
ORIGINAL PAPER

A machine vision system for high speed sorting of small spots
on grains

Tom Pearson • Dan Moore • Jim Pearson

Received: 30 September 2011 / Accepted: 11 October 2012 / Published online: 27 October 2012

� Springer Science+Business Media New York (Outside the USA) 2012

Abstract A sorting system was developed to detect and

remove individual grain kernels with small localized

blemishes or defects. The system uses a color VGA sensor

to capture images of the kernels at high speed as the grain

drops off an inclined chute. The image data are directly

input into a field-programmable gate array that performs

image processing and classification in real time. Spot

detection is accomplished by a combination of color

information and a simple, nonlinear spatial filter that

detects small dips in pixel intensity along an image line.

Color information is combined with spatial filtering to

achieve a high level of accuracy. Testing was performed on

popcorn with blue-eye damage, which is characterized by a

small blue blemish on the germ. A two-camera system was

developed to inspect the opposite sides of each kernel as

they slide off the end of a chute. The chute was designed

such that the kernels slide down the chute without tum-

bling, increasing the probability that a spot will be in the

field of view of one of the cameras. The system’s accuracy

is 89 % identification of blue-eye damaged kernels with a

6 % false positive rate. The throughput is approximately

180 kernels per second, or 100 kg/h.

Keywords FPGA � Camera � Color � Imaging

Introduction

The detection of small localized spots (or blemishes) on

agricultural products using machine vision has proven to be

feasible [1–3]. However, this approach becomes compli-

cated when one desires real-time detection and handling at

an economically feasible cost. Commercial color sorters

are widely used to separate grains, nuts, and other products

by color, but they do not have the spatial resolution or

image processing capability to detect small spots on

kernels [4]. An imaging- and hardware-based processing

system was developed that was integrated into a sorting

system for the accurate separation of grains by color and

surface texture [5]. However, this system could not detect

single spots or blemishes on kernels. In an earlier work [4],

it was attempted to address the detection of spots on pop-

corn caused by blue-eye fungal infestation. However, the

accuracy of detecting blue-eye infested kernels was only

74 % with 9 % false positives, and the throughput

was only approximately 35 kg/h. Feedback from the

popcorn industry indicated that the detection accuracy for

blue-eye infested kernels must be approximately 90 % with

approximately 5 % false positives, and the throughput must

be higher before a sorting method would be useful enough

to be implemented.

Some of the problems in the initial effort to detect blue-

eye infested kernels were caused by dark areas on the edges

of the kernels and the random orientation of the kernels in

that system [4]. Moreover, the study did not use color

information to help differentiate blue-eye blemishes from

other darker regions or spots on the kernels because the

processing power of the hardware was insufficient.

The objective of this study was to improve the

throughput and accuracy of a sorter used to detect blue-eye

damaged popcorn kernels through improved lighting and

T. Pearson (&)

USDA-ARS-NPA-CGAHR, Manhattan, KS, USA

e-mail: thomas.pearson@ars.usda.gov

D. Moore

National Mfg., Lincoln, NE, USA

J. Pearson

Short Dog Electronics, Corvallis, OR, USA

123

Food Measure (2012) 6:27–34

DOI 10.1007/s11694-012-9130-3



feeding systems, as well as additional processing enabled

by an field-programmable gate array (FPGA) with more

logic elements and memory to accommodate more math-

ematical operations on the image than previously possible.

The goal was to produce a machine with the accuracy and

throughput required for industry implementation.

Materials and methods

A sorting system with three parallel chutes and two cam-

eras was constructed as shown in Fig. 1. In this system,

bulk kernels were placed into a hopper, and a vibratory

feeder moves the kernels in a single layer onto a chute that

is inclined at 45�. Images of the opposing sides of the

kernels are acquired about 10 mm after the kernels slide off

the chute. A two-camera system was chosen instead of the

three-camera system as used in Pearson [4]. This allowed

parallel chutes to be used to increase throughput, and made

it possible to orient the kernels such that their germ faced

one of the two cameras. This system is similar to that

originally developed [5] except for four important differ-

ences: the feeding system was designed to prevent kernel

tumbling and orient the kernels so the germ faced one of

the cameras, the camera circuit board facilitates more

image processing, the use of two cameras on opposing

sides of the kernels, and the image algorithm used to detect

small spots on the germ of the popcorn caused by blue-eye

fungal infestation. Each of these differences is discussed in

detail below.

Chute design

It was observed that popcorn kernels, while on the vibrat-

ing feeder, almost always orient themselves with their germ

facing up or down. This is because the germ or endosperm

sides of the kernel tend to be flat, and this orientation puts

the kernel into the lowest center of gravity. However,

sorting cannot be performed at the end of the vibrating

feeder, as the kernels are too close to each other, which

prohibits the efficient diversion of defective kernels. An

inclined chute is required to accelerate and separate the

kernels. An aluminum extrusion was designed and fabri-

cated with flat bottom grooves of sufficient width such that

the popcorn kernels could slide down the chute with their

germ facing up or down, thereby matching their orientation

on the vibrating feeder. The depth of the grooves was deep

enough that kernels could slide on their germ or endosperm

side yet not so deep that the kernels could tumble. Since the

grooves of the chute were shallower than the length of the

average kernel, a plastic cover, cut from transparency

plotter film (17702T, Hewlett Packard, Palo Alto, CA) was

placed over the chute and prevented most of the kernels

from flipping completely over. The width and depth of the

grooves in the chute were determined using the width and

thickness of 300 randomly selected popcorn kernels from

two different growing seasons and five different growing

locations. Using these measurements, the groove width was

set at 7.6 mm, which corresponded to the average width

plus three standard deviations of the kernel width. The

groove depth was set at 6 mm, which corresponded to the

average kernel thickness plus three standard deviations.

The average length of the popcorn kernels was 8.1 mm

with a standard deviation of 0.9 mm. Therefore, it would

be impossible for at least 95 % of kernels to tumble down

the chute with this design. To further ensure that kernels

remained in their germ up/down orientation, the top end of

the chute was curved such that the bottom of the chute

grooves follow a 25.4 mm radius, then it was cut so that the

surface at the bottom of the chute grooves would be tangent

to the end of the vibratory feeder as shown in Fig. 2. A

normal practice for a vibratory feeder-chute transition

would be to drop kernels from the feeder onto an inclined

chute. However, this practice can initiate tumbling and

prevent the germ from facing one of the cameras. Finally,

the aluminum chute was polished and hard anodized to

reduce friction and further reduce tumbling.

Sorter design with two cameras

As indicated in Fig. 1, the two-camera arrangement

required the placement of an air nozzle to divert blue-eye

infested kernels in a slightly unusual direction. In most

single channel sorting machines, the kernels were diverted

roughly perpendicularly to their travel path. However, this

was not possible with the two-camera system because it

would cause the diverted kernels to pass over the lower

camera’s field of view. Therefore, the air valve was placed

camera 

camera 

Lens and 
LED 

feeder 

hopper 

fan
chute 

Air 
nozzle 

Fig. 1 Sorting system for the detection of spots. Note that two

cameras are used such that opposite sides of the kernels are imaged

simultaneously

28 T. Pearson et al.

123



in an almost vertical orientation above the kernel flow

stream and diverted the kernels straight down vertically,

while accepted kernels continued on a path approximately

45� from vertical.

Lighting for this sorting system was provided by four

white light emitting diode (LED) arrays placed around the

kernel stream. One light array was placed under the chute.

The LED arrays were constructed from a custom made

aluminum clad printed circuit board (PCB-POOL IMS

(Aluminum), PCB-Pool Beta Layout, San Jose, CA) and

consisted of nine 5 W LEDs (LZ1-00CW05, LEDEngin,

Santa Clara, CA) in a linear pattern spaced 5.5 mm apart.

The aluminum clad PCB provided excellent heat conduc-

tion through the board to help dissipate heat generated

by the closely spaced LEDs. An aluminum heat sink

(MM23600, M&M Metals, Carrollton, Texas) with a fan

(#BG0702-B055-000, NMB Technologies Corporation,

Chatsworth, CA) was subsequently mounted to the PCB on

the side opposite the LEDs. The LEDs had a cool white

color temperature of 5,500 K, which provided good color

rendition, especially for enhancing blue (B) color. A linear

lens was placed over the LED array (C-002, DBM Reflex

Lighting Solutions, Laval, Québec) to diffuse the light

from each LED and focus it onto the point of imaging.

Camera circuit board

A circuit board with an image sensor (KAC-9628, Eastman

Kodak Co., Rochester, NY) directly linked to a FPGA

(EP2C20Q240C8, Altera, San Jose, CA) was designed to

perform the image analysis in real time. A schematic of the

board is shown in Fig. 3. The FPGA programs were written

in the Verilog HDL language and compiled in Quartus II,

which was supplied by the FPGA manufacturer. Compiled

programs were transferred from the PC to the FPGA using

a special communications cable (ByteBlaster, Altera, San

Jose, CA). The image sensor was mounted on the opposite

side of the PCB board from the FPGA to minimize the

distance the data would need to travel and reduce the

potential of data corruption from noise. The support elec-

tronics for the image sensor and the FPGA are those

specified by the manufacturer and were described in detail

in [4]. The FPGA used in this design has 18,752 logic

elements and 234 kbits of memory, as opposed to the

FPGA used in [4], which has only 4,608 logic elements and

117 kbits of memory. The additional logic elements made

it possible to perform more image processing operations,

Fig. 2 Feeder-chute transition. Note that, normally, a plastic cover

would be placed over the chute to prevent the kernels from tumbling.

This cover was removed so that the chute-feeder transition was more

visible

Image sensor
Kodak KAC-9268

Clock, 48MHz

indicator LEDs

Quad encoder, digital readout

(separate board)

RS232 to USB 
conversion

FPGA program 
EEPROM

8-bit data

pclk

hsync

vsync

I2C

Solid-state relays, 
separate board

PC computer

User EEPROM
SPI

RS232

USB

By
te

-B
la

st
er

FPGA
Altera Cyclone II

EP2C20Q240C8

Fig. 3 Block diagram of the

camera system

A machine vision system for high speed sorting 29

123



and the expanded memory enabled the capturing of higher

resolution images and the use of buffers for filtering and

color interpolation.

As in [4], the image sensor operates in near line-scan

mode, which means that each frame in the image is com-

posed of only two lines and successive frames are com-

bined to form a two-dimensional image. When a kernel

enters the field of view, the pixel intensity increases and

triggers the FPGA to commence image capture. Next, the

image is loaded into its on-chip memory. Each image is

stored in a raw (un-interpolated) format with a size of

124 9 124 pixels. Spatial resolution was approximately

0.06 mm/pixel. Each image, at 8 bits/pixel, requires 123

kbits. The memory structure is 8 bit words and requires the

memory to be allocated in 2n bytes; therefore, 214 bytes

were allocated, leaving 1,008 bytes for other image data,

such as image features, that the FPGA extracts from the

images in real time. If desired, the user can connect a PC to

the FPGA through the USB interface and transfer the

images and extra data from the FPGA memory to a PC for

each kernel. As discussed below, the image sensor has 640

pixels per line with a field of view spread over three par-

allel channels that the grain slides down. Three different

regions of interest are centered over the three channels;

each has a width of 124 pixels.

The FPGA and the image sensor are timed with the same

48 MHz clock source. The image sensor divides this clock

frequency by four to obtain a pixel clock frequency of

12 MHz. Because the FPGA clock rate is faster than the

pixel clock rate, it is possible to perform mathematical

operations on the image while pixels are being transferred

from the sensor to the FPGA.

The camera board also has EEPROM memory that the

user can transfer data to through the USB connection. This

data is read by the FPGA during startup and can contain

parameters for kernel classification (such as discriminate

function coefficients) or parameters to adjust the image

sensor at startup (such as the pixel clock rate). In addition,

the camera board has an input for a switch, a quad encoder,

and a pulse width modulated output to a digital LCD dis-

play. The FPGA was programmed to decode the encoder

signal and adjust the PWM signal proportionally to the

encoder number. This number can be used as a user-

adjustable rejection threshold for classification and sorting.

Finally, the camera board has buffered outputs to solid-

state relay triggers that fire air solenoid valves to divert

kernels as discussed in [4].

The image sensor (KAC-9628, Eastman Kodak Co.,

Rochester, NY) has 640 9 480 pixels and uses a color

Bayer filter to sense red (R), green (G), or B light on dif-

ferent pixels as shown in Fig. 4.

The pixel data was digitized on the image sensor chip and

transferred to the FPGA without interpolating the colors.

Normally, color interpolation is performed after an entire

image is acquired, but this approach is not possible for real-

time sorting because all of the image processing must be

performed as the image is being acquired so that a decision

can be made almost immediately after the kernel passes out

of the field of view. This design allows the FPGA to be ready

to process another kernel almost immediately. To interpolate

the colors with minimal delay between kernels, two large

first-in-first-out buffers were created using the FPGAs

memory. The buffer lengths are two lines (1,280 pixels) and

one image line (640 pixels) each. As each pixel is received

from the image sensor, it goes into the buffers, and the pixel

data from exactly two lines above the current pixel location is

outputted by the buffers. The output of these buffers and the

current pixel data are subsequently input into three revolving

memory variables, forming a 3 9 3 pixel array. Color

interpolation is the process of using colors from adjacent

pixels to compute a triplet of R, G, and B pixel values for all

of the pixels in the image. This process can involve a large

number of pixels and numerical operations [6]. To minimize

the amount of computations, the interpolation algorithm

used in this study simply averages the appropriate adjacent

pixels in a 3 9 3 pixel array. With a Bayer color pixel pat-

tern, there are four color arrangement scenarios for pixels in a

3 9 3 pixel array, as shown in Fig. 5.

The center pixel of the 3 9 3 array is simply used as one

of the colors for the RGB triplet. In the cases where a G

pixel is centered, the average of the two adjacent R pixels

and the average of the two adjacent B pixels are used to

complete the RGB triplet. The averages are computed by

summing the pixel values and subsequently right shifting 1

bit to obtain an average. It is known that this operation

truncates the result instead of rounding it. If the center

pixel is R or B, the average of the four adjacent pixels

comprising the other two colors is used to complete the

triplet. In this case, the sum of the 4 pixels is right shifted 2

bits to obtain the average color.

Fig. 4 Bayer filter pattern on the image sensor used. One line is

comprised of green and red pixels, and the next line is blue and green
pixels (Color figure online)

Fig. 5 Possible color arrangements in a 3 9 3 pixel array from raw

color image data (Color figure online)

30 T. Pearson et al.

123



The summing and shifting color interpolation operations

on the 3 9 3 pixel arrays are efficient, can be performed

between pixels being clocked into the FPGA, and do not

slow any of the other image computations. The color of each

pixel in the 3 9 3 array is tracked by counting pixels from

the start of each line and by their relation to the vertical sync

and horizontal sync pulses from the image sensor. Image

lines containing R and G pixels are preceded by both vertical

and horizontal sync pulses, whereas the green–blue lines are

preceded by only a horizontal sync pulse. The only delay

comes from the two line image buffer and is only 0.08 ms.

The kernels travel off the chute at a speed of approximately

2 m/s. Therefore, after the entire image is acquired, the

kernel has only traveled 0.16 mm before all the processing

is complete. Most of the gaps between kernels as they slide

off the chute are greater than 1 mm. If kernels happen to be

touching, the first 0.16 mm of the trailing kernel’s image is

truncated; however, this was considered to be an acceptable

loss of data that probably would not cause the kernel to be

misclassified.

Image processing and classification algorithm

Samples of popcorn from two growing years and from five

different storage bins were collected so that a reasonable

range of kernel color and kernel morphology could be

studied. Samples were drawn from bins known to have high

levels (*5 %) of blue-eye damage. Each sample was

approximately 1 kg and was divided using a Boerner divider

(#34, Seedburo Co., Des Plaines, IL). One of the fractions

was kept for sorter testing, whereas the other samples were

hand inspected, and 100 undamaged and 100 damaged

kernels were pulled from each sample for a total of 2,000

blue-eye and 2,000 undamaged kernels. Un-interpolated

raw images of each kernel were then collected in the two-

camera sorter prototype by feeding the kernels from the

vibratory feeder in the same way as if they were being

sorted. The images were color interpolated off-line using the

same technique as discussed previously and were saved in

BMP format for off-line analysis to develop an image pro-

cessing algorithm for detecting the damaged kernels.

The first off-line analysis performed was to investigate

use of color to distinguish blue-eye damaged regions from

the other parts of the kernel. Each of the saved kernel

images was opened in Adobe Photoshop, and RGB values

were recorded for 10 pixels in the blue-eye region (if

present) and 20 pixels in other areas of the kernel with

similar R values to the blue-eye region. These other regions

were usually located near the edge of the kernel or in areas

with shadows, due to undulations on the kernel’s surface.

On the undamaged kernels, RGB values of edges and

shadow areas were recorded from 30 pixels scattered

around the kernels.

The RGB values for all the pixels were converted to hue,

saturation, and value (hsv) and CIE Lab color values. In

addition, the difference between two of the three color

values for each pixel (R-G, R-B, and G-B) was computed.

The averages and standard deviations of these data are

shown in Table 1. All of the computed color values and

RGB values were saved in a spreadsheet along with their

association with blue-eye damaged regions, shadows, or

other portions of the kernels. Stepwise discriminant

analysis software (Number Cruncher Statistical Systems,

Kaysville, UT) was used to select the single best color

value for distinguishing pixels in blue-eye regions from

other regions on the kernel. The stepwise procedure

selected saturation as the best feature for distinguishing

blue-eye pixels from the other regions of the kernel and

selected R-B for distinguishing blue-eye regions from

shadows. Figure 6 shows a color image of a blue-eye

damaged kernel and an image displaying only the satura-

tion component of the hsv image.

Table 1 Average and standard deviation (in parenthesis) for sample

pixels from different popcorn regions

Color feature Blue-eye Endosperm Shadows

R 122.4 (17.7) 118.6 (43.8) 136.7 (10.6)

G 100.2 (16.1) 86.6 (20.3) 109.9 (9.4)

B 65.1 (10.7) 51.5 (14.8) 69.6 (7.4)

Hue 24.4 (2.4) 21.9 (3.0) 24.1 (1.7)

s 0.47 (0.03) 0.56 (0.07) 0.49 (0.03)

L 43.7 (6.5) 39.4 (10.5) 48.1 (3.8)

a 3.9 (2.0) 8.4 (11.8) 5.1 (1.8)

b 23.2 (3.4) 25.5 (8.3) 26.4 (2.5)

R-B 57.4 (8.6) 67.1 (37.1) 67.1 (6.5)

G-B 35.1 (6.6) 35.1 (7.3) 40.3 (4.8)

R-G 22.2 (4.2) 32.0 (35.2) 26.7 (3.9)

Fig. 6 Color image of a popcorn kernel with blue-eye damage (left)
and the saturation image (right) (Color figure online)

A machine vision system for high speed sorting 31

123



Next, the saturation image was processed to extract

spots indicating blue-eye damage. Note that the germ and

tip cap regions are high in saturation, whereas the blue-eye

region was relatively low. Portions close to the edge of the

kernel can have similar saturation levels to the blue-eye

region. A simple nonlinear filter was developed to distin-

guish blue-eye regions from other regions having similar

saturation levels that can be executed in real time.

The filter simply compares the saturation levels of 5

pixels on the same line, 1 pixel is centered between the

other four, two are spaced only 1 pixel from the center, and

the other two are separated from the center pixel by a larger

gap of pixels. The pixels location in this filter can be

described as {x - gap, x - 1, x, x ? 1, x ? gap} where

x is the pixel location along the image line and gap is

distance in pixels. If the saturation level of least two of the

pixels at x - 1, x, or x ? 1 are less than both of the pixels

at x - gap and x ? gap by more than a preset offset value,

then the center pixel is considered to be part of a blue-eye

region. This effectively identifies a ‘‘dip’’ in the saturation

levels across the pixels that is at least 2 pixels wide and less

than the offset value from the surrounding pixels. Darker

regions along the edge of the kernel are not counted as

blue-eye as they do not have such a dip associated with

them. This simple filter was applied to all the images saved

with gaps ranging from 5 to 15 pixels in single pixel

increments and offsets ranging from 10 to 30 levels of

saturation in increments of four. For each combination

of gap and offset, the pixels that were considered to be part

of a blue-eye kernel were counted. Afterwards, stepwise

discriminant analysis was used to select the best combi-

nation of gap and offset for distinguishing blue-eye dam-

aged kernels from undamaged kernels. In addition to the

counts, the averages and standard deviations of the image

pixels classified as blue-eye from the R-B image were

saved to help reduce false positive errors caused by shad-

ows on undamaged kernels. It was observed that shadow

regions of undamaged kernels had slightly higher levels in

the R-B image and a much lower variance of R-B pixel

values than did the blue-eye regions.

FPGA implementation

The FPGA was programmed to compute saturation values

from the RGB values through a modification of the stan-

dard conversion of the procedure [7] as outlined below.

max ¼ maximum R; G; Bð Þ
min ¼ minimum R; G; Bð Þ

s ¼ max�minð Þ=max

where R, G, and B are the interpolated red, green, and blue

values of the pixel, and s is the saturation. However, for all

pixels corresponding to the kernel in the test set, R is the

maximum and B is the minimum, which simplifies the

saturation computation as shown in Eq. 1.

s ¼ R� Bð Þ=R ð1Þ

All of the R-B values were found to be less than 127 and

so were stored in a 7 bit variable. The division was

performed by left shifting the R-B value 9 bits to obtain a

maximum of a 16 bit number, then dividing by R (an 8 bit

number) using a division function supplied by the Quartus II

software. This resulted in s being scaled between 0 and 255.

The 48 MHz clock was used to perform the division and was

completed under four clock cycles so this computation does

not cause any delay to the image processing. Finally, to

eliminate any effects of background pixels having similar

saturation values to the kernel, all pixels with an R value less

than 15 were set to a saturation value of zero.

The number of pixels classified by the filter as belonging to

blue-eye regions was saved in addition to the sum of the R-B

values and the sum squared of the R-B values of the pixels in

these regions. The average and the variance of the pixels

classified as blue-eye regions were then computed with Eq. 2

using division functions supplied by the Quartus II software.

var(blue-eyeÞ ¼ sum2 � sum�mean
� �

=ðn� 1Þ ð2Þ

where var(blue-eye) is the variance of the R-B image pixels

that were classified as belonging to a blue-eye region, sum,

sum2, and mean are the sum, sum squared, and mean of the

R-B regions classified as blue-eye, respectively, and n is

the number of pixels classified as belonging to a blue-eye

region. Although the computation of variance requires the

computation to be broken into three clock cycles, one for

mean computation, one for multiplication and subtraction,

and the division of a 22 bit number by a 12 bit number, the

time required for the variance computation to execute after

a complete image was acquired was less than 1 ls.

Therefore, for practical purposes, this method did not delay

the ability of the sorter to respond in real time.

Three different image processing modules were pro-

grammed such that the three parallel kernel channels could

be inspected independently of one another. The program

required approximately 72 % of the logic elements avail-

able on the FPGA and 68 % of the memory. The EEPROM

on the FPGA board was programmed with a default

threshold level to classify kernels, and this level was read

immediately after powering up. The threshold level was

programmed to be adjustable with the attached quad

encoder but was not used in the sorter testing experiments

as discussed below.

Sorter testing

After programming the FPGA, the 2,000 kernels used to

develop the image algorithm were run individually down

32 T. Pearson et al.

123



the sorter a second time. As computed in real time by the

FPGA, the count of blue-eye pixels, mean, and variance

from the R-B image were recorded. These data were used

to set threshold levels for separating the unsorted samples.

Sorting was performed on the non-hand-picked 500 g

portions of the samples that were collected from the five

separate bins over two different years. After sorting, the

accepted and rejected streams from each sample were

inspected, and the number of blue-eye kernels in each

fraction was recorded.

Results

From the 2,000 images, it was determined that the optimal

pixel gap and pixel saturation offset to use in the filter were

10 pixels and 24 levels of saturation, respectively. Apply-

ing these parameters to the training set, the blue-eye

kernels had an average count of 146 blue-eye pixels, and

the undamaged kernels had an average count of 30 blue-

eye pixels. The minimum count for all of the kernels with

blue-eye damage was 15, whereas 49 % of the undamaged

kernels had counts less than 15. Inspection showed that

92 % of the blue-eye damaged kernels had counts greater

than 60, whereas 87 % of the un-damaged kernels had

counts less than or equal to 60, indicating a false positive

rate of 13 % if a threshold of 60 was used. Most of the

undamaged kernels with greater than 60 pixels classified as

blue-eye were due to shadows on the kernels from irregular

kernel surface morphology. The false positive rate could be

reduced by using var(blue-eye) in conjunction with the

number of pixels that were classified as blue-eye. The study

showed that 79 % of the undamaged kernels with blue-eye

counts between 60 and 90 had var(blue-eye) values of 35 or

less. Conversely, 87 % of the actual blue-eye damaged

kernels had var(blue-eye) values greater than 35. There-

fore, a three-step classification scheme was used as

follows:

(1) If the blue-eye pixel count [90, then classify the

kernel as blue-eye damaged.

(2) If the blue-eye pixel count is between 60 and 90, and

var(blue-eye) [35, then classify it as blue-eye; other-

wise classify it as undamaged.

(3) If the blue-eye pixel count B60, then classify it as

undamaged.

This classification scheme correctly classified 92 % of

the blue-eye damaged kernels and 94 % of the un-damaged

kernels from the 2,000 hand-picked kernels from the

training set.

After the classification scheme was programmed into the

FPGA, the 10 un-picked 500 g popcorn samples were

sorted. After inspecting these samples, it was found that, on

average, 90 % of the blue-eye damaged kernels were

removed, and 94 % of the un-damaged kernels were

accepted. The sorting accuracies among the ten samples

ranged from 85 to 94 % for blue-eye damaged kernels and

92 to 96 % for undamaged kernels. Some kernels tended to

be more round in shape, and they did not orient as well as

the others; this was one reason for the sorting accuracy

differences among the samples. The two samples with the

most round-shaped kernels had the lowest accuracy for

blue-eye damage but the highest accuracy for un-damaged

kernels. The accuracies for all ten samples are shown in

Table 2.

Discussion

The accuracy of this sorter was comparable or better than

previous technologies for separating blue-eye damaged

popcorn. The original FPGA-based sorting system (Pearson

[4]) achieved an average accuracy of 83 % compared with

92 % for the current study. The primary reasons for the

better accuracy are the use of saturation and R-B values

from the shadows; the original system used only the R

pixels in the image. The LED lights used on this sorter

assist with color fidelity; the original sorter used halogen

lamps, which do not have much B light energy, and the

color rendition in the original sorter was not as good.

Finally, saturation and R-B are less prone to slight varia-

tions in lighting and kernel shade than absolute pixel

intensity, which was used in the original sorter. There were

some differences in sorting accuracy among samples from

different bins and growing seasons. It is possible that slight

adjustments to the thresholds could optimize the sorting

accuracy for kernels of different sizes and shapes. Although

the FPGA was programmed to allow threshold adjustment

Table 2 Sorting accuracies for the ten popcorn samples tested sorted

from highest blue-eye accuracy to lowest

Sample Years Blue-eye

accuracy (%)

Un-damaged

accuracy (%)

Average

accuracy (%)

1 2007 94 94 94

2 2008 93 93 93

3 2008 92 92 92

4 2008 90 93 92

5 2007 90 95 93

6 2007 89 93 91

7 2008 88 94 91

8 2007 87 94 91

9 2008 87 96 92

10 2007 86 96 91

Average 90 94 92

A machine vision system for high speed sorting 33

123



through the quad encoder, no tests were performed to

determine if this would be useful for some of the samples.

Future testing is planned in a popcorn processing facility to

determine the long-term robustness of the image process-

ing algorithm and hardware, as well as adjustments to the

thresholds to optimize sorting accuracy for a specific bin.

This sorter has a much higher throughput than the original

sorter (100 vs. 35 kg/h) because it has three parallel

channels compared with one in the original sorter. The cost

to fabricate this sorter is similar to, if not less than, that of

the original sorter.

The average classification accuracies achieved by this

sorter for blue-eye and undamaged kernels were only

slightly lower (92 vs. 94 % overall) than those obtained by

using frequency spectra features extracted from images and

classifying them with a support vector machine (SVM) [8].

Furthermore, the Yorulmaz study used higher resolution

images that were obtained from stationary kernels. Nev-

ertheless, an FPGA is suitable for implementing an SVM,

and this will be the focus of future study because the

training of the SVM is more straightforward and may make

this method of detecting small spots more easily adaptable

to other commodities.

Although this study focused on blue-eye damaged

popcorn, the sorter could possibly be used for other

applications such as separating grains or legumes with

small blemishes on them, for example, mottled lentils and

insect infested beans and grains. The precise image filter

and the thresholds used might need to be changed. The

implementation of hsv chromaticity should also lead to an

improvement in the sorting of grains by color over previous

systems. Future studies will involve making the system

more easily adaptable to other commodities.

Conclusion

The goal of this study was to develop a sorter that can

identify approximately 90 % of blue-eye damaged popcorn

kernels with a false positive rate under 5 %. This was

almost accomplished, as this sorter could identify 90 % the

blue-eye damaged kernels with a 6 % false positive rate. It

is possible that the implementation of an SVM with more

features could reduce the error rate and thereby achieve the

accuracy goal. However, the current design is notably

simple, and the image processing is expected to be robust

because it is based on saturation and R-B images. Long-

term testing should be performed in a popcorn processing

facility to determine the sorter’s actual performance over

long periods of time.

References

1. J.R. Mathiassen, E. Misimi, A. Skavhaug, A simple computer

vision method for automatic detection of melanin spots in Atlantic

salmon fillets. Machine vision and image processing conference,

2007. IMVIP 2007. International. pp. 192–200 (2007)

2. K. Mertens, B. De Ketelaere, B. Kamers, F.R. Bamelis, B.J.

Kemps, E.M. Verhoelst, J.G. De Baerdemaeker, E.M. Decuypere,

Dirt detection on brown eggs by means of color computer vision.

Poult. Sci. 84, 1653–1659 (2005)

3. G. Venora, O. Grillo, R. Saccone, Quality assessment of durum

wheat storage centres in Sicily: evaluation of vitreous, starchy and

shrunken kernels using an image analysis system. J. Cereal Sci.

49(3), 429–440 (2009)

4. T.C. Pearson, Hardware based image processing for high-speed

inspection of grains. Comput. Electron. Agric. 69(2009), 12–18

(2009)

5. T.C. Pearson, High-speed sorting of grains by color and surface

texture. Appl. Eng. Agric. 26(3), 499–505 (2010)

6. J. P. Allebach, Image scanning, sampling, and interpolation, in

Handbook of Image and Video Processing, ed. by A. Bovik

(Academic Press, San Diego, 2000), pp. 629–643

7. E. Reinhard, E.A. Khan, A.O. Akyuz, G.M. Johnson, Color Imaging,
Fundamentals and Applications (A.K. Peters Ltd., Wellesley, 2008)

8. O. Yorulmaz, T.C. Pearson, A.E. Çetin, Cepstrum based feature

extraction method for fungus detection. Proc. SPIE 8027, 80270E

(2011). doi:10.1117/12.882406

34 T. Pearson et al.

123

http://dx.doi.org/10.1117/12.882406

	A machine vision system for high speed sorting of small spots on grains
	Abstract
	Introduction
	Materials and methods
	Chute design
	Sorter design with two cameras
	Camera circuit board
	Image processing and classification algorithm
	FPGA implementation
	Sorter testing

	Results
	Discussion
	Conclusion
	References


