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Application of a Discrete Mixing Model to the Study of Mixing

of Multicomponent Solid Particles

Fang S. Lal*" and Liang T. Fan

Department of Chermical Engineering, Kansas State University, Manhatian, Kansas 66506

A discrete steady-state Markov chain model of the solids mixing process in a multicomponent homogeneous
particle system is propesed. Particles in a homogeneous particle system have identical physical properties and
are distinguishable only through the characteristics of tracers. The variances of sample compositions at tpe
completely randomized and the completely segregated states are derived from the model. The degree of mix-
edness based on variances is defined from these two reference limits. The model can predict the concentration
distribution of the degree of mixedness of a muiticomponent homogensous particle system blended by passing
through a motionless mixer, fram prior knowledge of one-step transition probabilities. These transition probabili-

ties can be obtained from mixing experimen

ts with binary homogeneous particle systems of the same size,

density, and shape as those in the multicomponent systems. The experimental results of mixing a three-com-
ponent homogeneous particle system in motionless mixers are in good agreement with those predicted from

the model.

1. Introduction

This study is concerned with a stochastic approach to
the mixing of multicomponent solid particles. In the past
such an approach has been applied only to the mixing of
two-component particle systems. In mizing solid particles,
a mixed state is usually attained through the motion of
particles induced by the contact between particles and
mixer. Mixers may be in motion (e.g., rotating drum mixer)
or motionless (e.g., reversed helices mixer).

It is well known that several predominating mechanisms,
shear, and bulk motion of particles (convective mecha-
nism), act on particles and eventually lead to a random
state of the particles in a mixer (Lacey, 1954). In his study
of a two-component homogeneous particle system in a
drum mixer, Lacey (1943) described the phenomenon of
mixing by simulating it mathematically as a diffusional
process. Such a simple approach is not applicable to a
mixer in which several mechanisms predominate. The
deterministic governing equations that describe the mixing
process in such a mixer are usually too difficult to solve.
Incue and Yamaguchi (1969) used a stochastic approach to
the study of solids mixing in a V-type mixer. They consid-
ered the mixing process as a steady-state unrestricted sim-
ple Markov process {first-order Markov chain). This sto-
chastic approach was also applied by Chen et al. (1972) to
their study of the mixing of a binary homogeneous mixture
by passing through a motionless mixer. A binary homoge-
neous particle mixture contains two groups of particles
with the same size and density but with different colors.

Due to their simplicity, binary systems have been stud-
ied most often by researchers in the field of solids mixing.
Relatively little has appeared in the literature on the mix-
ing of polynary (muiticomponent) systems (see definition
in section II). Development of a stochastic model for the
mixing of a polvnary homogeneous (or nonsegregating) par-
ticle system is the subject of this paper. A tertiary or three-
component system is experimentally studied to verify the
model. One of the advantages of the present stochastic ap-
proach is that the Markov process can be applied to almost
any class of mixers and the design complication of a mixer
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does not create much difficulty in the use of this approach.
The approach can be extended easily to segregating materi-
als (different size, different density, etc.).

Through high-speed photography Chen et al. (1972) were
able to observe the operation of several mixing principles in
a motionless mixer. They are (1) multiple division and
combinations of the flow of particles, (2) interaction of the
particles with other particles, the helices, and the wall of
the mixers, (3) change in the direction of the flow of parti-
cles, and (4) difference in the velocity profile of the parti-
cle. It can be expected that all these mechanisms (diffu-
sion, convection, and shear) of the solids mixing are present
to some extent, in the motionless mixer empioyed in this
work.

II. Classification of Solid Particle Systems

A convenient and consistent scheme for classifying parti-
cle systems should be established to facilitate the investiga-
tion of the mixing of solid particles. Particle systems may
be classified into three general classes, unitary, binary, and
polynary. However, a unitary class which consists of only
identical particles does not come into the picture in consid-
ering the mixing process. A binary particle system contains
two different types of particles while a polynary particle
system contains more than two different types. Each type
of particle system can be further divided into two subclass-
es, homogeneous and heterogenous. A homogeneous sub-
class has the same physieal properties and is distinguish-
able through the characteristics of tracers, for example,
color, radicactivity, etc. Here materials with physical prop-
erties which do not interact with the operation of a mixer
are considered tracers, On the other hand, a heterogeneous
subclass has different physical properties, such as size, den-
sity, and shape. For example, a particle system containing
four distinctly different combinations of size and density is
called a four-component or polynary heterogeneous parti-
cle system. The particle system employed by Lacey (1954)
which contained identical particles distinguishable only by
color (black and white) was a two-component or binary ho-
mogeneous particle system. The general classification is
summarized in Table I. Examples of different classes of
particle systems are also given in Table L.
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Table I. Classification of Particle Systems

"4
Particle system Binary or two-component system Polynary or
classification multicomponent system 7
Definition Containing two Containing more than two
different classes of particles different classes of particles
Sub-
classification Homogeneous Heterogeneous Homogeneous Heterogeneous
Definition Same physical prop- Different physical Same physical prop- Different physical
erties distinguish - properties such erties properties
able only by tracers as size, shape,
(color, radioactivity, ete.
ete.)
Examples Black and white parti- Particles of the Particles of more Particles of dif-

cles of the same
material with uni-
form size distribu-
tion

ITI. Development of a Discrete Mixing Model

The stochastic process is a description of random phe-
nomena changing with respect to time. A stochastic process
may be thought of as a set of random variables X, depend-
ing on a parameter t & T. Here the parameter set T may
be interpreted as the time. For example, X, may be the
concentration of a certain component in a mixture, the
number of particles in a sample, or the position of a parti-
cle in space. A Markov process can be briefly defined as a
process with the property that, given the value of X,, the
value of X, (a¢ > t) does not depend on the value of X, (b
< t). In other words, the probability of any particular fut-
ure behavior of the process, when its present state is known
exactly, is not changed by additional knowledge of its past
behavior. However, if our knowledge of the present state of
the process is imprecise, then the probability of some fut-
ure behavior will, in general, be altered by additional infor-
mation relating to the past behavior of the system. This
work was concerned with the application of a specific Mar-
kov process, namely the discrete time Markov chain, for
which both the state space and index parameter are dis-
crete, to the blending of a multicomponent or polynary ho-
mogeneous particle system.

The model is experimentally verified on a tertiary homo-
geneous particle system. The discrete time Markov chain
can be formally defined in the analysis of a mixing process
as follows (Parzen, 1962).

Suppose that we are given a sequence of experiments and
as a result of each experiment there can be one and only
one event from s finite or countable set of pairwise mutual-

ly exclusive events 81, S, S3,. . ., where
Sji Xpewr = J
or simply
S Xy=J (j=1,2,...)

The set § = [§,, S, .. .] is called the state space. When the
event S; occurs, the system is said to have passed into the
state of S;.

A sequence of random variables [Xn, N = 0,1, 2, .. .] can
be defined as a Markov hain if, for every finite collection
of integers Ny <... <X N, we have

Pr Xy Xy o Xwp e X_VT] = Prixylxy | (1)
If the possible values of Xy are 1, 2, .. ., the Markov chain
is denumerable. In this case

PrAXy, = i[Xy = j] = p,,'Y  Gj=1,2,...)
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same material
but with two
different sizes

than two kinds of
color of the same
material with uni-
form size distribu-
tion

ferent densities
and different
sizes

If pij'™) is independent of N for all , j, the Markov chain is
homogeneous. For a homogeneous Markov chain, the tran-
sition probabilities are constant, i.e.

PrXya = ilXy = jl =

In general

pi; = constant  (3)

PAX oy = i | Xy = j] = bt W=12...
(4)
It follows that
1 i =
i _ _ J
Piy ™ =By = {0 otherwise (5)

For a physical interpretation of the Markov chain, we
can consider a group of particles being mixed in a mixer.
Let the mixer or the mixture blended by passing through
motiontess mixers be divided into a finite number of cells
denoted by 1, 2, ..., w, and let p;;™ be the probability of
transition of the number of particles from cell { (state {) at
time Mr to cell j (state j) at time (M + N)r {for any M).
pij*™ is called the N-step transition probability, condition-
al Frobability, or correlation coefficient. The probabilities
pij'™ can be expressed in terms of p;; as follows

pit™ =ZPV[X:J+N = (N uyey = dp] X oL %
PHXyn = 4| Xy = 4] PHAX,,, = i

Xy =J ] -

e Py by (6)

]
=1 p=2

(1

Py D
Grigee o v i

Hence for a homogeneous Markov chain, eq 6 becomes

P :gpmpkjw-n (7)
The matrix
P = [p,,] @
1s called a stochastic matrix. From eq 7, we see that
DY _ p¥ (9)
Furthermore, the matrix identity
PN — pipy {10)
vield
PUMY L pUNpn (11)
or

Pt ™ =2 pu N p LN = 0) (1)

This is the well-known Chapman-Kolmogorov equation.
The system under consideration is an ensemble of parti-
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cles, which is contained in a collector or container. The
state of mixing or mixing characteristics of the system are
examined through the observation of relative displacement
of the particles in the ensemble located in the collector or
container. The helical mixing elements of motionless mix-
ers should be simply considered as mechanical devices
which provide the agitation needed to induce such relative
displacement when the ensemble of particles is passed
through the mixer. In other words, the mixing system
under consideration is regarded as being of the batch type.
It is worth noting that for any batch mixer, e.g., drum mix-
ers and V-type mixers, mixing is attained through relative
replacement of particles in the batch of particies which is
placed in the mizer. Thus the term “mixer” and “mixture”
can be used interchangeably for batch mixers. This is, of
course, not permissible in the case of continuous mixing.
For a mixer of an arbitrary configuration, the entire

space in the mixer can be divided into a finite number of
cells of any convenient shape for analysis and measure-
ment. The size of each cell should be large enough to repre-
sent the average conditions over a region involving every
component, yet small enough to assure the continuity of
the particle distribution. This condition is significant in
that the number concentration of each component inside
the cell is assumed to be evenly distributed. The size and
shape of the cells need not be equal. For example, the cells
adjacent to the walls of the mixer do not necessarily have to
be the same size and shape as those far from the walls. Let
w be the total number of cells in the mixer and n; be the
number of particles in cell i. Then

w

>on =n (13)

i=1
where n is the total number of particles in the mixer. With
the assumption that pulverization and coagulation do not
take place, r is a constant. According to eq 12, the fraction
of particles in cell J, ¢;, at a certain cbservation, which are
eventually found in cell k, ¢, after a finite time interval of
observations (1), can be described by the transition proba-
bility from state E; to state E, in one transition step, i.e.

Pt = PrAXy = | Xy = €] = Py (14)

The last equality in the above equation is based on the as-
sumption of a homogeneous Markov chain. Since pg;’s are
transition probabilities, they must satisfy the following
conditions.

z;pkj=1andosp“s 1 (jek=1,2,...,w
k=

Suppose that particles of a homogeneous polynary sys-
tem containing r components, which are identical except
for their colors, are to be mixed. let the number of particles
of component j in cell i be m;;, and the total number of
particles in cell { be n;. Then

T
ng=2omy;  GU=1,2,...,w (15)
i=1
The total number of particles of component j in the mixer,
m;, is related to m;; as

wp =2 ny; G=1,...,7) (16)
i=t

and the total number of particles in the mizer, n is related
to n;, m;, and m;; as

" r v
no= 0= 2w, = D my {17
i=l i=1 =1

Figure 1 illustrates these relationships.
When mixing is theoretically perfect, we expect that the
number concentration of each component through the

mixer will reach the final equilibrium concentration given
by

(CPo =0 (j=1,2,...,9 (18)

3

This means that the concentration of any given component
in each cell will also approach the equilibrium concentra-
tion (C;j)=. Let Ci;(N) be the concentration of component j
in cell iz att = N7 (N =0,1,2,...) where N is the cumula-
tive number of mixing operations. Then, for nonsegregating
r-component homogeneous particles

lim C,; (V) = (Cja
Nerw
(j=1.2...,mk=12...,w (19)

Based on the assumption of a first order homogeneous
Markov chain given by eq 11 in describing the solids mix-
ing process, the number of particles of compeonent i moving
from cell j to cell k, @; . &, during time 7 can be written as
Q,-..k(i) = Pry My

(i=1,2,....,nk#iikhi=12,...,1 (20

Q; — »(i) is simply the flow rate of particles of component :
from cell j toceli k. When k = §
Qi (D) = Py,

(i=12,...,rni=1,2,...,w (21)
Q; - j(i) is the number of particles of component i that re-

main in cell j. The flow rate of particles of all components
moving from cell j to cell k is

T r
Qe = 21 Qe (i) = Pruz; my = Py (22)
i= i=
Q; — & is the total flow rate of particles {including all com-
ponents) moving from cell j to ceil k. The number of parti-
cles of component j in cell i at time N~ after the onset of
the mixing operation.is

m”(m = IZ; pu™ my, (0)
(i = 1, 2, - =1 ’r) (23)
where p;'™ is the Nth order transition probability from

cell ! to cell i. The number fraction of component j in cell {
is then

Swyi=1,2, ..

C;{N) = ﬂ)tzL@l = ;%— ; piit¥rmy,; (0) (24)

t

The number of particles in cell i after transition in N steps
is

! w
_ - W), M
n; = _Z:.Q:‘-a‘ = lea'.f gy = PRt
1= J=

pl-?_(m ny + ...+ p,.w‘”’nw (25}
Dividing both sides of eq 25 by the total number of parti-
cles in the mixer, we have

T = _Zip‘.,.(-“ﬂj (=12 ...,w (26)
=

where =; is the number of fraction of particles (in cell i} to
the total number of particles. For steady-state operation,
both p;™ and x; can be assumed to be constant with re-
spect to time. In practice, the number of particles in each
cell will fluctuate with time. We can assume that «; ( = 1,
2,...,w) is the time average of the distribution ratio of the
particles in cell i. =; has the following properties.

and
0=m =1

i=1,2, ..., w 27

The particle number balance for component j in the mixer
after N transition steps is
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An arbitrary configuration ot ‘a mixer

RS S e e O oy
Numbet of Tatal number of par-
parcicles ny “2 Ty n ticles in the mixer
in each cell d w
n=+ I n
i=1 i
Number of
particles of m m m m Total numb £ -
11 21 . number of nar
component 1 it w1 ticles of component 1
in each cell in the mixer
W
m = I m,
1 11 il
,‘:umberlnf . Total number of par-
particles o m. m ™. ticles of
L companent 2
compenent 2 z 22 i w2 in the mixer
in each cell w
m, = § m
2 ga1 42
Xumb?r_af . Total number of par-
particies o ™. m o m ticles of comi
cies e e "2 U3 ponent 1
COMpORTAT ¥ wr in the mixer
in each ceil w
R Eom,
fa1 iF
Total number r
of particles 0, = I m n n - n
in each cell 1 jo M 2 3 T

Figure 1. Illustration of an arbitrary configuration with a solid
mixer.

w w
iy o= > Ci Ny = ZC.;;(O)II,- = congtant
i=i i=i
(j=1,2,...,% (28)
Equation 24 now can be written as

T

C”(N) = i iPiJW)WtCtJ‘{O)
i=t

G=1,2,....,0:7=1,2,...,7 (29
where
¢, 0 = 210 (30)
H
Let
Cil)  Cp(v) Cy,{N)
Cp(N) Cye(N) C,, (V)
c(N) = ’ ’ )
C w ; (‘V) C u"l' (‘\’f) c w'r-' ("\f)
Cy0)  Cpl0) €10 |
Ch(0) (0 C,,(0) |
o ; |
clo) = |
lca@ ¢ €]
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Py P cas Pw

p wt p w2 L p wiw
Equation 24 can then be written in matrix notations as
C) = ' P*1IC (0) (31)

Similar results for C in a vector form instead of a matrix
form have been obtained for two component systems by
Inoue and Yamaguchi (1969). If the initial concentration
distribution and the transition matrix are known, the con-
centration distribution at time Nr can be calculated from
the above equation, with the constraint given in eq 28.
Once the concentration distribution is known, the concen-
tration variance ¢n? of the mixture at time N7 is given by

W
F=1 §=1

1 ¥
UNZ = ; Z ﬂ'f[c,'j(N) - (C_,-)w]z (32)
C;j{N) can be simplified further as follows
w
1 .
o Z Puwlmu(o)

ny

Ci N

= byt my; (0
T, !

! n

2

piN) LOLO TR :(0)
nm,

=1 ;i

). <
= _;T.L ,Z_t p,.,“‘”q” (0)

-

where
g:00) = niy A0)/

is the number fraction of component j in cell ! at the begin-
ning of the mixing operation (i.e., N = 0). The correspond-
ing concentration variance is

(33}

ot = %Z:‘;n,.[c,.,.(o) - () =

1- r oW \ (:.‘(0) _ 3
P lontn[ R —1] e
Ci;0) om0 my 0 o gy;00) (35)
Cle — gy my; Ty owy o om
and therefore
. 1 e £;40) :
T =7 o1 el €. Fr, [ELL;:_- - 1] (36)

Substitution of eq 33 into eq 36 vields

row w 2
o5 = lzz ((C)).f 7, |:_1— ; P a0} - 1]

¥ g1 i=1 LF
(37)




M

1.6

12
| PRE-MLX SECTION

I
12

1“: = SIMPLE GATE VALYE

MOTIONLESS MIXER (12 ELEMENTS

e ——

i
12" POST-MiX SECTION

L
- Y

Figure 2. Schematic setup of the experiment.

The variance reduction ratio y can be written as

=g§=
f (€).) [ Zp,,

r 2
a0 1]
i=] §=1 LA

w 2z
Z ). F w152 — 1]
The degree mi xedness may be defined as (Lacey, 1943).
=1 - [

{38)

Since
lim o = 0 (39)
Nevco
M is unity when mixing is complete and M is zero at the
onset of mixing. According to eq 39, the degree of mixed-
ness is a function of the final equilibrium concentra-
tion{C/), fraction of the number of particles in each cell r;,
and initial ratio distribution g;;(0). Note that for a two-
component system for which r = 2, the degree of mixedness
is not affected by the final equilibrium concentration
{Cj)«. This can be easily shown by setting r = 2 in eq 38,

namely
27 [ ZP!:

2
L[ pa o) - 1]
d) —_ i= I I=

2 (1 1)

i=1

40)

This is the equation derived by Inoue and Yamaguchi
(1968) for the binary homogenous particle system.

IV. Experimentai Procedure

The motionless mixer {Armeniades et al., 1965; Pattison,
1989) employed in this study was originally constructed by
Chen et al. (1971, 1972} for their studies of the mixing of a
two-component homogeneous system, A thin band of yel-
low brass, 0.025 in. thick and 1.5 in. wide, was twisted uni-
formly both clockwise and counterelockwise to make the
helices, Bands of 3.25 in. length were cut to give the helices
a twist of 180°. The clockwise and counterclockwise helices
were inserted in a Pyrex tube of 1.5 in. inside diameter.
Friction between the tube and the helices prevented the
helices from slipping down the tube. Inside the tube, the
helices appear alternately clockwise and counterclockwise.
The schematic setup of the experiment is depicted in Fig-
ure 2,
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Figure 3. Number concentrations distribution of each cell: {a)
component j = I; (b) component j = 2; (¢) component J = 3,

Spherical Lucite particies of a diameter of %3 in. with
three different colors (green, red, and white) were used in
the experiments. The green particles were designated as
component 1, the red particles component 2, and white
particles component 3. In the pre-mix section, component 1
(green) occupied cells i = 1, 2, 3, and 4, component 2 (red)
cells { = 5, 6,7, and 8, and component 3 (white) cells{ = 9,
10, 11, and 12. The particles were collected in the post-
mixer section after they were passed through the mixer.
The post-mixer section was placed in the pre-mix position
for another pass. Determination of concentration distribu-
tion was carried out after a desired number of passes were
performed.

V. Experimental Results

The experimental results are summarized in Figures 3-6.
Figures 3a. 3b, and 3¢ show, respectively, the number con-
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Table I1. The Transition Matrix of the 12-Elements Motionless Mixer (Chen et al., 1971}

0.3756 0.3000 0.2400 0.0808 0.0096 0.0 0.0 0.0 0.0 0.0 0.0 0.0™ _\
0.2936 0.2571 0.1846 0.1692 0.0840 0.0115 0.0 0.0 0.0 0.0 0.0 0.0
0.1647 0.1807 0.1923 0.2038 0©0.1583 0.0810 0.0090 0.0 0.0 0.0 0.0 0.0
0.1250 0.1160 0.1692 0.2096 0.1885 0.1397 0.0506 0.0013 0.0 0.0 0.0 0.0
0.0519 0.0673 0.0929 0.1564 0.2109 0.2295 0.1506 0.0372 0.0032 0.0 0.0 0.0
0.0353 0.0372 0.0583 0.08167 0.1776 0.2288 0.2237 0.1256 0.0218 0.0 0.0 0.0

P=ilpull= 0.0077 0.0179 0.0237 0.0423 0.0897 0.1865 0.2699 0.2449 0.1083 0.0080 0.0 0.0
0.0026 0.0071 0.0096 0.0237 0.0385 0.0827 0.2160 0.2801 0.2410 0.0962 0.0025 0.0
0.0006 0.0026 0.0038 0.0128 0.0173 0.0429 0.0859 0.2058 0.3410 0.2372 0.0500 0.0
0.0 0.0 0.0006 0.0038 0.0019 0.0128 0.0314 0©.0763 0.2199 0.394% 0.2487 0.0096
0.0 0.0 0.0 0.0 0.0 0.0019 0.0038 0.0135 0.0571 0.1981 0.4891 0.2365
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0019 0.0083 0.0276 0.1968 0.7654 |
o8

1] 4

Pl L

ast

L)
(b} Flow patiern

Figure 4. Self-loop transition probabilities and flow pattern in a
motionless mixer,

centration distributions of components 1, 2, and 3 in the
axial direction of the mixer as a function of cell numbers.
The initial number concentration distribution for each
component is a step function. As the number of passes
through the mixer increases, the concentration distribution
approaches the final equilibrium state. It is interesting to
note that the experimental results in Figures 3a-c show
considerable random scattering. As pointed out by King
(1968), in continuous flow systems the inherent random-
ness of the process will produce a stochastic output from a
deterministic input.

Figure 4a shows the self-loop transition probabilities in
the cells of the mixer. The schematic representation of the
experimental setup for determining the transition proba-
bility ps; of the particles for one pass through the mixer is
shown in Figure 2. The transition probability px; can be
calculated on the basis of the accumulated records of mo-
tion by the following equation.

pu My,

S My,

k=1

where My is the number of transition of one component of
particles from cell ¢, for one pass. Since all particles are
identical, except in color, we expect pi; to be the same for
all components of particles (f = 1, ..., r). The transition
probahility for binary homogeneous particles thus obtained
by Chen et al. {1972) is shown in Table IT. The point of in-
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terest is that the flow of particles in the mixer is more vig-
orous in the upper cells than in the lower ones. For exam-
ple, the number of flow of particles in cell 1 (an upper cell)
is about twice that of cell number 12 (a lower cell). In cell 1,
about 30% of the particles stay in the cell after each pass
and the remaining 70% of the particles are exchanged with
the particles in the other eleven cells. This is in contrast to
cell 12, where 75% of the particles stay in the cell and only
25% of the remaining particles are exchanged with the par-
ticles in the other eleven cells. This is consistent with the
expected entrance and exit effects for cells near both ends
of the mixer.

Figure 5 shows the number concentration distributions
as a function of number of passes at cells 1, 2, and 3. It is
noted that the concentrations fluctuate around the final
equilibrium concentration for the first few passes.

Figure 6 shows the degree of mixedness as a function of
the number of passes. Equation 32 can be used to deter-
mine the degree of mixedness for mixtures consisting of
various numbers of components. Regardless of the number
of components or the number of cells in the mixer, the de-
gree of mixedness varies from zero in a completely segre-
gated state to unity in a completely mixed state. For illus-
trative purposes, we can assume two of the three compo-
nents in the tertiary homogeneous particle system to be
color blind; i.e., we cannot distinguish two of the three col-
ors. In this way, the experimental data for the resulting
two-componeni system can be obtained from that of the
three-component system without actual experimentation.
Data obtained in this manner for the two-component sys-
tem are also shown in Figure 6.

VI. Analysis and Discussion

The initial concentration distributions of components 1,
2, and 3, respectively, are shown in Figures 3a—c. The corre-
sponding initial concentration matrix is

- -

c(0) =

C OO MRMHEKMMHOOOO
- OO0 000000

OO0 OoOOCO O H~

The containers and the mixer used in this study are cylin-
drical in shape. The cells within the container are chosen so
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Figure 5. Number concentration variation as a function of the number of passes at certain ceils.

that the space in the container is divided into 12 equal seg-
ments, each 1 in. long in the axial direction. Consequently,
the cells so chosen are equal in volume. Hence, w = 12, and

_mo_ L
ni._n_lz i=1.2...,19
and
1
12
1 .
1—2 f)
nmT =
O
L 12

Actually, 7; can be varied depending on the size of the cell.
Theoretically the concentration distribution at wvarious
time stages can be calculated from eq 31 with a given initial
concentration distribution. Figure 3a shows the calculated
number concentration of component 1 aftert = Nrfor N =
0, 1, 2, 5, and «. It is worth noting that the transition
probabilities employed in the present study for predicting
the concentration distribution were obtained from the
work done with a two-component homogeneous particle
system (Chen et al., 1972), In other words, the transition
probabilities were determined independently prior to this
work, and no parameter estimation or curve fitting of the
experimental data with tertiary homogeneous particles was
involved.

From the proposed model of the discrete Markov chain,
approximately 24 steps are needed to reach the final equi-
librium coneentration distribution. In this case, we expect

. 1
lim (€, = 3
At N = 24, the degree of mixedness M is 0.99, and there-
fore, the compiete mixing time, {. may be defined as the
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Figure 6. Degree of mixedness vs. number of passes for a 12-¢le-

ment motionless mixer.

time when the degree of mixedness reaches 939% of the the-
oretical value which is unity. It corresponds to 24r.

From the transition matrix (Table II) and eq 18, the flow
distribution, §; . &, is calculated and the results are shown
in Figure 4b. The flow rate is large between cells 3 and 6
and small near both ends of the mixture. These resuits are,
of course, directly related to the transition probabilities of
the mixer employed in this study.

It has been known that the mixing operation in any
mixer has periodic characteristics. The plot of the ratio of
the particle number concentration to the corresponding
equilibrium concentration for each component (Figure 5)
shows that the ratio of each component approaches unity
either exponentially or with no more than one oscillation.
This implies that the mixing of solid particles in motionless
mixers approaches the equilibrium state in a relatively
short time.

It can be seen from Figure 6 that the experimental re-
sults are consistent for the two- and three-component par-
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ticle systems, giving a single curve of theoretical predic-
tions for the first few passes, This implies that the degree
of mixedness is substantially the same for the two- and
three-component systems and depends mainly on mizer
and particle characteristics. This also indicates that the
transition matrix (Table IT) can be applied to homogeneous
particle systems in the mixer regardless of the number of
components present. We can further assert that the degree
of mixedness of a multicomponent homogeneous particle
system can be theoretically predicted from the transition
matrix of the two-component system contained in it. The
only experiment required in this prediction is simply the
experiment of obtaining the transition matrix of the two-
component system. After the mixture passes through the
mixer more than five times, the discrepancies between the
theoretical predictions and the experimental data increase.
This suggests strongly that the segregation effect begins to
dominate. A careful examination of the particles used in
the experimental studies indicates that a difference in size
of as much as 0.0776 in. is found in the %o-in. particles.

It is interesting to note that based on the concept of en-
tropy in thermodynamiecs, the entropy of the solid mixture
at cell i can be defined as

SAN) = =2 C,iMInC (M G=1,2 ... 4
=1

(41}
and the total entropy of the sysiem is then

w

SN = X 7,5,

i=1

If the system is in the segregated state at the beginning of
the mixing process, we have

S:0) = 0

and, therefore

(42}

(=12, .,

!

W

SO = 25, = 0 (43)
The total entropy of the system as a function of the num-
ber of steps of Markov chaing together with the experimen-
tal data is shown in Figure 7. Due to the segregation effect,
experimental data are not entirely consistent with theoreti-
cal predictions. For a constant number of particles, the
total entropy of the system at the completely mixed state
will approach a constant value, i.¢.

S(AV) —_— Sf as N — o

From eq 42

S = In (44)
The final entropy of the system is always greater than zero,
except in the case of a unitary particle system where S¢
equals zero. This indicates that the entropy can be used
equally as an indicator of the state of mixedness of a mix-
ture. The degree of mixedness accerding to eq 39 is based
on the variances of the mixture. In using the variances, the
degree of mixedness of the mixture changes from zero in
the completly segreted state to one in the complete random
state, A scale of the extent of mixing of any mixture can
thus be defined based on these two reference limits, If we
use the entropy as defined - by eq 41, the entropy of a mix-
ture will change from zero in the completely segregated
state to St in the completely random state. Hence, the en-
tropy of a mixture can be similarly defined as a measure of
the degree of mixedness of a mixture. Entropies computed
from the experimental data obtained in this work were
plotted in Figure 7 as the function of the number of passes
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Figuare 7. Increase of entropy as a result of mixing action.

through the motionless mixers. Theoretical predictions
based on the model were also shown in Figure 7. It can be
seen that the entropy gradually increased with the number
of passes of the mixture through the motionless mixer. The
experimental results were in good agreement with the theo-
retical predictions of the entropy of the mixture.

VII. Conclusions

A stochastic model is developed to study the mixing pro-
cess of blending a muliticomponent homogeneous particle
system by passing it through a motionless mixer. The
model can be applied to almost any class of mixer and the
design complication of a mixer creates little difficulty in
the use of this approach. By experimentally determining
the transition probabilities of a binary homogeneous parti-
cle system, the mode! can predict the concentration distri-
bution and the degree of mixedness of a multicomponent
homogeneous particle mixture. This is of practical impor-
tance because the blending of multicomponent homoge-
neous particle systems is a necessary step in many process
systems.
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Nomenclature

Cij(N) = the number concentration of component j at cell
iatt=Nr

(Ci}~ = equilibrium concentration of component J

= degree of mixedness

m;; = the number of particles of component j in the cell

m; = total number of component Jin the cell ;

n = total number of particles in the mizer

n; = the number of particles in cell ;

Pij = transition probability of the particles from cell J to
cell{

r = total number of components in the mixture

8§ = total entropy of the system

8: = entropy in the cell ;

So, 8¢ = initial and final entropy of the system, respec-
tively

w = total number of cells in a mixer




Greek Letters
x; = the number fraction of particles in cell {
on2,002 = mixture variances at t = Nt and t = 0, respecti-

ly
¢ = variance reduction ratio
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