUMENT

The SKNIR system used in this study was designed for
corn, soybeans, and similarly sized biological specimens.
Considerations in the design were presentation of kernels for
spectral viewing and methods to illuminate and scan at a rate
of 10 kernels/s. The physical configuration is shown in
figure 1. Primary components consisted of a light tube used
for illumination of kernels during spectra collection, elec-
tronics used to detect kernels and implement sorting controls,
and a spectrometer for spectra collection. The operational
sequence was as follows. The signal from the photo-switch
pulsed as a kernel fell through it. The signal was fed to an
electronic hardware delay, which then triggered the
spectrometer to collect a spectrum. The spectrum was
collected as the kernel traveled down the light tube and was
transferred from the spectrometer to a PC by a USB interface
where it was displayed and stored. Software was developed
to incorporate various spectrometer controls and hardware to
sort into five constituent categories using developed predic-
tion equations and constituent thresholds entered by the user.
An automated single-kernel feeding and sorting mechanism
is currently being developed.

SPECTROMETER

The spectrometer model used was a CDI 256L-1.7T1
(Control Development Inc., South Bend, Ind.) and incorpo-
rates a 256-element InGaAs photo-diode array, coupled with
a 16-bit A/D converter that spans the spectral range from 906
to 1683 nm. The diode array is thermo-electrically cooled for
stability. Selection of this particular spectrometer was, in
part, due to its ability to interface with a PC and provide close
to real-time control with a set of function libraries via the PC.
Other criteria were that a photo-diode array provides a
relatively simple and fast method to collect spectra and
covers a broad range of the NIR spectrum.

LIGHT TUBE

The light tube was designed to provide a bright and
reasonably constant light source throughout the length of the
tube. Forty-eight miniature lamps were placed in eight rows
along the circumference of an aluminum tube. Rows were
equally spaced radially and lamps were 8 mm apart within a
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Figure 1. Schematic of light tube assembly.

row. The lamps have emission in the visible to infrared range
and are rated at 5 VDC and 0.6 W each (Gilway Technical
Lamp, part 1150, Peabody, Mass.). A glass tube (12-mm
internal diameter), positioned concentric to the light tube,
was used to convey kernels by gravity through the light tube.
Reflectance measurements were collected through a 400-mi-
cron fiber-optic cable (2-m length) positioned at the lower
end of the light tube, with the other end of the cable attached
to the spectrometer input. A 10-mm, circular, boro-silicate
glass window was positioned in front of the fiber end to
protect it from falling kernels.

EXPERIMENTAL PROCEDURES
Kernel residence time in the tube and illumination

intensity of the kernel were considered primary factors in
achieving a measurement rate on 10 kernels/s. Measurements
of residence time, using photo-switches positioned at each
end of the tube, revealed that the residence time ranged from
approximately  50 to 70 ms for kernels hand fed at the
entrance of the tube. This allowed a maximum of 30 ms of
dead time between a kernel exiting the tube and the next
kernel to enter the tube, and a maximum of 50 ms for spectral
readings. The selection of 48 lamps and their placement to
achieve adequate illumination for spectral measurements,
was primarily experimental. A fundamental need was
enough illumination to take fast spectral measurements.
Spectrometer integration time was set by experimentally
determining integration times that resulted in saturation of
the detector and then reducing it until there was no saturation.
The purpose of this procedure was to provide as much signal
as possible to the detector without saturation. Typically, a
40-ms integration time caused saturation for some corn
kernels in the middle region of their spectra, while no
saturation was observed for 30 ms. This was also observed for
soybeans. Spectrometer settings thus used an integration
time of 30 ms with no averaged spectra, i.e. single-spectrum
readings were used. A single spectrum was used because
multiple spectra collection would require too much time
considering the residence time of the kernel in the light tube.
It was possible to set the spectrometer with lower integration
times and take multiple spectra but it was not known if the
latency of the system between spectrum measurements
would have an adverse effect or if multiple spectra would
actually improve spectral measurements. Maximum kernel
velocities were estimated at approximately 1.0 m/s based on
free-fall velocity.

Prior to collection of spectra of kernels, a background
spectrum was taken by blocking the fiber-optic input. The
background spectrum was automatically subtracted from the
measurement spectrum and accounted for dark current in the
spectrometer. Background collection is transparent to the
user as dark current levels are stored internally within the
spectrometer. Background measurements also initiate dis-
crete wavelength correction by the spectrometer and each
spectral point is guaranteed to be within 0.5 nm of the stated
value. Reference spectra were taken by inserting a piece of
cylindrical  Spectralon� (Labsphere, North Sutton, N.H.)
material,  slightly smaller than the diameter of the glass tube,
into the light tube. The Spectralon� piece was stationary for
this operation and was positioned at the midpoint of the light
tube. The reference spectrum represented the 100% light
level for a particular physical configuration and integration
time. The reference spectrum minus the background was
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used by the spectrometer to calibrate individual photo-
diodes. Background and reference spectra were automatical-
ly stored in the spectrometer.

CORN MOISTURE CONTENT

Yellow-dent corn kernels of a single hybrid were condi-
tioned to predetermined moisture contents by determining
their existing moisture content (ASAE Standards, 2003) and
adding the appropriate amount of distilled water to elevate
kernel moisture, or by drying at 35°C to achieve a weight
corresponding to a given dry basis moisture content (MCdb).
Water was added in increments with half the required water
initially sprayed onto the kernels, and the remaining half the
following day. Samples were stored at 3°C for five days to
allow equilibration of water within the kernel. The moisture
content levels used were 8%, 10%, 12%, 14%, 16%, and 18%
with 15 kernels at each level.

Corn kernels were individually hand-fed into the SKNIR
instrument with specific orientation of dent-end or tip-cap
end first. Sample size was 90 kernels for each orientation.
Different kernels were used for the two orientations.
Orientation was maintained as the kernel traveled down the
tube. Different orientations were investigated to determine
their effect on MC prediction. Kernels were then weighed and
placed into indexed drying trays for individual reference
moisture determination and dried (ASAE Standards, 2003).
Because single kernels were used for reference values and no
replicates were possible, the accuracy of the reference
method is not known.

SOYBEAN MOISTURE CONTENT
A single variety of soybeans was conditioned to moisture

contents of 6%, 9%, 12%, 14%, 16%, and 18% MCdb with
20 beans at each level (total n = 120) using a procedure
similar to that used for corn. Five of the 20 beans at each
moisture level were hand selected for their obvious discolor-
ation due to either natural heat or fungal damage. Severely
wrinkled, discolored, and split beans were not used. Unlike
corn, soybeans tumbled down the tube and orientation was
random during spectral measurements. Reference moisture
content was determined similar to corn.

SOYBEAN PROTEIN CONTENT

Spectra for soybean protein content were collected from
three varieties of foundation seed soybeans (KS5502N,
KS4103SP, KS4402SP) obtained from the Agronomy De-
partment at Kansas State University. One hundred beans were
randomly selected from each variety and placed into pill
boxes for identification. Samples were very clean and split or
discolored beans were almost nonexistent in these samples.
Soybeans were hand-fed into the spectrometer and returned
to the pill boxes. Reference values for protein (N × 6.25) was
determined by combustion using a Leco model FP-528
nitrogen analyzer (St. Joseph, Mich.) on individual whole
beans using AACC Method 46-30 (2000). Protein was
adjusted to 13% wet basis MC using the average MC for each
variety. Protein ranged from 29% to 55% with a standard
deviation 4.88% for combined varieties. Average protein for
the varieties KS5502N, KS4103SP, and KS4402SP was
36.8%, 46.3%, and 39.7%, respectively.

RESULTS AND DISCUSSION
Partial least-squares (PLS) regression was used to develop

prediction models for all constituents using GRAMS AI
software (Thermo Galactic Industries, Salem, N.H.). These
models represent the systems potential ability to measure
constituents and are not considered a calibration model for
measurement.  Factor levels used for model selection were
based on the F-ratio which equals the predicted residual sum
of squares (PRESS) at a specific factor level divided by the
minimum PRESS value. Malinowski (2002) describes PLS
regression methods in detail. The factor level of the model
was set by determining the point at which adding a new factor
to the model causes the F-test probability level to fall at or
below 0.75. The F-ratio has been suggested by Haaland and
Thomas (1988) as a better method for model development
when the model will be used to predict future unknown
samples. It provides a more conservative model that
diminishes the possibility of over-fitting data. PRESS and the
reported standard error of cross-validation (SECV) values
were based on cross-validation of the data with one spectral
measurement sequentially removed. Mean centering and
multiplicative  scatter (or signal) correction (MSC) pretreat-
ment of spectra were performed in all analyses. MSC was
examined as a method to reduce spectral variance that was
not attributable to constituents but was caused by light
scattering resulting from kernel movement or illumination
variance as the kernel travels down the tube. Visual
inspection of model prediction residuals did nor reveal any
spectral outliers.

CORN MOISTURE CONTENT PREDICTION

PLS regression yielded prediction statistics for corn
moisture content shown in table 1. Corn moisture prediction
statistics for the dent-end orientation were better than the
tip-cap orientation, as indicated by the SECV and the RPD
value. RPD is the ratio of the standard deviation, SD, of the
reference data to the SECV. Williams (2001) suggested that
RPD values of 2.5 to 3 were suitable for rough screening; a
value of 5 to 8 could be used for quality control, while an RPD
of 8 or higher was excellent. Combined orientation data
predictions were similar to that of tip-cap predictions and
multiplicative  scatter correction adversely affected predic-
tions for each orientation. Beta (regression) coefficients from
PLS regression (fig. 2) were fairly random or noisy with no
pronounced spectral regions influenced by water. Typically
one would expect larger positive or negative coefficients

Table 1. Prediction statistics for corn moisture content. 
All spectra were mean-centered.

Orientation SECV Factors R2 Sample SD RPD n

Corn moisture, %db[a] 0.76 12 0.97 4.17 5.5 90

Corn moisture, %db[a],[b] 0.97 5 0.94 4.17 4.3 90

Corn moisture, %db[c] 1.04 9 0.94 4.07 3.9 90

Corn moisture, %db[b],[c] 1.31 7 0.91 4.07 3.1 90

Corn moisture, %db[d],[e] 0.93 11 0.94 4.11 4.4 180

Corn Moisture, %db[d],[b] 1.33 12 0.91 4.11 3.1 180
[a] Dent-end first.
[b] Multiplicative scatter correction applied.
[c] Tip-cap first.
[d] Combined dent and tip-cap.
[e] Figure 2 shows beta coefficients from the prediction model.
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Figure 2. Prediction model beta coefficients for corn moisture content us-
ing nine PLS factors. Mean centering applied.

in spectral regions of strong water absorption. The worst-case
consequences of this are that the prediction model may work
adequately on the sample set used to derive it but may not
extend as well for other samples.

SOYBEAN MOISTURE CONTENT PREDICTION
PLS regression statistics (table 2) using all beans (n = 140)

and excluding the five discolored beans at each moisture
content (n = 105), showed slight improvements when
discolored beans were removed. As opposed to the case for
corn moisture, MSC improved prediction accuracy. SECV
values ranged from 0.32% to 0.47% MCdb depending on the
sample and spectral pre-treatment. Lamb and Hurburgh
(1991) found standard errors of prediction (SEP) for
wet-basis soybean moisture content (MCwb) prediction to be
between 0.65% and 0.69% for spectra obtained by transmit-
tance. It is difficult to directly compare this work with the
previously cited work as samples were entirely different. The
instruments for spectra collection also used different wave-
length ranges and may also have had significant noise and
sensitivity differences. It is apparent, however, that the
prediction accuracy was of the same order. Beta coefficients
had more pronounced absorption regions compared to corn
results (fig. 3). Regions such as 950 to 975 nm and 1400 to
1450 nm are associated with water absorption.

SOYBEAN PROTEIN CONTENT PREDICTION
Predictions statistics from PLS regression (table 3)

showed reasonable predictive ability for soybean protein for
both individual varieties and using combined varietal data.
Some spectra had irregular absorption behavior in the region
of 906 to 920 nm. Predictive statistics were modestly
improved when this region was removed from the PLS
analysis.

Table 2. Prediction statistics for soybean moisture.[a]

Treatment SECV Factors R2
Sample

SD RPD n

Soybean moisture, %db[b],[c] 0.47 12 0.98 3.38 7.20 140

Soybean moisture, %db[b],[c] 0.34 8 0.99 3.38 9.99 140

Soybean moisture, %db[b] 0.46 12 0.98 3.38 7.30 105

Soybean moisture, %db[b],[d] 0.32 8 0.99 3.38 10.5 105
[a] All spectra were mean-centered.
[b] Multiplicative scatter correction applied.
[c] Discolored seeds included.
[d] Figure 3 shows beta coefficients from the prediction model.
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Figure 3. Prediction model beta coefficients for soybean moisture content
using eight PLS factors. Mean centering and multiplicative scattering ap-
plied.

Prediction statistics were improved in each case by MSC.
It is not apparent why this consistently helped predictions for
soybeans. Mathematically, MSC can eliminate some of the
spectral noise caused by sampling methods. In relation to the
system used in this study, kernel position and speed should
result in considerable variations of light scattering. Delwiche
(1998) found MSC similarly helpful for wheat protein
content prediction and stated it was used to reduce the effects
of kernel size. The effect of MSC on original spectra (fig. 4)
is shown in figure 5 for the case of predicting combined
soybean data. This shows the typical behavior of reducing
variance between spectra. Beta coefficients for the prediction
model built from the MSC spectra (fig. 6) show wavelengths
regions of particular influence on the model (1146, 1190,
1233, 1300, and 1396 nm), but there is also randomness of
beta coefficients in certain regions. Wavelengths at 1145 and
1190 nm correspond to wavelengths described by Williams
(2001) as protein absorption wavelengths.

When comparing results in this study with other SKNIR
methods, Abe et al. (1996) found the SEP for single soybean
protein content to be 0.67% for spectra collected from 800 to
1100 nm in a transmittance. Spectral measurements were
averaged from two directions of measurement. Teuku et al.
(2002), also using the transmittance mode from 700 to 1100
nm, obtained SEP values ranging from 1.32% to 1.82%
protein content for different modeling methods. Again, as for
soybean moisture content prediction, the accuracy obtained

Table 3. Prediction statistics for soybean protein 
from PLS regression analysis.[a]

Variety, Data Treatment SECV Factors R2
Sample

SD RPD n

KS5502N 1.03 8 0.86 2.87 2.8 100

KS5502N[b] 0.81 9 0.91 2.87 3.5 100

KS4103SP 1.25 16 0.86 3.35 2.7 100

KS4103SP[b] 1.04 10 0.90 3.35 3.2 100

KS4402SP 0.98 7 0.83 2.22 2.3 100

KS4402SP[b] 0.79 8 0.88 2.22 2.8 100

Combined data 1.46 8 0.91 4.88 3.3 300

Combined data[b],[c] 1.01 10 0.96 4.88 4.8 300

Combined data[b],[d] 0.99 10 0.96 4.88 4.9 300
[a] All spectra were mean-centered.
[b] Multiplicative scatter correction applied.
[c] 910-1683 nm spectral range used for model development.
[d] Figures 4, 5, and 6 show original and MSC spectra and beta 

coefficients from the prediction model.
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Figure 4. Absorbance spectra for soybean protein predictions before mul-
tiplicative scatter correction applied. Absorbance calculated from reflec-
tance (log (1/R)).
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Figure 5. Absorbance spectra for soybean protein predictions after multi-
plicative scatter correction applied. Absorbance calculated from reflec-
tance (log(1/R)).
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Figure 6. Prediction model beta coefficients for soybean protein content
using 10 PLS factors. Mean centering and multiplicative scattering ap-
plied.

from this study is of the same order as cited literature. In other
work, Velasco et al. (1999) obtained an SECV value of 0.94%
for protein content in rapeseed which had a sample mean
protein content of 21.1 ± 3%. Delwiche (1998) obtained SEP
values for wheat protein content of 0.46% to 0.72%.

It was generally believed that this SKNIR system would
perform better for soybeans than for corn, because spectra
from the beans are a composite signal from various views as
they tumble down the tube. Corn, however, maintains
orientation as it travels down the tube, and spectra are
believed to be comprised primarily of views of the tip-cap or
dent-end. This belief seems justified from the results when
comparing moisture predictions between soybeans and corn.

For corn moisture predictions, the tip-cap end can contain
various fractions that can have significantly different chemi-
cal compositions. The predominant portion of the tip-cap is
the pedicel, which is the attachment point to the cob. This
contains the hilar layer, which can become brown or black
depending on kernel maturity and could cause much
variation in spectra. The dent-end, however, is predominant-
ly soft endosperm and should be more consistent in chemical
composition. For corn, predictions could probably be
improved by collecting a spectrum from areas of the corn
kernel which are of constituent interest or from gathering a
composite spectrum. This might be achieved by placement of
multiple fibers along the length of the light tube.

It is anticipated that the long-term performance of the
instrument will be affected most by lamp degradation and
contamination  of the glass tube surface by dust and abrasion.
The degree to which this occurs and its affects need to be
addressed. The instrument physical configuration and mate-
rials can be modified which can affect optics and kernel drop
speed. The effects of these will cause changes in spectra. For
applications such as sorting for specific trait characteristics
in grain and oil-seed breeding programs, long-term stability
may not be as critical as predictions models are often
developed on the same material to be sorted and sorting
completed in a short time frame. However, the use of the
instrument for quality control in industry would require
stable instrument performance.

CONCLUSIONS
The system’s predictive performance proved to be

adequate for screening of corn moisture content with RPD
values ranging from 3.1 to 5.5, and for soybean protein
content with RPD values from 2.3 to 4.9. Soybean moisture
prediction content was more quantitative with RPD values
ranging from 7.2 to 10.5. Multiplicative scatter correction of
spectra improved prediction of soybean moisture and protein
content but not corn moisture content. Different methods for
spectral measurement of corn kernels should be examined to
improve corn moisture results by reconfiguration of the fiber
optics. Spectral measurement at 10 kernels/s appears to be
feasible based on these prediction statistics, but material
handling methods for delivery and sorting of kernels need to
be developed.
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