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Mycotoxins are the toxic metabolites of certain filamentous fungi and have been demonstrated to cause
various health problems in humans, including immunosuppression and cancer. Among them, the aflatox-
ins have received greater attention because they are potent carcinogens and are responsible for many
human deaths per annum, mostly in non-industrialized countries. Various regulatory agencies have
enforced limits on the concentrations of these toxins in foods and feeds involved in international com-
merce. Hyperspectral and multispectral imaging are becoming increasingly important for rapid and non-
destructive testing for the presence of such contaminants. However, the high number of spectral bands
needed may render such image acquisition systems too complex, expensive and slow. Moreover, they
tend to generate overwhelming amount of data, making effective processing of this information in real
time difficult. In this study, a two-dimensional local discriminant bases algorithm was developed to
detect the location of the discriminative features in the multispectral data space. The algorithm identifies
the optimal passband width and center frequencies of optical filters to be used for a multispectral imag-
ing system. This was applied to a multispectral imaging system used to detect aflatoxin-contaminated
hazelnut kernels and red chili peppers. Classification accuracies of 92.3% and 80% were achieved for afla-
toxin-contaminated and uncontaminated hazelnuts and red chili peppers, respectively. The aflatoxin con-
centrations were decreased from 608 to 0.84 ppb for tested hazelnuts and from 38.26 to 22.85 ppb for red
chili peppers by removal of the nuts/peppers that were classified as aflatoxin-contaminated. The algo-
rithm was also used to classify fungal contaminated and uncontaminated hazelnut kernels, and an accu-
racy of 95.6% was achieved for this broader classification.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Food items are infected by various types of fungi during growth,
harvesting, drying, possessing and storage, resulting in mycotoxin
formation. There are over 300 different mycotoxin species, and
most of them are produced by Aspergillus-, Penicillum-, Fusarium-,
Alternaria-, Cladosporium- and Rhizopus-type fungi. Aspergillus
fungi can produce aflatoxins that are associated with toxicity and
carcinogenicity in animals (Dichter, 1984). Due to aflatoxin’s car-
cinogenic effects and frequent occurrence in agricultural products,
its concentration in foods is restricted by regulations. The allowed
aflatoxin levels in Europe for seeds and spices are 4 and 10 ppb,
respectively (European Commission Regulation, 2006). The corre-
sponding aflatoxin limit is 20 ppb for all food items traded in
USA and Turkey. All consumed and exported foods are expected
to fulfill these limits. Currently, the aflatoxin contamination of a
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food lot is determined by chemically analyzing the samples taken
from the lot. However, aflatoxin contamination is highly heteroge-
neous, and contaminated seeds are often unevenly distributed
(Schatzki and Pan, 1996). Therefore, it is more appropriate to de-
tect and remove these contaminated seeds by non-invasive meth-
ods instead of discarding the entire lot.

Several methods have been developed to measure the fungal or
toxin contamination non-invasively. Spectrophotometers have been
used to identify aflatoxin contamination by detecting symptoms of
fungal damage to food items. A spectrometer measures reflected
(R) or transmitted (T) light at various spectral bands. Near infrared
(NIR) frequency bands can be used for food safety inspections.
Pearson et al. (2001) used the spectral reflectance ratio (R735/
R1005 nm) for distinguishing highly contaminated corn kernels
(>100 ppb) from those contaminated below 10 ppb and reached a
95% correct classification rate. They could also identify the highly
contaminated (>100 ppb) yellow corn kernels at a rate of 98% with
spectral absorbance at 750 and 1200 nm. Hirano et al. (1998) used
the transmittance ratio (T700/T1100 nm) to identify contaminated
peanut kernels among uncontaminated ones. However, the
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Table 1
Number of aflatoxin-contaminated kernels and the mean aflatoxin level (ppb) of the
three groups of hazelnuts. ND (aflatoxin <4 ppb), sd = aflatoxin standard deviation.

P4 ppb ND(<4 ppb) Average

‘Untreated Control’
(104 nuts)

2 102 0.7 ppb (sd:40,4)

‘Water Control’ (102 nuts) 15 87 7.5 ppb (sd:941)
‘A. parasiticus – Inoculated’

(79 nuts)
79 0 2227 ppb (sd: 1,8. 106)
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acquisition of the complete spectrum from a spectrophotometer is
time consuming and requires expensive instruments.

In addition to the NIR frequency bands, the bright greenish-
yellow fluorescence (BGYF) test is a simple and widely used
method for the detection of aflatoxin contaminated food items
(Bollenbacher and Marsh, 1954). The fluorescence is produced by
the reaction of peroxidases in living plants with kojic acid, which
is formed by Aspergillus types (Marsh et al., 1969) or other fungi
(Jacks, 2005). The number of exhibited BGYF particles is taken as
an indication of aflatoxin contamination. The BGYF test is used to
detect aflatoxin-contaminated pecans (Tayson and Clark, 1974),
corn (Wicklow, 1999), figs (Steiner et al., 1988; Doster and
Michailides, 1998), pistachios, Brazil nuts (Hadavi, 2005 and
Steiner et al., 1992) and other contaminated agricultural commod-
ities (Bothast and Hesseltine, 1975). Several spectral bands, includ-
ing the 420, 440, 450 and 490 nm bands, were utilized individually
to measure the BGY fluorescence (Tayson and Clark, 1974; Fersaie
et al., 1978). However, Wilson (1989) found that aflatoxin-
contaminated corn kernels do not always exhibit BGYF due to
the insufficient amount of peroxidase in kernels. Moreover, other
types of fungi that do not produce aflatoxin may yield kojic acid
in foods and may be classified as aflatoxin-contaminated by the
BGYF test (Jacks, 2005). Therefore, more advanced techniques
should be utilized to obtain the spectral bands that include more
discriminative information.

The determination of the best spectral bands to be used for con-
taminated foodstuffs is an important problem that spectroscopy
and spectral imaging may help to solve with more research efforts.
The collection of whole spectra or several images at different spec-
tral bands is a simple matter in a laboratory setting with limited,
stationary samples. Collecting spectra or multispectral images on
moving products in a food processing stream and performing anal-
ysis and sorting of the product in real time is a much more complex
problem. Currently, the problem can be simplified somewhat if a
small subset of spectral bands that will enable good classification
accuracy with minimal data processing is determined. The useful
spectral bands are dependent on the investigated food item, and
these are usually selected by trial and error or exhaustive search
methods. In this study, a faster method is explored, which uses a
local discriminant bases (LDB) algorithm to extract the most
discriminative features along the spectral- and spatial-frequency
axis of the multispectral data for classification. The developed
algorithm also identifies the optical filter center frequency and
bandwidth (FWHM) that provide optimal discrimination in the
multispectral imaging system. This method is validated for detect-
ing contaminated hazelnut kernels and red chili peppers with their
multispectral images.

The sample preparation and data acquisition together with data
preprocessing are described in Section 2. The developed feature
extraction and selection algorithm are described in Section 3.
Experimental results and conclusions are given in Sections 4 and
5, respectively.

2. Sample preparation and data acquisition

It is necessary to obtain food samples from both contaminated
and uncontaminated classes to identify the difference between
the samples. However, it is difficult to find hazelnuts that are
naturally contaminated with aflatoxin. There are no formal studies
on the probability of incidence of a contaminated hazelnut kernel
but for pistachio nuts, it is estimated that incidence of aflatoxin-
contaminated nuts is between one in 21,000 and 25,000 nuts
(Sommer and Fortlage, 1986). To have an ample number of con-
taminated nuts for this study, artificially contaminated nuts were
used. Unlike hazelnut kernels, aflatoxin-contaminated red chili
pepper could be obtained directly from the market.
2.1. Hazelnut kernel preparation

Hazelnuts collected from the ‘‘Ordu’’ region of Turkey during the
2007 harvest were used in this study. The collected nuts were raw
(un-roasted) but sun dried down to 6% moisture, which is the
moisture level they would be stored at until processing. The hazel-
nuts were shelled and the hazelnut kernels were divided into three
main classes of ‘Untreated Control’, ‘Water Control ‘and ‘A. parasiti-
cus–Inoculated’. The ‘Untreated Control’ class, is comprised of 104
untreated hazelnuts, which are considered the control group of
hazelnuts. A total of 102 hazelnuts, were suspended in pure water
for 30 s for ‘Water Control’ to obtain fungal infections from fungal
spores naturally present on the hazelnuts and 79 hazelnuts were
suspended in an aqueous suspension of Aspergillus parasiticus
(NRRL 2999) spores for 30 s for ‘A. parasiticus–Inoculated’ class.
The mold spore concentrations on the ‘A. parasiticus–Inoculated’
hazelnuts were in the range of 105–108 spores, depending on the
surface area of the kernels. The soaked kernels (A. parasiticus–
Inoculated and Water Control) were incubated at 28 �C with 90%
humidity for nine days, separately. Mold growth was visually ob-
served on all of the incubated hazelnuts, including both ‘A. para-
siticus–Inoculated’ and ‘Water Control’. Therefore, all were
considered fungal contaminated. At the end of day nine, all of the
kernels were roasted at 140 �C for 15 min. The roasting process re-
moved the seed coat as well as the mold spores over the kernel sur-
faces. These hazelnuts were sent for chemical analysis to test for
aflatoxin contamination by using liquid chromatography (Senyuva
and Gilbert, 2005) after the multispectral images was acquired.
Aflatoxin concentrations over 4 ppb were encountered in two of
the 104 ‘Untreated Control’, 15 of the 102 ‘Water Control’ and in
all of the ‘A. parasiticus-Inoculated’ hazelnuts (Table 1). The mean
aflatoxin level of the ‘A. parasiticus–Inoculated’ hazelnuts is signifi-
cantly higher than that of the other two classes.

While the method of soaking nuts post harvest to create fungal
infection and aflatoxin contamination is obviously not natural,
such occurrences do happen in normal hazelnut handling and stor-
age. Hazelnuts have moisture contents of 25–30% or more when
harvested; therefore, before storage, they are dried in the sun until
their moisture contents are below 6%, at which point they can be
stored safely. However, some nuts will not be completely dried
and some will be rained on. Nuts are usually quite warm when
placed into storage, increasing the possibly some condensation to
occur as the grain bin cools and is aerated. This then can create
moist pockets in the storage bin where fungi can thrive, while
other nuts in the bin are unaffected. Therefore, the method of
water soaking nuts to create fungal infection is realistic. Soaking
nuts with high amounts of Aspergillus spores simulates effect of
nuts that may have grown near insect infested nuts and were sub-
jected to considerable mold spore pressure.

2.2. Chili pepper preparation

A total of 40 ground chili pepper samples sold as previously
packaged or unpackaged were collected from nine different cities
of Turkey. The samples were sent for chemical analysis (Senyuva



Table 2
Number of aflatoxin-contaminated chili pepper samples and the average aflatoxin
level (ppb) of these samples in two groups.

P10 ppb ND(<10 ppb) Average

‘UnCont’ 0 16 0.7 ppb (sd:40,4)
‘Cont’ 24 0 7.5 ppb (sd:941)
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and Gilbert, 2005) after multispectral imaging (Table 2). The chili
pepper samples were assigned to two classes by considering their
aflatoxin concentrations with a threshold of 10 ppb, which is the
limit defined by EU commission. Samples (16 out of 40) were as-
signed to the uncontaminated class (UnCont), and the remaining
24 samples were assigned to the contaminated class (Cont).

Each of the chili pepper samples were also divided into three
sub-samples and imaged separately to increase the number of
training samples in the experiments. That gave us a total of 120
(= 40 � 3) pepper images to be explored. The sub-samples of five
main samples were also chemically analyzed individually to verify
that the sub-samples of the main sample have similar aflatoxin
contamination levels and would be assigned to same class as con-
taminated or un-contaminated.
2.3. Multispectral data acquisition

A multispectral imaging system (Fig. 1), including a DMK
41BF02 digital charged coupled device (CCD) camera, two UV-A
light sources that have peak intensity at 365 nm, bandpass filters,
Fig. 1. A schematic diagram of multispectral imaging system.

Fig. 2. A few spectral band images for the A. parasiticus–Inoculat
a filter wheel to hold the filters, a UV cabinet to block ambient light
and a computer for recording the images, was used for image
acquisition.

Samples are screened with 12 different filters, some at 400–
510 nm with 10 nm full width half maximum (FWHM) and others
at 550 and 600 nm with 70 and 40 nm FWHM, respectively. The re-
flected light from the samples was captured and recorded with an
IC capture image acquisition tool (The Imaging Source Inc.). The
optimal exposure time of the camera was experimentally detected
as 0.3 for the hazelnuts samples. However, this time is increased to
2 s for red chili pepper. Pepper samples absorb a larger portion of
the incident light and do not reflect sufficient light for camera. A
few of the spectral band images for hazelnuts and red chili peppers
were shown in Fig. 2 and in Fig. 3, respectively

2.4. Data preprocessing

For the hazelnut images, binary masks were required to extract
the hazelnut from the background and the pixels of the regions
where the inner skin was not removed during roasting. The images
taken at 550 nm were appropriate for mask generation. This band
clearly separates the nut from background and unskinned regions.
However, other spectral bands could be used as well. The mask was
further improved by erosion and dilation operations (Gonzales and
Woods, 1992). These morphological operations removed undesired
defects due to thresholding. The generated mask was applied to all
spectral images of the hazelnut. Instead of a whole hazelnut image,
the masked spectral images were divided into square regions
(91 � 91pixels). Each region was regarded as an independent sam-
ple and was later used for voting on the class membership of a gi-
ven hazelnut kernel.

3. Feature extraction and selection

Saito and Coifman (1994) developed the local discriminant
bases (LDB) algorithm to obtain localized information for signal
and image classification. The LDB algorithm first decomposes the
time or frequency axis with a wavelet or trigonometric representa-
tion in binary tree format. The nodes in the binary tree are then
pruned with their distances between classes. The original LDB
algorithm decomposes the time axis by local cosine packets or
the frequency axis by wavelet packets. However, Ince et al.
(2006) showed that decomposition along two axes (time,
frequency) is crucial to get the exact location of discriminating
ed, Water Control and Untreated Control groups of hazelnuts.



Fig. 3. A few spectral band images of the Cont and UnCont groups of chili pepper
samples.
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features. The LDB algorithm has previously been adapted to hyper-
spectral images by representing the hyperspectral curve of pixels
as a one-dimensional signal and this signal is decomposed either
along the frequency axis (Kumar et al., 2001; Hsu and Tseng,
2002) or along the spectral axis (Cheriyadat and Bruce, 2003).

In this study, the original LDB algorithm is extended to a three-
dimensional space in which the two of the dimensions correspond
to the spatial-frequency axis and the third dimension is along the
spectral axis. The algorithm (Fig. 4) starts with generating two fea-
ture trees along the spectral and spatial-frequency axes to localize
the features in all three dimensions (spectral and spatial fre-
quency). These trees are then pruned sequentially to extract the
most discriminative features for classification. The extracted fea-
tures are then selected by feature selection algorithms to obtain
the highest classification accuracy with the least number of fea-
tures. The location of the selected features can be used to design
a more compact multispectral image acquisition system in which
only the specified optical bandpass filters will be employed. In this
Fig. 4. Block diagram of the proposed LDB based

Fig. 5. L = 4 binary level
way, the highest classification accuracy could be accomplished by
a fast and inexpensive image acquisition setup.

3.1. Feature tree generation

The first step in the algorithm is to obtain an energy-based can-
didate feature set by generating two feature trees along the spec-
tral and spatial-frequency axes sequentially. In the first tree, the
reflectance energies e(i) of S(62L) spectral images fi (x, y) of size
M � N are placed on the (lowest) Lth level depth of the tree from
left to right:

eðiÞ ¼ 1
MN

XMN

x¼1;y¼1

jfiðx; yÞj i ¼ 1;2; . . . S ð1Þ

Fig. 5 illustrates an L = 4 binary level spectral band tree having
16 spectral bands (SB). For the case of S < 2L, the remaining nodes
at the Lth level can be set to null to complete the binary tree. The
energy value of the mother nodes e(mother) at the higher levels
are assumed to be the sum of the energies of their child nodes.

eLðmotherÞ ¼
X

j

eðjÞ j ¼ 1;2; . . . J ð2Þ

where J is the number of children of the mother node at level L.
The second feature tree is generated only for each spectral band

images (SB1–SB16 in Fig. 5) along the spatial-frequency axis in a
quad-tree structure by decomposing the images into h levels of full
wavelet subbands as in Fig. 6. Wavelet transforms (Mallat, 1998)
retain the original image information and completely represents
the image in subbands of (LL, LH, HL and HH), where the first char-
acter shows the filtering (low or high) along the row and the sec-
ond character shows the filtering through the image columns.

3.2. Adaptive pruning in spectral and spatial-frequency axis

The feature extraction step (Fig. 4) includes two consecutive
pruning operations first on the feature tree generated along the
spectral (Fig. 5) and second on the tree generated on the spatial-
frequency axis (Fig. 6). The pruning operation is basically per-
formed by comparing the mother nodes with their children nodes
by starting from the bottom level. When compared, the algorithm
keeps the mother node if its discrimination value is higher than all
of its children. Otherwise, the children nodes survive as nodes with
high discrimination potential to be compared at the higher tree
level. We used the Euclidean distance between the cumulative
discriminative feature extraction algorithm.

spectral band tree.



Fig. 6. Full wavelet decomposition quad tree up to h = 2 levels.
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probability distribution functions (cdf) of the nodes as the discrim-
ination value. However, other distance metrics can be used as well.
The first pruning operation may fuse some of the spectral bands to
generate the bands with more discriminative potential. To further
progress on these generated spectral bands, the wavelet feature
trees (Fig. 6) of these merged spectral bands are merged in parallel
by averaging to obtain the corresponding spatial-frequency tree for
these spectral bands. The second pruning operation is performed
along the spatial-frequency axis on these previously generated
spectral bands to localize the discriminative information in multi-
spectral data. Pruning along the spectral axis has implications on
the hardware of the machine vision system since it will reduce
the number of optical filters needed and the number of images
to be acquired. Pruning along the spatial-frequency axes has impli-
cations on the ‘signal processing’ step which is mainly applied on
the images that are already acquired.

3.3. Feature selection and classification

The pruning operations provide the best segmentation in both
the spectral- and spatial-frequency axes but do not eliminate the
irrelevant features in the tree. Therefore, the extracted features
are then sorted by feature selection methods. The algorithm also
tracks the location of these features in the data space to make
elimination in the data space possible. Different algorithms,
including statistical or chemometrics based, could be used for
feature subset selection (Clemmensen et al., 2010). However, we
used three simple feature selections algorithms; Fisher-based
(FFS), wrapper based and forward selection (Hastie et al., 2001)
in order to emphasize the feature extraction step. The FFS algo-
rithm, which is an example of a filter model, considers the feature
class distances by

F ¼ jl1k � l2kj
r2

1k þ r2
2k

ð3Þ

where lik and rik are the mean and variance of the kth feature of the
ith class, respectively. The features ranked by the FFS algorithm are
incrementally concatenated to the feature vector to obtain the
minimum number of features for best classification. Unlike the
FFS algorithm, the wrapper-based feature selection algorithm
searches for the best feature subset giving the best classification
accuracy among all of the subset combinations. In a wrapper-based
algorithm, the data of the investigated feature subset is randomly
divided into train, validation and test sets. An initial machine learn-
ing algorithm is trained with the train set and tested with the
validation set. The classification accuracy of the testing gives the
merit of the investigated feature subsets and the subset providing
the minimum error is selected as the optimal subset. This optimal
subset is then tested with an independent test set to evaluate the
actual error.

In contrast to the wrapper model, the forward 325 selection
starts with a subset including the most discriminative feature.
Then this subset is extended incrementally with new features
which supply the best combination with the current subset.
In addition to these three feature selection algorithms that were
applied on pruned features; we fed the candidate feature directly
into the classifier by omitting the pruning step (Fig. 6) for compar-
ison purposes. The candidate features were either all fed directly
into the classifier or their dimension is first reduced by Principal
Component Analysis (PCA) and then fed into the classifier.

As the classifier, the standard linear discriminant analysis (LDA)
was used. This simple classifier was selected to highlight the con-
tribution of the feature extraction step. A more complex classifier
like ANN or SVM could give higher classification rates but they
could conceal the contribution of the feature extraction.
4. Experimental results

The algorithm is tested for detecting aflatoxin-contaminated
red peppers and hazelnut kernels. The hazelnut kernels were also
classified as fungal infested (Infested) or uninfested (UnInfested)
without considering the aflatoxin concentration, as described in
Section 2.1. The data sets in the experiments were randomly
divided into four sets for four fold cross-validation. The algorithm
was developed with three sets (training) and tested with the
remaining set. The classification results shown are the mean of
the fourfold classification when performed for all combinations
of training and validation sets.

Initially, feature trees are generated first along the spectral-
frequency axis and then along the spatial-frequency axis. The
reflectance energies of 12 spectral images (400–510 nm) are placed
on the 4th level of the binary tree from left (SB1) to right (SB12)
(Fig. 5). The remaining four spectral band nodes (SB13–SB16) at
the 4th level are set to null to complete the binary tree. Conse-
quently, the spatial-frequency quad feature tree is generated by
decomposing the spectral bands using a full wavelet transform.
We used the Daubechies 8-tap filter for decomposition. Other
wavelets can be used as well. For each spectral image, a total of
21 subband images were constructed by a two level decomposition
(Fig. 6), giving a total of 252 spatial frequency patterns for 12 spec-
tral bands. We used three levels decomposition for chili peppers
because it has more textural information than the hazelnuts. That
gave us 85 subband images for each spectral band with a total of
1020 features. The pruning along both axes revealed the location
of the most discriminative features of the multispectral data. The
pruned features are then selected by feature selection algorithms
before classification. As an alternative, the 192 (16 � 12) candidate
features which were obtained by the 16 lowest level wavelet sub-
band images (Fig. 6) for each 12 spectral band images were fed in
classifier directly or after a dimension reduction by PCA. The can-
didate feature size is 768 (64 � 12) for chili peppers that were ob-
tained by three level wavelet decomposition.
4.1. Classification of fungal infested and uninfested hazelnut kernels

In this problem, the hazelnut kernels are to be categorized into
uninfested (UnInfested) or fungal-infested (Infested) classes using
the multispectral images discussed earlier. The ground truth for
the categories was based on the treatments: none (UnInfested) or
water or fungal spore soaking (Infested). As stated in Section 2.1,
all kernels in the Infested category have obvious fungal infection,
although the fungi infesting the ‘Water Control’ class was likely a
different species of Aspergillus. The kernels that were not treated
with water or fungal spore solution followed by incubation were
assigned to the UnInfested class because there was no sign of fungal
infestation. Thus, the 79 ‘A. parasiticus-Inoculated’ nuts were added
to the 102 ‘Water Control’ nuts to make 181 nuts in the Infested
class, while 104 ‘Untreated Control’ nuts comprised the UnInfested
classes.



Table 4
Classification error with pruned and unpruned (candidate) features for the aflatoxin
contaminated hazelnut kernel separation.

Feature selection/
reduction Method

Number of
features

Classification
error (%)

Candidate feature set (192) PCA 4 10.34
No reduction 192 15.31

Pruned feature set (12) Fisher 4 10.34
Forward selection 4 10.87
Wrapper 4 10.96

Bold number indicates the minimum error among the others.

Table 5
The classification error curves on FFS- and Wrapper-based feature selected features
for chili pepper separation problem.

Feature selection/
reduction method

Number of
features

Classification
error (%)

Candidate feature set (768) PCA 6 47.56
No reduction 768 32.63

Pruned feature set (12) Fisher 6 20.83
Forward selection 6 26.38
Wrapper 6 20.83

Bold number indicates the minimum error among the others.
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A total of 12 spectral-frequency features were obtained from
252 features after the pruning operations. We observed that the
spectral bands of 440–470 and 480–510 nm are pruned along the
spectral axis, and these spectral bands are not decomposed into
spatial-frequency subbands. However, the spectral bands of 430
and 440 nm are decomposed into subbands in the spatial-
frequency axis. The 12 extracted features are then ranked by feature
selection algorithms. The order of features may vary depending on
the feature selection algorithm, and this selection may affect the
classification accuracy. The selected features were fed into a linear
classifier one by one and the lowest classification errors of 4.34%
and 5.45% were obtained by five Fisher based and wrapper-
selected features, respectively (Table 3). For the candidate feature
set, the accuracies of 6.37% and 8.69% were achieved by using all
192 features or five PCA component obtained by projecting of all
192 features, respectively.

When individual kernel classification results using the five FFS
features were analyzed, it was observed that 10 of the 181 Infested
hazelnuts and three of the 104 UnInfested hazelnuts were misclas-
sified. However, none of the misclassified Infested hazelnuts
contained aflatoxin above 4 ppb. The mean aflatoxin level of the
test set, including hazelnuts from both the Infested and UnInfested
groups, was 608 ppb, and the algorithm classified the kernels into
two classes whose average aflatoxin contamination levels were
1095 and 0.7 ppb.
4.2. Classification of aflatoxin-contaminated and uncontaminated
hazelnut kernels

In this problem, the hazelnuts are categorized by assigning the
kernels with over 4 ppb aflatoxin concentration to Afla+ and the
remaining kernels to the Afla� group without considering their
fungal infestation (Table 1). There are a total of 96 Afla+ class ker-
nels, of which two are from the ‘Untreated Control’ class, 79 are
from the ‘A. parasiticus–Inoculated’ class and 15 are from the
‘Water Control’ class, and 189 Afla- group hazelnuts, of which
102 are from the ‘Untreated Control’ class and 87 are from the ‘A.
parasiticus–Inoculated’ class. The average aflatoxin levels of the
Afla+ and Afla� are 1883 and 0.06 ppb, respectively. For this data
set, the spectral pruning in the feature extraction step pruned
the spectra bands of 420–430, 440–450 and 480–510 nm but kept
the spectral bands of 400, 410, 460 and 470 nm intact. The
subbands in the spatial-frequency axis of all spectral bands are
completely pruned except for the 420–430 nm spectral bands.
The selected features are fed into the linear classifier with four
fold validation. However, lower classification accuracies (Table 4)
are obtained compared with the classification of the Infested and
UnInfested classes (Section 4.1).

A minimum accuracy of 10.34% was achieved with four Fisher
selected features. The PCA gave the same error with four compo-
nents. However, it used all 192 features for getting these four com-
ponents When the classification results with the four FFS-selected
Table 3
Classification error with pruned and unpruned (candidate) features for the fungal
infested hazelnut kernel separation.

Feature selection/
reduction
Method

Number of
features

Classification
error (%)

Candidate feature set (192) PCA 5 8.69
No reduction 192 6.37

Pruned feature set (12) Fisher (FFS) 5 4.34
Forward selection 5 7.23
Wrapper 5 5.44

Bold number indicates the minimum error among the others.
features are analyzed, it was observed that the algorithm misclas-
sified 3 of the 96 Afla+ hazelnuts and 39 of the 189 Afla� hazelnuts.
The average aflatoxin level of the tested hazelnuts decreased to
0.84 ppb from the group average of 608 ppb by removal of the Afla+
hazelnuts. Therefore, it is recommended to separate Infested ker-
nels from hazelnut lots to decrease aflatoxin levels because the
contaminated kernels that are obtained by soaking in pure water
(‘Water Control’) are likely to contain aflatoxin. Additionally, fungal
infested nuts are not preferred by consumers.
4.3. Classification of aflatoxin-contaminated and uncontaminated red
chili peppers

In this problem, the pepper samples are categorized into Afla+
and Afla� classes. Of the pepper samples, 72 having aflatoxin con-
centrations over 10 ppb were assigned to the Afla+ class, and the
remaining 48 samples were assigned to the Afla� class. The prun-
ing operation in feature extraction step pruned the spectral bands
of 400–430, 440–470 and 500–510 nm; however kept the spectral
bands of 480 and 490 nm intact. The subbands in the spatial-
frequency axis of the 400–470 nm spectral bands are completely
pruned. The extracted features were then selected and fed into
classifier. The feature map above is obtained by leave-one out
principle for chili pepper.

The lowest classification errors of 20.83% were obtained with
six wrapper- and FFS-selected features (Table 5). However, the
highest classification error was obtained with six PCA features.

When the classified results with the six wrapper-based feature
selection ordered features are analyzed, it is observed that 9 of the
72 Afla+ peppers and 15 of the 48 Afla� peppers are misclassified.
The mean aflatoxin level of samples decreased to 22.85 ppb from
the group average of 38.26 ppb by separation of the aflatoxin-
contaminated pepper samples.
5. Conclusions

An LDB-based feature extraction and selection algorithm for the
analysis of hyperspectral data along the spectral and spatial-
frequency axes is developed. The algorithm was implemented on
consecutive multispectral images. The developed algorithm
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extracts the relevant features of the data and adaptively decreases
the feature dimension and the corresponding data by pruning in
feature space. The pruning operation along the spectral axis
identified a small subset of optical filters required for a high speed
image acquisition system. The features giving the highest classifi-
cation accuracy can be extracted from only two or three spectral
bands, which make the design of practical food inspection and
sorting systems simple and effective. The developed algorithm
was tested on detection of contaminated hazelnuts and red chili
peppers. The algorithm classified the red chili peppers into afla-
toxin-contaminated and uncontaminated classes with 79.17%
accuracy so that the aflatoxin level of the test set is decreased to
22.85 from 38.26 ppb by the removal of the ones that are classified
as aflatoxin-contaminated. The hazelnut kernels are independently
subjected to two different classifications: first, on the detection of
aflatoxin-contamination and, second, on the detection of fungal
infestation without considering their aflatoxin concentrations. A
correct classification accuracy of 92.3% is achieved for classifying
the hazelnuts as aflatoxin-contaminated (>4 ppb) or not (<4 ppb).
Better classification accuracy of 95.67% is achieved for classifying
the hazelnuts as fungal infested or not. The average aflatoxin level
of the tested hazelnuts is decreased to 0.84 and 0.7 ppb from
608 ppb by removal of the ones detected as aflatoxin-contami-
nated and fungal infested, respectively. It is recommended to sep-
arate fungal infested (Infested) kernels from hazelnut lots to
decrease the aflatoxin level because the fungal infested kernels
are the high risk ones, and these nuts are also not preferred by
consumers.
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