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ABSTRACT 

THE mass flow rate equation for a convex-shaped 
field surface subjected to wind erosion is derived by 

the application of the steady state continuity equation. It 
is assumed and justified that the soil flow can be 
idealized as a flux. 

The resultant equation, predicted on the availability of 
line-intensity functions (q) developed from wind tunnel 
studies, is the line integral of the q's around the 
perimeter of the field at the saltation height. The shape 
of the field is limited at present to only convex shapes. 
Fortunately, a typical agricultural field is rectangular. 

The assumptions implied by this method are stressed 
and two examples are presented that deal with 
nonhomogeneous surfaces and both erodible and 
nonerodible boundaries. 

INTRODUCTION 

In the development of any equation or method for 
computing wind erosion soil loss from a field, one is 
immediately faced with the enormity of the task. This is 
due primarily to one's ability to see more details of the 
erosion process than can be dealt with. Consequently, 
the use of a simplifying model is just as desirable here as 
in any other scientific field. Early researchers (Bagnold, 
1941; Chepil, 1959) surely recognized this problem, and 
although they may not have specified their simplifying 
assumptions, these were implied and were necessary to 
handle the prediction problem. 

One important assumption is that a wind tunnel can 
simulate the wind erosion process adequately so that soil 
loss can be related to many of the important variables 
that influence it. Obviously, the surface of the wind 
tunnel does not represent the total field surface that is of 
interest. Furthermore, due to the small size of the soil 
sample and the lack of soil abrasion, the time duration is 
rather short, i.e., minutes as compared to hours on a 
field. As a consequence of the small sample, there has 
been a difference in the measured dependent variable 
between tunnel and field. As Chepil (1959) indicated, the 
mass, m, was the tunnel variable whereas the variable in 
the field was q. (All symbols are identified in Table 1.) 
We see, therefore, that only a partial or incomplete 
model of the field erosion process can be formulated 
from tunnel data and, at most, the data would be 
representative of a small line segment of a large field. 

Chepil realized the limitations of his initial tunnel-

TABLE 1. NOTATION. M, L, AND T AS DIMENSIONS 
REFER TO MASS, LENGTH, AND TIME. 

Symbol 

A 
C 
E 
f_ 
f 
h 

K 

M 

q 
Q 

T 
t 
U 

0i 
7 

A 
P 

Definition and dimension 

area of a surface, L 
the per imeter of Sx or S 2 , L 
potent ia l average annual soil loss, M L~2 T""1 

soil flux vector in r, u , z coordinates , M L~2 T""1 

soil flux vector in R, u, z coordinates , M L"~2 T _ 1 

distance from soil surface t o t o p of the cont ro l volume, 
see Fig. 1. This also may be considered the sal tat ion 
height , L. 
soil erodibil i ty, M L~2 T" 1 

The set of surface condi t ions indicated in equat ion [2 ] or 
the i-th region for applicat ion Case I and II . 
soil ridge roughness, dimensionless 
length. The longer dimension of a rectangular field, speci­
fied along the y axis, L. 
Soil mois ture , dimensions u n k n o w n 
the soil mass t ha t has flowed th rough a specified surface 
for a given interval of t ime, see Table 2, M 
soil surface densi ty , see Table 2, M L~"2 

the soil mass flow rate th rough a specified surface, see 
Table 2, M T" 1 

line intensi ty , the soil flow rate per uni t wid th . When 
subscripted, i t implies a specific direct ion of integrat ion 
of a normal flux vector. See for example equat ions [5] 
and [ 6 ] ; M L" 1 T" 1 . 
same as q b u t with respect to the R, z axis, M L" 1 T""1 

A general functional form, u n k n o w n . 
distance along the r axis, L 
distance along the R axis, L 
surface area of the i-th surface of the cont ro l volume, L 2 

arc length of per imeter C, L 
a t ime interval, T 
t ime , T 
windspeed, L T""1 

distance along the u axis, L 
equivalent quan t i ty of vegetative cover, M/L 2 , or volume 
of the control volume, L 3 

width . The nar rower dimension of a rectangular field, 
specified along the x axis, L. 
distance along the x axis, L 
distance along the y axis, L 
distance along the z axis, L 
field angle, the angle of the positive y axis relative to 
nor th , clockwise positive, see Fig. 2, dimensionless 
wind angle, the angle of the wind relative to the positive x 
axis, counterclockwise positive, see Fig. 2, dimensionless 
defined by equat ion [ 4 7 ] , dimensionless 
The pa th of intergrat ion a round the per imeter of an R, z 
plane of the control volume of Fig. 1. 
difference operator , dimensionless 
soil densi ty, M L~3 

wind angle, t he angle of the wind vector relative to no r th , 
clockwise positive, see Fig. 2 , dimensionless 
3 .14159 . . . , dimensionless 
The inverse function of q r ( r , z) 

Subscripts 

index, 1, 2, 3 . . . various surfaces and or arc lengths 
normal componen t , or upper limit of an index 
R componen t 
r c o m p o n e n t 
z c o m p o n e n t 
u c o m p o n e n t 
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~ the variable may change in t ime 
V Del, see equat ion [21] 
< > A x a n average of the function within the brackets with re­

spect to an interval tha t is shown here as Ax. If the inter-
^ val is unambiguous , it is omi t t ed . 
= defined 

see equat ions [43] and [44] 
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derived wind erosion equations to predict the field soil 
loss over an extended period of time. One of his early 
equations (Chepil, 1959), which was based on wind 
tunnel experiments and some field experiments (Chepil, 
1957), predicted what he called a relative soil loss. In 
order to overcome this nondimensional soil loss 
representation, he performed soil loss measurements on 
69 fields for 3 yr near Garden City, Kansas (Chepil, 
1960). In that paper he correlated the result of his 
measured soil loss density, m", with the dimensionless 
predicted values, and he developed a functional 
relationship which, in conjunction with his dimensionless 
tunnel equation, allowed him to predict field losses. As 
pointed out by Cole et al. (1982), this new equation 
represented the equivalent of a time and space average of 
a surface soil loss flux function. Chepil later extended his 
"3-yr equation" to a long-time average (40 yr) by using a 
climatic factor and a multiplicative factor of 1/3. The 
latter was to compensate for the fact that the 3-yr period 
had a higher than average climatic factor and, 
consequently, it was assumed higher than average soil 
loss fluxes (Chepil et al., 1962). 

From the preceding discussion, we can see the 
difficulties that Chepil experienced in order to 
accomplish the conversion of the wind-tunnel-derived 
function for use in field predictions. Furthermore, it 
illustrates the problems that must be faced at present to 
apply a wind-tunnel-derived equation to a field situation. 

The method presented here considers a flux equation 
or its first integral, q, which is derived from wind tunnel 
data. This function is then integrated across the field 
(and in time) to produce the soil loss mass. The 
integration is based on the conservation of mass principle 
and does not involve the concept of relative field 
erodibility that was used previously. The continuity 
equation, while not used previously for wind erosion, has 
been used for water erosion (Foster and Meyer, 1972; 
Scoging, 1978). 

The research reported here is part of a program whose 
objective is to develop a method for predicting soil loss 
from a field for a single windstorm. The main difference 
between this and the existing wind erosion equation is 
the time duration over which the erosion process is 
averaged, i.e., 6 hours vs. 40 years. The basic conversion 
problem, i.e., integration, remains the same. 

In order to view the complete integration process and 
to see where this particular study fits in, it is convenient 

to formulate the surface soil loss process as the time and 
space average of the normal component of the surface 
flux vector, i.e., 

E = - ^ / / f z d A d t [ 1 ; | 
A T T A 

where 

fz = fz (J(t), R, u, 0 ) and 

J = j l , K , V, U, M, ? j . . [ 2 ] 

(The use of the tilde above the independent variables 
indicates that they may vary in time.) The independent 
varible, E, of equation [1] is dimensionally identical to 
the E of the wind erosion equation (Woodruff and 
Siddoway, 1965). This is to facilitate any possible future 
comparisons of the two computational methods. 

From equation [2], two tasks are evident. First, the 
development of the flux function from wind tunnel and 
perhaps limited size field experiments. Second, the 
description of how the independent variables vary in 
time. Equation [1] illustrates the third task, i.e., 
conversion of f by integration over a specified area and in 
time. It is the method and problems associated with the 
spacial integration that are discussed here, along with 
the required coordinate systems and the model 
assumptions. It is assumed that equation [2] would be 
available to allow the integration. As shown later, this is 
a reasonable assumption. 

ANALYSIS 

The loss of soil, no matter how it is quantified, i.e., 
soil loss (m), soil loss surface density (m"), soil loss flow 
rate (m), soil loss line intensity (q), or soil loss flux (f) 
(see Table 2 for relationships between these forms) is 
basically a flow problem analogous to the fluid flow 
problems of fluid mechanics. In fact, what is apparent is 
that we have essentially two interacting flows, i.e., a 
multiphase flow. The concepts of mass, energy, and 
momentum conservation are therefore applicable. 

Using these basic principles implies that the airborne 
soil particles behave as a fluid, i.e., they are a 
continuum. Crowe and Smoot (1979) dealt with this 
problem when developing the conservation equations for 

TABLE 2. SOIL FLOW TERMS, DEFINED FOR A u,z PLANE OF AREA A IN THE R, u,z COORDINATE SYSTEM.* 

Name Functional form Dimensions Independent variables 

Normal^component of the 
vector f 

Soil mass 

Soil flow rate 

Soil surface density 

Soil line intensities 

soil flux 
fR = fR (R< ^ *, J(t)) 

T 
m = J / / fR du dz dt 

0 A 

m = / / fj^ du dz 
A 

T_ 
m " = / fR dt 

0 
_ z _ 
QR = / fR dz, 

0 
R 

qz = J f z dR 
0 

M L"z T" 

M 

M T" 

M L~ 

M L"1 T~ 

M L""1 T" 

A point in time and space 

Area and time interval 

Area 

Time interval 

A length interval 

A length interval 

* If the soil flow constitutes a loss from a surface, then the word loss may be appended to the word soil, if such clarification is needed. 
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Fig. 1—A control volume for a general convex 
cylindrical shape showing the three sides and 
the height. 

gas-particle mixtures related to coal combustion. 
The continuum assumption, while generally not 

applicable for finite size particles such as soil, is felt to be 
reasonable since we are not interested in the flow of 
particles through small regions relative to the size of the 
particles. In the wind tunnel, the volume of interest is 
about 0.33 m X 2 m X 1 m, and in the field even this 
volume approximates a point. As will be noted later, the 
wind tunnel data approximates a line segment (i.e., Aq) 
rather than a point (i.e., f) and, as noted in Table 2, q is 
the first (required) integral of f. 

The reference frame used here for the soil flow is 
Eulerian (Crowe and Smoot, 1979) as opposed to 
LaGrangian. (The Eulerian is the standard reference 
frame for conventional fluid flow problems.) Crowe and 
Smoot (1979) review the advantages of each reference 
frame. In Crowe's Particle-Source-In Cell model (Crowe 
et al., 1977), he uses the LaGrangian reference for the 
particles and an Eulerian reference for the airflow. The 
added complexity of two different reference frames is not 
needed here. 

Model 
The model boundaries consist of a general cylindrical-

shaped control volume (Fig. 1), whose plan view is 
depicted in Fig. 2 along with the four required 
coordinate systems: (a) North,East; (b) x,y,z; (c) R,u,z; 
(d) r,z, and various angles. The coordinate systems are 
needed to handle the following requirements. 

The North,East system is required since available wind 
data summaries have tabulated the horizontal wind 
vector component and its angle relative to North. 

The description of the field surface Si must be given in 
terms of a fixed coordinate system, x,y,z. Granted, 
North,East could be used, but a rectangular field would 
not always be so oriented, hence the field angle a is 
required. The R,u,z coordinate system is oriented to the 
wind vector as shown in Fig. 2. Integration of f in this 
coordinate system is simpler in that the data describing 
the integration of f in the R direction (i.e., q) is almost 
completely provided from wind tunnel data (i.e., q), 
except for an axis shift along R. The final set of 
coordinates, i.e., r,z, refer to the two-dimensional 
coordinate system utilized to develop the q functions 
from tunnel data. 

The angles ft and 6 are wind vector angles referred to 
two different coordinate systems, p is required for 
calculations and 6 is the angle used in the available wind 
data. The angles are related as 

Fig. 2—A plan view of the control volume 
with its four required coordinate systems at 
z = h and the associated angles. 

The portion of equation [1] representing the 
mathematical portion of the model that we are interested 
in here is 

: / f z dA. 
s, 

[ 4 ] 

|8 = (a - d) + 37T/2 . [ 3 ] 

which describes the soil loss rate from the eroding earth 
surface, Si (see Fig. 1). Since we do not know f2 at Su the 
soil loss flow rate rhi will be derived by the spacial 
integration of the continuity equation within the control 
volume and will result in two line integrals around the 
circumference of S2, in terms of q. 

The model is limited to a field whose plan view, Si or 
S2, is restricted to a convex region, i.e., a region whose 
circumference would be "cut" by a straight line at no 
more than two points (Courant, 1936, pp. 100, 362). 
This restriction implies that soil, once it has left the field, 
will not return to the field unless the velocity vector 
changes direction. While it appears theoretically possible 
to handle a nonconvex region by the methods described 
later, it is not clear how this could be done considering 
the changing wind vector angle. Fortunately, most 
agricultural fields are convex, i.e., rectangles. The 
convex assumption is dictated by the assumption that the 
wind velocity vector does not vary along the top plane of 
the control volume. 

From Fig. 1 we note that the height of the control 
volume is h. This represents the height wherein all soil 
that leaves S2 is essentially the suspended portion and 
soil that leaves or enters S3 is due to saltation and creep. 
It is further assumed that h is constant during the 
erosion process, i.e., the change in h due to soil loss is 
negligible compared to h. While this is not absolutely 
essential, it simplifies the analysis with very little loss in 
generality. 

The model allows for the S3 surface to have an inflow 
of soil in the upwind direction and an outflow in the 
downwind. This, in conjunction with the general convex 
shape, will allow the model to handle field boundaries 
that are both erodible and nonerodible and, obviously, 
nonrectangular fields. 

Equation Derivation 
The objective is to obtain an expression in q, since q 

would be available from tunnel data. The derivation 
proceeds from the application of the continuity equation 
in R,u,z coordinates with a translation of R to r. Then, 
since most fields will be described in the x,y coordinate 
frame, we transform the results to that system. Finally, 
to emphasize the fact that the resulting line integrals are 
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qR(R.) 
qr(r,) 

2 3 4 

Fig. 3—A typical line-intensity function 
depicted with three different horizontal axes. 

around a closed path, we then transform the x and y to 
functions of arc length s. 

A typical qr curve, which is depicted in Fig. 3, could 
also be determined experimentally in the field by placing 
Bagnold-type catchers at various r values downwind from 
a nonerodible boundary. The line intensity function for 
Fig. 3 is 

A h 

qr(r, h) = / fr(r, z)dz [5] 
0 

(For simplicity, the J(t) independent variable will be 
suppressed unless needed for clarity.) Equation [5] 
expresses the fact that a catcher catches all the soil up to 
some height h at various values of r and that if the time 
interval of sampling is small, the amount of soil divided 
by the time interval and the width of the catcher 
approximates qr, the integral of the horizontal 
component of the soil flux in the downwind direction. A 
similar definition describes the integral along a line on S2 

in the r direction, i.e., 

QZ(*, h > = / fz(r, h)dr 
0 

[ 6 ] 

Here we are integrating the vertical component of the soil 
flux vector that exists on S2, i.e., essentially the 
suspension component. 

In the r,z coordinate system, the soil tlux vector is 
expressed as 

f = fr + f u + f z 

where 

f„ = o. 

[ 7 ] 

[ 8 ] 

That is, there is no crosswind component. This is tacitly 
assumed by the fact that one utilizes wind tunnel 
experimental data. The other components are expressed 
as functions, i.e., 

• f r (r , z ) • [9] 

and 

fz = fz(r, z). .[10] 

where it should be noted that the tlux does not depend on 
the u direction. This assumption in conjunction with the 
u component of flux being assumed zero, i.e., equation 
[8], implies that the flow in adjacent r,z planes does not 
interact. 

The continuity equation (Bird et al., 1960, p. 75) 

Fig. 4—A plan view of the control volume 
illustrating the limits of integration on S2 in 
the R,u,z coordinate system, z = h. 

V • f = 

where 

at 
. [ i i ] 

f = fR(R, u, z) + fz(R, u, z) [12] 

when integrated for a steady state condition in the R,u,z 
system becomes 

u2 R2(u) h 
/ / / (V • f) dz dR du = 0 [13] 
u2 RjCuX) 

Figs. 1 and 4 illustrate the limits of integration for 
equation [13]. To integrate equation [13], we shall 
invoke Green's theorem, but first we must develop the 
functional relationships between r and R and qr and qRy 

which will be needed later. 
Fig. 3 depicts the relationship of qr and qR. The 

relationship depicted implies that along the upwind edge 
of the control volume, i.e., Ri(u) (Fig. 4), there exists an 
inflow qR (Ri). This inflow, which came from a region 
below Ri(u), is known before the integration for S2 

commences. This inflow essentially selects an rt and 
clamps the qr and clamps the qr curve to the R axis at R^ 
In Fig. 3, this is depicted by the dashed arrow line. To 
find the q at any other R involves adding the difference in 
R to rx and reentering the qr curve. This is expressed as 
the transformation between r and R, i.e., 

r = R - R ^ u ) + r t .[14] 

where 

^ ( Q R ( R i ) ) - .[15] 

Equation [15] is derived by solving 

qr(r, z) = Q R ( R , U, Z) . .[16] 

for the inverse of qr, i.e., \p. This shifting scheme is 
predicated on the assumption that the inflow of soil from 
one surface can be combined as indicated, i.e., the curve 
does not change because the soil entering came from a 
potentially different surface. If S2 is contained within a 
larger eroding surface of the same type, there obviously 
would be no question. 

Now equation [14] can be represented as 

r = r(R, u) t17 ' ] 
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and when equation [17] is substituted in equation [16], 
we have 

q r ( r (R , u ) , z) = q R ( R , u, z) [18 ] 

To integrate equation [13], we evoke Green's theorem 
(Kaplan, 1952, p. 242, 239) for the integration in R,z, 
i.e., 

R 2 ( u ) h 
/ / (V • f)dR dz = f fn ds = f fR dz - f fz dR [19] 
Rx (u) 0 7 7 7 

where for our rectangular surface the line integrals 
become 

h _ o_ 
f fR dz = / f R ( R 2 , u , z)dz + / fR (Rx , u , z)dz [20 ] 
7 0 h 

and 
R 2 _ R l _ 

f fz dR = / fz (R, u, 0 )dR + / f z (R, u, h )dR [21] 
7 Rx R 2 

It is important to note from the definition of line 
intensities (Table 2 and equations [5] and [6]) that the 
central term of equation [19] can be represented as 

_ n _ n 

f fn ds = L / fn ds = S Aqj [22 ] 
7 i = l 7 i i= l 

and, therefore, a more general concept of q is obtained. 
That is, q is the line integral of the normal component of 
the soil flux vector along any prescribed path. In our 
defining equations we imply a straight path along an 
axis, but because of equation [22], this is not a necessary 
condition. This more general definition will allow for the 
integration of the surface soil flux along a rough surface! 

Substitution of the appropriate qt function into 
equation [20] yields 

^ I R d z = q R ( R 2 , u , h ) - q R ( R p u , h) [23] 
7 

and into equation [21] yields 

f Tz dR = q z ( R 2 , u , 0) - q z ( R i , u , 0) + q z ( R t , u, h ) 
7 

- q z ( R 2 , u , h ) [24] 

The integration of equation [13] is completed by 
integrating equations [23] and [24] with respect to u and 
noting that these new integrals represent the mass flow 
rate from the various surfaces of the control volume, 
e.g., for Si we have from the qz(R,u,0) components in 
equation [24] 

U 2 
m , = / q z ( R 2 , u , 0 ) - q z ( R 1 , u , 0 ) d u [25] 

From equation [13] we note that the integral is zero; 
therefore, we can solve the integrated form of equations 
[23] and [24] for rVi! and obtain equation [26], i.e., 

U 2 _ 
™i = / q R ( R 2 ( u ) , u , h) - q j ^ R ^ u ) , u, h ) d u 

u i 
U 2 _ 

+ / q z ( R 2 <u)< u , h ) - q z C R ^ u ) , u, h ) du [26 ] 

Now from the definition of a line integral (Kaplan, 1952, 
p. 240), we note that equation [26] becomes 

™i = - ^ q R ( R ( u ) , u, h ) d u - ^ q z ( R ( u ) , u, h ) d u [27] 
c c 

where the path C is the circumference of S2. 
By defining 

q = q R + q z [ 28 ] 

and substituting this in equation [27], we get 

mj = - f q (R(u ) , u , h) du . . . [ 29 ] 
C 

Now it remains to convert the q into q in terms of the r,z 
coordinate system. This is done by noting the 
equivalency of the q terms as shown in equation [18]. A 
similar equation exists for the z "component" of q. Upon 
making the appropriate substitutions into equations [28] 
and [29], we have 

mx = - f q ( r (R(u) , u ) , h) du [30 ] 
C 

Equation [30] implies that the tunnel-derived q 
functions, when integrated around the circumference of 
S2 or C, yields the soil loss flow rate from Si, the field! 
While equation [30] represents a usable form for 
determining the soil loss rate, it does not explicitly show 
the dependence on the wind angle, /?, or the field 
perimeter in the nonrotating coordinates of x and y. In 
addition, it is advantageous, if one wants to develop a 
machine solution for ni!, to have the independent 
variable as the arc length around C. Furthermore, for the 
use of the transformation equation, shown later as 
equation [31], the relationship between u and its 
transformed variable must be single-valued. This 
condition is guaranteed by relating u to the arc length, s. 

All three of these conditions are accomplished by a 
change of the variable of integration u to s in the 
following manner. From Kaplan (1952, p. 199) we have 
for equation [30] 

du 
f Q(u, h )du = f Q(u(s), h ) — d s [31] 
C C a s 

From Fig. 2 we see that the transformation equations 
from x,y,z to R,u,z are 

u = - x sin (3 + y cos (3 

R = x cos (3 + y sin (3 [32] 

Furthermore, if one defines any point in x and y in terms 
of the arc length s around C, we see that 

x = x(s) , y = y(s) [33] 

which upon inclusion in equation [32] yields 

u(s) = u(s, j3) = - x(s) sin (3 + y(s) cos (3 [34] 

with a similar equation for R. In order to apply equation 
[31] to equation [30] requires an expression for the 
derivative of u. From equation [34] we see that 

9u dx dy 
— = s in |3+ cosj3 [35] 
9s ds ds 
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The final result of applying equation [35] and [31] to [30] 
yields 

«ii = - ^ q jr[R(u(s, j3)), u(s, j3)] , h, j|- \ — cos (3 -sin/?}- ds 
n ' ' l ds ds * 

NON ERODIBLE 
BOUNDARY 

.[36] 

where now we can see the dependence of mx on: (a) /?, the 
wind angle; (b) the field perimeter, C, expressed in terms 
of s, and (c) the field surface conditions, J. Previously, q 
has been referred to as a function that would be derivable 
from wind tunnel experimental data. We clarify this 
point in the following section. 

Tunnel-derived q Functions 
From equation [36) it is seen that the tunnel-derived 

line-intensity function, q, is used to determine the net 
soil loss rate from Sx. The significance of this can be seen 
by reference to Fig. 3 where a typical qr curve is shown. 
An example of such a curve is used by Chepil (1957) to 
describe the avalanching phenomenon. While no such 
curve has been derived from wind tunnel data, it is 
theoretically possible to do so by feeding in a prescribed 
qr at the inlet to the tunnel and measuring q at the outlet 
(Hagen, 1982). (qz and qR would then be computed, 
based on the size distribution of the sampled particles.) 
By varying the level of the input qr, data would be 
obtained that would descibe a finite difference equation, 
e.g. 

Qr, i+1 (h> = A r g(J*Qr, i) + % , i (h) i = 0, 1, 2 n . . . [37] 

where Ar is the length of the soil sample, i and i + 1 
represent the input and output, respectively, for the i-th 
distance, and g is some unknown functional relationship, 
depending on q v and all the factors implied by J. The 
solution to equation [37] is a sequence which, when 
plotted, would represent points on the qr curve depicted 
in Fig. 3. If Ar is small compared to the expected range of 
R, then equation [37] can be approximated as a 
differential equation, i.e., 

9qr 

—-=G(J, qr) 
3r 

.[38] 

and the curve of Fig. 3 is its solution for a given J. A 
similar curve could be obtained for q2. 

APPLICATIONS 

Two applications of equation [36] will be illustrated. 
The first involves a "scaling up" in that multiple usage of 
the equation is required for a nonhomogeneous field. 
The details have not been determined, hence only the 
concepts are presented. 

The second application relates to the same class of 
fields to which the present wind erosion equation 
(Woodruff and Siddoway, 1965) applies, i.e., an 
isolated, homogeneous rectangular field, where isolated 
implies no soil flowing onto the field. 

The case for a circular, isolated homogeneous field has 
also been solved, but it is not illustrated here. 

Case I 
Fig. 5 illustrates a hypothetical case of a rectangular 

field with two different surface conditions, Jx and J2, 
surrounded by an erodible region, J3. (The J, implies 

LINE 
INTEGRATION 
PATHS 8 
DIRECTION 

Fig. 5—A plan view of the earth surface area 
of Case I. 

both the surface condition and the region.) Intuitatively 
one "sees" at least three applications of equation [36], 
unless the field boundary conditions implied in equation 
[15] can be supplied. This is not too likely, hence they 
must be determined by an application of only the qr 

portion of equation [36] to that edge of J3 that is upwind 
from the field (Fig. 5). Here it should be noted that the 
only application of equation [36] is for the Jx and J2 

regions, i.e., the field for which mt is required. 
Now the sequence of calculation using multiple 

applications of equation [36] and qr is dependent on (31 
For the case depicted in Fig. 5, we note first a solution of 
qr along the common boundary of J !,J3 and J2,J3. Then, a 
line integral around J2, and finally a line integral around 
JL The total m for the field is the sum of the Ji and J2 line 
integrals. 

Obviously, this calculation scheme has increased in 
complexity over the simple case postulated by equation 
[36] due to the multiple application of q and m, plus the 
determination of the region within J3 as a function of p. 
The latter requirement, plus the inability to be able to 
describe the boundaries of J2, J2, and J3 analytically, 
make a numerical solution mandatory. 

Case II 
Fig. 6 depicts a rectangular homogeneous field of size 

i,w and surface conditions J! oriented at some angle a. 
For this case, the field and nonerodible boundaries 
coincide, hence there is no inflow of soil and therefore as 
can be seen from Fig. 3, 

= RX =o .[39] 

and the two axes coincide and are therefore equal, i.e., 

r = R [40] 

^f(w^) 

^ x 

Fig. 6—A plan view of the field surface of 
Case II. 
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Equation [36] requires: 
1. a description of C 
2. the q (r,h,J) functions 
3. r as a function of s and ft 
4. x(s) and y(s) and their derivatives. 

Items 1, 3, and 4 can be determined from Fig. 6, 
although item 3 presents some difficulty. Item 2 must be 
supplied for a J, surface condition. Now if one 
determines items 1,3, and 4 and substitutes these into 
equation [36], one arrives finally, after much tedious 
work, at the following equations: 

!

2w |sin 0| < q > w - (w |sin j3| - £ |cos (3!) q(w) [ 4 1 ] 

A 

2C |cos |8| < q > g + (w Isin 0| - fi |cos 0|) q(fi) [42 ] 

where 

w = w/ |cosj3 | [43 ] 

C = 2/Isin j3| [ 44 ] 

O w [45] 

and the choice between equations [41] and [42] depends 
on ft in the following manner. Select equation [42] if px < 
ft < n~pi or n-\-px < p < 2n-px\ otherwise, select equation 
[41] where 

0, = t an" 1 (fi/w) [46] 

These equations and the decision logic have been 
programmed and tested with an assumed 

q = 1 - e x p ( - 0.2r) [47 ] 

w = 10.0 and fi = 20.0 [48 ] 

for a range of 38 p angles within 0 to 2TT. The program 
compiled on a WATFIV compiler in 0.12 s and it 
executed in 0.07 s. The results could not be checked 
absolutely but appeared reasonable. They repeated 
themselves in a symmetrical fashion with p as expected. 
Values of m ranges between 10.26 and 17.59. Since no 
effort was made to maximize m, a value larger than the 
observed maximum may be possible. 

SUMMARY 

The application of the line integral of the tunnel-

derived q functions around the boundary of a field can 
determine the mass flow rate from the field surface. 
Boundary flow conditions must be either prescribed or 
the boundary for the problem extended to a nonerodible 
boundary. The solution then involves multiple 
application of the line integral to each homogeneous 
region contained within the nonerodible boundary. 

The q functions required must be available from wind 
tunnel data that were obtained for the conditions existing 
on the field. 

The major assumptions implied by using this method 
are: (a) the soil flows in parallel flow planes that do not 
intereact to affect the q functions, (b) the velocity vector 
is uniform across the field, (c) q curves can be combined 
sequentially down the field, and (d) the field is convex in 
shape. 

The complete solution, i.e., the determination of soil 
loss, m, or E, the average flux, depends on integrating m 
with respect to time. That problem appears at present to 
be more difficult than the spacial integration covered 
here. 
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