s L ST,
ne? vl bt

-

&

et kit v et Bhiiianalinds.

SYSTEMATIC PREDICTION OF WIND EROSION: PHASE 1

George W. Cole!

INTRODUCTION

Systematic prediction of soil loss due to wind ero-
sion has been shown to involve the time and space
integration of the normal component of the surface
soil loss vector (Cole 1984). The general spacial
integration techniques that were developed in that
paper are applied here for a circular field. This
field shape was chosen to demonstrate the technique
because the mathematics and resulting equations are
relatively simple. Application to complex field
shapes requires numerical integration and data
entry techniques which are unique to digital com-
puters. The development of this machine solution
capability will represent phase 2.

METHOD

The general mass-flow-rate equation developed for
any convex-shaped field is given (Cole 1984) as

|i| = - g q(r[R(U(S,B))r-u(S,B)], had}

dx

ds (1)

.ogl ) - i

{gs cos 8 sin g} ds
(see the list at the end of the summary section
and figures 1 and 2 for symbol definitions).

In order to use this equation, we must define the
boundary of the field in terms of s, the distance
along the perimeter. Furthermore, the soil loss
line intensity function q (see fig. 1), which is
assumed available from wind tunnel studies, is a .
function of r, the distance from a nonerodible
boundary. From equation 1 and figure 2 it can be
seen that ultimately q, via a series of axis trans-
formations, becomes a function of s, and 8 the wind
angle. Figure 2 illustrates the relationship
bgtween the wind oriented coordinates R,u and the
fixed coordinates x,y by which the field shape, C,
is described.

To simplify equation 1 requires a mathematical
description of the compound function of r, that is,

r(R(u(s,8)), u(s,s)] (2)
and
%{ cos B - %% sin 8 (3)

whére x(s) and y(s) are a parametric description
of the field boundary and ghe h,J haveebgggpsag-
pressed for simplicity in equation 2 since they do
not affect the derivation. For this particular
field shape, it is expedient to convert the s dis-
tance to w via the following definition of an arc:

(4)
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w * s/a.
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We shall first develop equation 2 by starting with
the following equation (which is derivable from
fig. 1) relating r to R:

r=R- Rl(u) + Y(Rl(u),u). (5)
Equation 5 represents the shifting of the r axis
along the R axis due to two causes. The R; term

is the shift due to the field boundary at the inflow
side and ¥ the shift due to the magnitude of the
soil inflow. Both of the effects are independent;
that is, even if the inflow were zero (that is,

y = 0), the value of q(r) would vary due to the,
position of the field boundary R;(u). A more de-
tailed explanation of equation 5 is developed in
Cole (1984).

We are interested in constraining R to the boundary
of our field, since this is where the inflow and
outflow exist. We note from figure 2 that R as a
function of u is multivalued and, as such, it is
not useful for integration until it is made single

valued. We do this by subdividing the perimeter of
_the circle into two functions depending on w:
Ry (u) O<w<m
R =
Ry (u) m<w<2mw. (6)
Substitution of equation 6 into 5 yields
Ry(u) - Ry(u) + ¥(Ry(u),u) O<w<n
r =
Ry(u) - Ry(u) + ¥(Ry(u),u) m<w<2n (7)

We see that to evaluate equation 7 requires the
description of (R, - Ry) and R;, since ¥, the
inverse of q(r), is known.

From figure 2 it can be seen that (R, - R;) is any
chord that intersects the circle and is parallel
to the R axis. From trigonometry we have

R, - Ry = 2a sin w(s). (8)
In order to determine R}, the second unknown in
equation 7, we will utilize one of the coordinate
transformation equations between the x,y and R,u
coordinate systems,

R=xcos B +ysin 8. (9)
To determine R; we must constrain equation 9 to

the perimeter of the circle by causing the x,y
coordinates to be the set of coordinates describing
the circle in terms of s, that is,

(10)

R = x(s) cos B + y(s) sin B.

The analytic expression for x(s) and y(s) can be
determined from figure 2 by application of trigo-
nometry as

x(s) = j +a sin (u + 8),

y(s) = k - a cos (w + 8). (1)
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Figure 2.--Field shape, functions, and coordinate systems.
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Substitution of equation 11 into 10 yields
(12)

Now equation 12 does not yet describe Ry. This is
accomplished by forcing R, which describes the
total perimeter, to describe only the R, portion,
that is,

R=jcos B+ ksing+asinuw(s).

(13)

R, = jcos 8 +k sinB - a|sinw(s)|.

Now substitution of equations 8 and 13 into 7
yields the following equivalent of equation 2:

r=2462asinuw

+ ¥(j cos B + k sin 8 - a|sin w|) (14)

1 O<w<nm, outflow
where § =
0 n<w<2w, inflow.

To complete the evaluation of the components of
equation 1, we must evaluate equation 3. This is
done by first evaluating the derivatives of x(s)
and y(s) (utilizing equation 11) and substituting
the derivatives into equation 3. The results are

(15)

Substituting equations 14 and 15 into equation 1
and using equation 4 to determine dw in terms of s
results in the following mass-flow-rate equation
for a circular field:

d dx _. s
a{-cos B - g5 Sin 8 = sin u(s).

m = gf"q(d 2a sin w + ¥(j cos 8 + k sin 8

- a|sin w|), h,J) a sin w dw (16)

where § is defined in equation 14.

Now equation 16 can be further simplified if we
assume a zero soil inflow condition (that is,
assume that the boundary of the field is nonerod-
ible), then

m = L: q(2a sin w, h,J) a sin v dw. (7)

EXAMPLE

To demonstrate the utility of equation 17, we shall
calculate m for a typical center pivot irrigation
system using published q curve data (Chepil 1957,
Fig. 1, curve d). To simplify the integration, we
represent this curve as

ar r<rg
q=

arg  r>r (18)
where ro is the breakpoint of this piecewise linear
representation and a is the slope which is assumed
constant. :

§ubstitution of equation 18 into 17 results in two
integrals. These two integrals result in this case
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because the numerical values ry and a are such
that

(19)

This results in two regions for w, which are sep-
arated by wg, where

0 <rg < 2a.

wp = sin~Y(ry/2a). (20)

Since the soil loss rate is equal for each half of
the circle, we integrate over one-half the circle
and double the results, that is,

f = 2(£:° ar a sin o do

+ ;“’::2 arpasinw do) (21)
where
r=2asinuw O<w<wg. (22)
'Integration of equation 21 results in
M = 2a(aZwg + cos wglary - a2 sin wg)). (23)

The numerical values from Chepil's curve (Chepil
1957) expressed in SI units are

a = 7.158 x 10-* t/(m2 « h)
and
ro = 502.9 m.

For a typical center pivot irrigation field on a
1/4 section,

a = 402.5 m.
From equation 20 we find that
wg = 0.675 radians.

Finally, substitution of these four values into
equation 23 yields

m = 270 t/h

as the rate of soil erosion.

SUMMARY

A method for incorporating a specific field shape
into the general mass-flow-rate equation has been
demonstrated. The resulting equation (equation
16) allows for the use of a single line intensity
function, which has been shifted and transformed
appropriately. The equation considers not only
the surface conditions implied by J but also the
wind angle, radius of the circle, the offset dis-
tances j and k, and the magnitude of the soil
inflow.

We note that if there is no inflow--that is, if
the field boundary is nonerodible--then the mass
flow rate is independnet of the wind angle.



This method, while practical for simple geometric
shapes, becomes quite impractical for nonanalytical
shapes, and the numerical integration of equation

1 must be performed.

Symbo1 Definition and dimensions?2

a radius of circle, L

c the perimeter of the field surface, L

h distance from soil surface to top of the
field control volume. This also may be
considered the saltation height, L.

J x coordinate of the center of the circle, L

J the set of surface conditions which affect
q

k y coordinate of the center of the circle, L

m the soil mass-flow rate through a specified
surface, M T-1

q line intensityi the soil flow rate per unit
width, M L71T"

same as q but with respect to the R,z axis,
ML-17-1

D1

r distance along the r axis, L
ro breakpoint of q in equation 18, L
R distance along the R axis, L
s arc length of perimeter C, L
u distance along the u axis,

X distance'along the x axis,

T~ - -

y distance along the y axis,

a slope of linear part of q in equation 18,
ML-2T"1

B8 wind angle, the angle of the wind relative
to the positive x axis, counterclockwise
positive (see fig. 2), dimensionless

§ defined in equation 14, dimensionless

™ 3.14159..., dimensionless

¥ the inverse function of q(r)

w see equation 4, dimensionless

wg see equation 20, dimensionless

Subscripts

] index, 1, 2, 3 ... various surfaces and/or
arc lengths

2 M, L, and T as dimensions refer to mass, length,
and time.
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