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Near-infrared reflectance (NIR) spectroscopy can be used for fast and 
reliable prediction of organic compounds in complex biological samples. 
We used a recently developed NIR spectroscopy instrument to predict 
starch, protein, oil, and weight of individual maize (Zea mays) seeds. The 
starch, protein, and oil calibrations have reliability equal or better to bulk 
grain NIR analyzers. We also show that the instrument can differentiate 
quantitative and qualitative seed composition mutants from normal sib-
lings without a specific calibration for the constituent affected. The ana-
lyzer does not require a specific kernel orientation to predict composition 

or to differentiate mutants. The instrument collects a seed weight and a 
spectrum in 4–6 sec and can collect NIR data alone at a 20-fold faster 
rate. The spectra are acquired while the kernel falls through a glass tube 
illuminated with broad spectrum light. These results show significant 
improvements over prior single-kernel NIR systems, making this instru-
ment a practical tool to collect quantitative seed phenotypes at high 
throughput. This technology has multiple applications for studying the 
genetic and physiological influences on seed traits. 

 
Scoring plant phenotypes is a technological bottleneck for 

functional genomics and systems biology (reviewed in Long et al 
2008). Phenotypes can be scored at qualitative or quantitative 
levels with the quantitative phenotypes being more useful for 
genome-wide or systems analyses. Consequently, a large number 
of “omics” technologies have been developed to quantify tran-
script, protein, and metabolite levels. These technologies gener-
ally require chemical extraction of a tissue sample to quantify the 
compounds of interest. Seed phenotypes pose a particular chal-
lenge for “omics” analysis. A primary phenotype of seeds is the 
accumulation of storage molecules, including starch, storage pro-
teins, and oils. Each of these classes of organic molecules has 
differing chemical properties and requires a different strategy to 
analyze. For most species, the chemical analysis of any one class 
of storage molecule requires one or more seeds, effectively de-
stroying the individual plant under analysis. 

Near-infrared reflectance (NIR) spectroscopy is a nondestruc-
tive technology that can report the major seed storage molecules 
simultaneously (reviewed in McClure 2003; Osborne 2006). NIR 
is also a low-cost and high-speed analytical method with broad 
applications in plant biology (Montes et al 2007). NIR absorption 
bands are due to overtone and combination vibrations of C-H, N-
H, O-H, and S-H functional groups, which enable the prediction 
of diverse organic compounds. NIR spectra from biological mate-
rials have multiple overlapping absorbance patterns due to the 
complex mixture of organic compounds in these samples. Multi-
variate statistical approaches are required to interpret NIR spectra 
from biological samples. Cereal grain spectra typically are meas-
ured from fine ground powders or as bulk whole grains (Orman 
and Schuman 1991). NIR data are collected from these types of 
samples by placing them in cups or cuvettes with a defined sur-
face area and path length. Both ground and whole grain methods 

utilize multiple seeds and can only give average composition es-
timates for the seed sample. Single-seed NIR is necessary to 
measure phenotypes in segregating populations. 

NIR transmittance and reflectance spectroscopy on intact seeds 
has been widely used for classifying seeds for particular attrib-
utes. Maize kernels were classified according to characteristics 
such as starch composition (Campbell et al 2000), hardness (Ro-
butti 1995), avidin (Kramer et al 2002), or mycotoxin levels 
(Pearson et al 2001; Dowell et al 2002). Applications for measur-
ing wheat attributes include wheat classes (Delwiche and Massie 
1996), color (Wang et al 1999), insect infestation (Rigdway and 
Chambers 1996), hardness (Maghirang and Dowell 2003), starch 
composition (Delwiche et al 2006, 2009), or vitreousness (Dowell 
2000; Wang et al 2002). 

The prediction of constituent concentrations using NIR spec-
troscopy on intact single seeds has been most successful for 
plants with small seeds and relatively uniform distribution of seed 
constituents, such as rapeseed (Velasco et al 1999a; Velasco and 
Möllers 2002; Hom et al 2007), wheat (Delwiche 1998; Delwiche 
and Hruschka 2000), and sunflower achenes (Velasco et al 1999b; 
Velasco et al 2004). Cereal grains have a starchy endosperm and 
an oil-rich embryo. The maize embryo is larger than embryos of 
other cereal crops, resulting in an asymmetric distribution of pro-
tein, starch, and oil within the kernel. Compositional asymmetry 
results in distinct NIR spectra when the germinal or abgerminal 
side of the kernel is presented to the spectrometer (Orman and 
Schumann 1992; Weinstock et al 2006; Janni et al 2008). Maize 
kernels are also variable in size and shape and present differing 
surface areas and path lengths for spectral collection. Near-
infrared transmittance (NIT) spectroscopy can account for the 
asymmetrical distribution of seed constituents because the spectra 
are collected from light passing through whole kernels. However, 
attempts to predict moisture and oil using single-kernel NIT have 
had mixed success (Finney and Norris 1978; Orman and Schu-
mann 1992; Cogdill et al 2004). 

An alternative approach is to obtain consistent reflectance spec-
tra. Baye et al (2006) developed calibrations utilizing spectra col-
lected from the abgerminal side of the kernel, while Weinstock et 
al (2006) used hyperspectral imaging to select NIR data from 
relevant sections of the kernel. Although these approaches yield 
acceptable composition predictions, they are low-throughput. The 
kernels need to be hand-placed in a specific orientation on the 
spectrometer or hand-placed in custom spacing grids to ensure 
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even spacing for hyperspectral images. Janni et al (2008) devel-
oped a system that uses an airstream to tumble individual kernels 
during spectral acquisition and obtain average reflectance over the 
whole kernel surface. This system gave accurate percent oil pre-
dictions in single seeds. However, the tumbling kernel analyzer 
requires 12 sec to collect a single spectrum and is not engineered 
for continuous data collection. Armstrong (2006) developed a 
NIR instrument that collects a spectrum from a seed as it falls 
through a glass tube. The glass tube NIR instrument accurately 
predicts soybean seed protein levels and can collect spectra from 
10 seeds/sec. 

Here we describe a modification to the glass tube NIR instru-
ment that integrates seed weight measurements with spectral ac-
quisition. In contrast to our previous work (Baye et al 2006), 
hand-orientation of kernels is not necessary. Instead of acquiring 
NIR spectra from just one side of the kernel, this kernel analyzer 
averages the reflectance from the top and bottom of the glass tube 
to reduce variability due to the orientation of the kernel as the 
spectrum is collected. The objectives of this research were to de-
termine whether the glass tube NIR instrument can be used to 
develop reliable predictions for percent starch, protein, and oil 
levels in single maize kernels and to evaluate its feasibility for 
separating kernels from segregating ears into mutant and normal 
kernel classes. Earlier work suggested that calibrations for relative 
composition of single seeds are technically challenging (Baye et 
al 2006). Our results show that this spectral acquisition design 
overcomes many of the technical challenges for simultaneously 
measuring protein, starch, and oil and is an effective seed phe-
nomics technology. 

MATERIALS AND METHODS 

Maize Samples for Calibrations 
Kernels were sampled from 120 different maize ears from 84 

maize genotypes/accessions. The majority of seeds were sampled 
from the germplasm accessions used to develop the maize nested 
association mapping panel (Yu et al 2008), including environ-
mental replicates that showed differences in kernel composition 
based on bulk NIR analysis (E. Buckler, personal communica-
tion). Additional kernel composition variation was included by 
sampling the Illinois long-term selection strains with altered pro-
tein and oil levels (Moose et al 2004), kernel mutants with known 
effects on starch and protein (e.g., sh2, o2, bt1), and seed mutant 
lines from the UniformMu transposon-tagging population (McCarty 
et al 2005). The specific UniformMu seed mutants were selected 
based on longitudinal hand-sections that showed visual differ-
ences in the relative sizes of starchy endosperm, vitreous endo-
sperm, and embryo. Finally, several inbred lines commonly used 
for genetic studies were included. Three kernels per ear were ran-
domly selected, resulting in a set of 360 kernels. Due to the 
amount of meal required for starch, protein, and oil analysis for 
each constituent, a separate set of kernels was used to collect NIR 
and chemical composition analytical data. 

Seed Weight and Near-Infrared Data Collection 
Individual kernels were manually dropped onto a microbalance 

consisting of a MK4 microbalance head and a Stabal control unit 
(CI Electronics, Salisbury, UK). The kernel weight was automati-
cally recorded using custom software written in Microsoft Visual 
Basic 6.0. After a stable seed weight was recorded, the software 
triggered a solenoid to open an airstream and blow the kernel into 
the glass tube NIR instrument. The NIR instrument collected the 
spectra essentially as described in Armstrong (2006). Briefly, the 
kernel fell through a glass tube (12 mm × 60 mm), which was 
illuminated by multiple halogen lamps. Reflected light was col-
lected through two 400-micron fiber-optic cables positioned at the 
top and bottom ends of the glass tube. The fiber-optic cables were 
attached to an InGaAs array based spectrometer (NIR-256-1.7T1., 

Control Development, South Bend, IN). A single NIR spectrum 
was recorded with a 40-msec integration time. Reflectance values 
were recorded at 1-nm intervals between 907 and 1689 nm and 
absorbance values were calculated as log(1/R). The custom Mi-
crosoft Visual Basic 6.0 program then centered each spectrum to 
an arbitrary mean of 1. A dark background and a reference spec-
trum (Spectralon, Labsphere, North Sutton, NH) were measured 
before recording kernel spectra. Each kernel was measured three 
times to allow an average of the three NIR spectra to be used for 
model development. 

Constituent Analysis 
After NIR data collection, the single kernels were transferred to 

2-mL microcentrifuge tubes with two 7.9-mm steel ball bearings 
and ground for 5–10 min in a MiniBeadbeater-96 (BioSpec Prod-
ucts, OK). Starch was determined by an enzymatic hydrolysis of 
the maize meal with thermostable α-amylase and amylogucosi-
dase followed by a colorimetric determination of glucose with a 
glucose oxidase-peroxidase (GOP) system (Karkalas et al 1985). 
α-Amylase solution (1.5 mL, Sigma-Aldrich A3403, from Bacil-
lus licheniformis, 19,896 U/mL; diluted 1:15 in 50 mM MOPS 
buffer, pH 7.0) and 2 mL of water were added to 50 mg of maize 
meal, mixed thoroughly, and the suspension was kept at 85°C for 
40 min under constant stirring. After cooling to room temperature, 
the volume was adjusted to 100 mL with water, and 1 mL of this 
solution was combined with 1 mL of amyloglucosidase solution 
(Sigma-Aldrich A1602 from Aspergillus niger, 1888 U/mL; di-
luted 1:200 in 200 mM sodium acetate buffer, pH 4.5). The mix-
ture was incubated overnight at 55°C. Glucose was determined by 
mixing 0.2 mL of the sample with 1.5 mL of GOP reagent (700 U 
glucose peroxidase, Sigma-Aldrich P8125 from horseradish, 113 
U/mg; 10,000 U of glucose oxidase, Sigma-Aldrich G6641 from 
Aspergillus niger, 21,200 U/g; 0.22 mol p-hydroxybenzoic acid, 
and 0.40 mmol p-aminoantipyrine were dissolved in 1 L of 1M 
phosphate buffer, pH 7.5) and incubating at 55°C for 30 min. 
Sample absorbance was measured at 510 nm against 0.2 mL of 
water mixed with 1.5 mL of GOP reagent using a Beckman DU-
50 series spectrophotometer. A reagent blank absorbance was deter-
mined by a parallel extraction without the addition of maize meal. 
The reagent blank absorbance was subtracted from each sample. 
The glucose content in the extract was multiplied by 0.9 for the 
calculation of starch. Each kernel was assayed between two and 
four times and an average of the analytical replicates was used for 
the calibration. 

For protein analysis, ground maize meal was dried for five days 
at 60°C and the moisture content was determined by weighing sam-
ples before and after drying. Five seeds were deleted from the 
protein set due to errors in recording weights either before or after 
drying, leaving 355 samples for calibration development. Total N 
content was measured from the dried material by combustion 
analysis with a CN analyzer (NCS 2500, CE instruments, Milan, 
Italy) and the protein content was calculated as N × 6.25. The 
protein content on a fresh weight basis was used for calibration. 

Seed oil content was measured as described previously (Zheng 
et al 2008). Oil content of individual air-dried seeds was deter-
mined with a PCT-20/20B NMR analyzer (Process Control Tech-
nology, Ft. Collins, CO). Each kernel was measured in three 
replicates and the average oil value was used for the calibration. 
Pure maize oil was used as a standard. 

Calibration and Validation 
Partial least squares (PLS) regression models for the prediction 

of starch, protein, and oil were developed using The Unscrambler 
9.8 (Camo Software, Oslo, Norway). Before calibration, the ab-
sorbance values from 910 to 1689 nm were pretreated with sev-
eral approaches. Individual spectra and the average of the three 
NIR spectra from individual kernels were used for model devel-
opment. Both data sets gave similar calibrations and only the av-
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erage data are reported below. In addition, calibrations were de-
veloped for either mean-centered or log(1/R) spectra with both 
data sets yielding similar calibrations. Only the calibrations for 
the mean-centered spectra are reported here. The average spectra 
and corresponding analytical data used for the calibrations are 
available upon request. The effects of several spectral filters were 
also tested. First- and second-derivative spectra were calculated 
using a range of gap and segment sizes (5–30 nm). The gap and 
segment sizes had little effect on calibration model performance. 
Results are only reported for first derivatives calculated as λn = 
(xn+10 – xn-10)/20 and second derivatives calculated as λn = (xn+20 – 
2xn + xn-20)/400. Standard normal variate (SNV) transformation 
and multiplicative scatter correction (MSC) were calculated in The 
Unscrambler program (default settings). 

The spectra and analytical data were sorted according to re-
spective constituents and every third sample was removed to gen-
erate an external validation set. Chemometric models were first 
developed on the calibration set of 240 spectra and analytical 
values. The models were evaluated through cross-validation using 
eight randomly selected segments. One-eighth of the calibration 
set was removed and predicted using a model based on the re-
maining samples. The process was iterated until all samples were 
removed and predicted. An optimal model for each pretreatment 
was selected using default software settings to minimize the num-
ber of PLS factors and the prediction error sum of squares. The 
cross-validation predictions were evaluated using the coefficient 
of multiple determination (R2) and the standard error of cross-
validation (SECV). The optimal model was used to predict the 

TABLE I
Analytical Reference Values of Kernels Used to Calibrate the NIR Spectrometer 

Constituent n Mean SD SDRa Range r2 with Seed Wt 

Relative (% fresh weight)       
Starch 360 55.3 7.2 2.20 17.3–70.0 0.20 
Protein 355 13.8 2.7 0.36 4.1–29.8 0.030 
Oil 360 4.2 2.2 0.08 0.7–19.1 4 × 10–4 

Absolute (mg/kernel)       
Starch 360 127.8 47.4 5.20 15.0–255.5 0.94 
Protein 355 31.7 10.9 0.77 8.7–63.9 0.76 
Oil 360 9.5 5.7 0.16 1.2–50.0 0.26 
Seed weight 360 227.6 72.6 0.70 69.2–423.6 na 

a Standard deviation of repeatability. 

TABLE II 
Partial Least Squares (PLS) Regression Statistics Using Optimal Spectra Data Pretreatments 

  Spectra Data PLS Cross-Validationa External Validationb 

Constituent Unit Constituent Pretreatmentc Factors R2 SECV SEP SDR 

Relative (% fresh weight) Starch 1Der+MSC 7 0.66 4.24 3.72 3.19 
 Protein 2Der+MSC 6 0.88 0.93 0.81 0.72 
 Oil 1Der+MSC 7 0.86 0.79 0.79 0.66 
Absolute (mg/kernel) Starch 1Der 7 0.85 18.34 18.20 16.27 
 Protein 1Der 8 0.89 3.65 3.82 3.51 
 Oil 1Der 10 0.85 2.19 2.74 2.36 
 Seed weight 1Der 7 0.86 27.16 27.60 25.63 

a R2, coefficient of multiple determination; SECV, standard error of cross-validation. 
b SEP, standard error of prediction; SDR, standard deviation of repeatability. 
c 1Der, first derivative; 2Der, second derivative; MSC, multiplicative scatter correction. 

TABLE III 
Partial Least Squares (PLS) Model Statistics of Protein Values Using Multiple Spectral Data Pretreatments 

  PLS Cross-Validationa External Validationb 

Constituent Unit Pretreatmentc Factors R2 SECV R2 SEP 

Relative (% fresh weight) None 11 0.82 1.14 0.75 1.34 
 MC 12 0.80 1.21 0.86 1.03 
 MC, 1Der 8 0.81 1.17 0.87 1.00 
 MC, 2Der 8 0.81 1.18 0.87 0.99 
 MC, SNV 11 0.88 0.92 0.87 0.97 
 MC, MSC 10 0.86 0.99 0.88 0.95 
 MC, 1Der, MSC 8 0.89 0.90 0.89 0.90 
 MC, 2Der, MSC 6 0.88 0.93 0.91 0.81 
Absolute (mg/kernel) None 11 0.87 3.93 0.80 4.79 
 MC 4 0.88 3.86 0.87 3.94 
 MC, 1Der 8 0.89 3.65 0.88 3.82 
 MC, 2Der 5 0.88 3.86 0.83 4.63 
 MC, SNV 6 0.77 5.24 0.73 5.72 
 MC, MSC 9 0.81 4.81 0.83 4.51 
 MC, 1Der, MSC 7 0.84 4.40 0.85 4.28 
 MC, 2Der, MSC 6 0.82 4.58 0.82 4.66 

a R2, correlation of multiple determination; SECV, standard error of cross-validation. 
b SEP, standard error of prediction. 
c MC, mean centering; 1Der, first derivative; 2Der, second derivative; SNV, standard normal variate transformation; MSC, multiplicative scatter correction. 
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samples in the external prediction set, and the model performance 
was further evaluated based on the r2 of the observed and pre-
dicted analytical values as well as the standard error of prediction 
(SEP). The standard deviation of repeatability (SDR) of the NIR 
measurement was estimated by applying the PLS models on the 
three single NIR scans of the 120 samples of the prediction sets. 
The repeatability error was calculated as the square root of the 
average variances of the predicted constituent. 

Detection of Seed Composition Mutants 
Homozygous seed composition mutants in defined inbred back-

grounds (W22, W23, or W64A) were ordered from the Maize 
Genetics Cooperative Stock Center. These mutants were crossed 
to their respective inbred parents. The resulting heterozygous F1 
plants were self-pollinated to generate F2 populations segregating 
for each mutant. Seed weight and NIR data were collected from 
96 F2 kernels for each mutant. When possible, the mutant and 
normal sibling seeds were segregated by visual selection and NIR 
data were collected from 72 normal and 24 mutant kernels that 
were indexed in 48-well microtiter plates. For each F2, the NIR 
absorbance values from 910 nm to 1690 nm were analyzed by 
principal components analysis (PCA) (SAS Institute, Cary, NC). 
Individual seed phenotypes were then confirmed either with a 
second visual score or a destructive analysis. The bt1, bt2, sh1, 
sh2, su1, and ae mutants were re-scored by visual inspection. The 
extent of vitreous endosperm development was assayed by longi-
tudinal sections of the families segregating for the h1, fl1, fl2, and 
o2 mutants. The wx1 phenotype was scored by cutting the crown 
of the kernel and staining the endosperm with IKI solution (1% 
iodine, 2% potassium iodide) for 30 sec. 

RESULTS AND DISCUSSION 

Single-Kernel NIR Predicts Seed Composition 
We modified the single-seed NIR instrument developed by 

Armstrong (2006) by integrating a microbalance to record a seed 
weight along with a NIR spectrum from individual seeds. The 
instrument was then calibrated to determine its utility for predict-
ing maize kernel composition. NIR calibrations are most robust 
when developed with samples that have a full range of possible 
compositions (reviewed in Williams and Norris 1987). We chose 
maize samples to cover a broad range of kernel composition and 
genetic diversity. The starch, protein, and oil levels from this 
germplasm collection had large ranges both in terms of relative 
(%) and absolute (mg/kernel) values (Table I). All of the kernels 
were stored in controlled temperature and humidity environments, 
and moisture content was much less variable (7.0 and 10.9%) than 
the other measured constituents. The data for each constituent 
were separated into a calibration subset and an external validation 
subset for partial least squares (PLS) regression. As expected, the 
Illinois long-term selection lines gave extreme values for percent 
protein and oil. To ensure that both the calibration and validation 
sets have a similar range and variance, the data sets were sorted 
according to their constituents, and every third sample was re-
moved to generate the validation sets. In addition, the 120 maize 
ears used were randomly separated into calibration and validation 
samples to ensure that kernels in the two sets were derived from 
different ears. Models developed for a random partitioning of ears 
to the validation set resulted in similar calibration statistics (data 
not shown), indicating that the sorting procedure did not lead to an 
overfitting of the PLS models. PLS prediction models were calcu-

 

Fig. 1. Scatter plots of NIR-predicted and analytical reference values for starch, protein, and oil. Each plot shows values for the external validation set 
and a linear regression trend line. All NIR-predicted values used optimal PLS regressions in Table II. A–C, Predictions for relative constituents. D–F,
Predictions for absolute constituents. 
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lated for both relative and absolute constituent data. Spectral fil-
ters can be used to remove systematic variation in the NIR spectra 
that is not related to analytical data (Williams and Norris 1987), 
and several spectral pretreatments were investigated. We tested 
the effects of first and second derivatives, standard normal variate 
(SNV) transformation, multiplicative scatter correction (MSC), as 
well as combinations of derivatives and MSC on PLS model per-
formance. For all constituents, the use of spectral filters had only 
minor effects on PLS model performance (Table III) for the pre-
diction of percentage and protein (mg). For the relative analytical 
data, the most predictive models were generated using pretreat-
ments of first or second derivative and MSC (Table II). For abso-
lute analytical data, first derivatives resulted in the best calibra-
tions. Except for percent starch, the optimal PLS calibrations all 
have good correlations between the predicted and analytical val-
ues with R2 values of 0.79–0.91. Similar errors in the calibration 
and external validation data sets indicate that the models are not 
over-fit to the calibration data (Table II). Scatter plots of the ob-
served and predicted values for the external validation data sets 
indicate that the models do not have strong bias. Overall, the PLS 
results suggest that the single-seed NIR instrument can predict 
percent protein and oil with good accuracy and is useful for clas-
sifying kernels into groups of low, medium, and high % starch. 

Importantly, the percent protein and percent starch calibrations 
are similar to previously reported NIR calibrations for bulk whole 
maize grain (Orman and Schumann 1991). The oil calibration 
reported here is significantly improved over NIR bulk grain pre-
dictions (Orman and Schumann 1991) and near-infrared transmis-
sion spectroscopy of single grain (Orman and Schuman 1992) but 
gives lower accuracy when compared with the lower throughput 
tumbling-kernel NIR system (Janni et al 2008). 

Single-Kernel NIR Reports Both Kernel Size  
and Percent Constituents 

PLS calibrations for absolute (mg/kernel) protein and oil con-
tent performed similar to percent calibrations, but absolute starch 
could be predicted with higher accuracy than percent starch. The 
spectra also predict seed weight with similar levels of accuracy to 
other absolute constituents (Table II, Fig. 2A). These results raise 
the issue of whether the PLS calibrations primarily use seed 
weight to predict absolute seed compositions. Absolute levels of 
starch have a high correlation with seed weight (Table I), and a 
linear regression with seed weight can predict the absolute levels 
of starch better than the PLS models. However, absolute protein 
and oil are not as well correlated with seed weight, and the PLS 
models predict absolute protein and oil with far greater accuracy 
than is possible with a linear regression on seed weights. In addi-
tion, seed weight has low correlations with the relative levels of 
protein, oil, and starch (Table I), and the relative levels of the 
constituents are not correlated to each other (e.g., Fig. 2B). Yet, 
the NIR spectra can predict relative levels of all of the major stor-
age molecules (Table II). These observations indicate that single-
kernel NIR reports both seed weight and relative levels of the 
seed storage molecules independently. It was not obvious how the 
NIR spectra could report seed weight, absolute constituents, and 
relative constituents simultaneously. We investigated the basis of 
this phenomenon in more detail. 

The relative absorbance and transmittance of near-infrared  
radiation is based on the Beer-Lambert law (Siesler et al 2002). 
The Beer-Lambert law states that the radiation absorbed by a sub-
stance is related to the product of the molar absorptivity, the con-
centration, and the sample path length. Absorbance values are 
additive, and a spectrum of a complex sample mixture represents 
a weighted sum of the spectra of the pure constituents. The molar 
absorptivity for each kernel constituent is constant, while the con-
stituent concentration is variable from sample to sample. In bulk 
or ground grain NIR analysis, the light scattering of diffuse re-
flectance does not allow the Beer-Lambert Law to be applied 
directly to the spectra. Nevertheless, a fixed volume of grain or 
meal is placed in the spectrometer to maintain a constant path 
length (e.g., Orman and Schumann 1991). In single-kernel NIR, a 
spectrum is recorded from an intact kernel. Maize kernels show 
wide ranges in size, which affects path length. Larger, heavier 
kernels will have longer path lengths than smaller, lighter kernels. 

To separate the effects of changes in constituent concentration 
from changes in sample path length, we compared spectra from 
kernels with similar weight but different relative chemical compo-
sition (Fig. 3A). We also compared spectra from kernels with 
different weights but similar percent composition (Fig. 3B). In 
both comparisons, the spectra show differences in absorbance 
pattern, illustrating that both constituent concentrations and sam-
ple path lengths affect the spectra. 

MSC and SNV are two approaches to remove effects due to 
light scattering and differences in spectroscopic path lengths (Ge-
ladi et al 1985; Barnes et al 1989). MSC and SNV spectra pre-
treatments gave the best PLS calibration statistics for relative 
constituents, but had negative effects on calibrating absolute con-
stituents and seed weight (Table III and data not shown). These 
results suggest that SNV and MSC remove relevant information 
about absolute composition. Based on these observations, we 
suggest that path length effects are the primary source for seed 

 

Fig. 2. A, Scatter plot and linear regression trend line of the NIR-pre-
dicted and analytical reference values for seed weight. NIR-predicted 
values are from the external validation set using the optimal PLS regres-
sion described in Table II. B, Scatter plot showing the relationship be-
tween average starch and protein reference values of the 120 sampled
ears. 
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weight information in the NIR spectra. Constituent concentration 
absorbance effects are likely to be the source for predicting the 
relative levels, and a combination of these two spectroscopic ef-
fects is needed to predict absolute levels of seed constituents. 

Single-Kernel NIR Differentiates Seed Composition Mutants 
Our PLS calibrations indicate that the glass tube NIR instru-

ment is sensitive to a large range of possible changes in seed 
composition. We next investigated whether it was possible to 
identify seed phenotypic variation with the glass tube instrument 
when no calibration or analytical reference data are available. 
Several groups have reported that qualitative changes in grain 
composition are possible to identify with NIR data using principal 
component analysis (PCA) (Campbell et al 2000; Jacobsen et al 
2005; Delwiche et al 2006; Munck 2007). Most of these studies 
compared seeds from different plants. Spectra from independent 
ears are influenced by environment and background effects, both 
of which could alter chemical components and hence NIR spec-
tral data. It is difficult to determine whether the underlying cause 
of any NIR spectral differences observed in plant-to-plant com-
parisons are due to multiple environmental and genetic back-
ground effects or due to the qualitative phenotype of interest. As a 
hypothetical example, an apparent difference between lines that 

have high versus low amylose content may be driven by genetic 
background differences in protein content. 

Single-seed NIR provides the opportunity to control for genetic 
background and environmental effects by comparing seeds from a 
single ear of maize. We tested a series of maize seed composition 
mutants known to reduce the amount of starch (bt1, bt2, sh2, sh1), 
to alter starch composition (wx, ae, h1, su1), or to change protein 
composition (fl1, fl2, o2) (reviewed in Gibbon and Larkins 2005; 
Balconi et al 2007). Each mutant was in a defined inbred back-
ground, and we developed segregating F2 families by crossing to 
the corresponding inbred. We investigated a variety of spectral 
pretreatments before PCA. For all samples, we found that PCA of 
mean-centered spectra yields two principal components (PC1 and 
PC2) that explain at least 90% of the variance within the spectra 
from an individual F2 family. 

The scatter plots of PC1 and PC2 showed clear differentiation 
of mutant and normal kernels for all of the composition mutants 
tested (Fig. 4 and Supplemental Figure 1). However, the extent of 
overlap between mutant and normal spectra varied by mutant 
genotype. Most starch biosynthetic mutants including bt1, bt2, 
and sh2, as well as the su1 starch quality and o2 protein quality 
mutant showed separation between mutant and normal kernels 
with no overlap (Fig. 4A and Supplemental Figure 1A-D). The fl1 

 

Fig. 3. Examples of single-kernel NIR spectra. Each line represents average NIR spectra of nine kernels from an individual maize ear. Three kernels each 
were derived from the starch, protein, and oil calibration sets. Constituent percentages were averaged from three kernels, and seed weights are the aver-
age of all nine kernels. A, Comparison of two genotypes with similar seed weights but different relative amounts of starch, protein, and oil. B, Compari-
son of two genotypes with different seed weights but similar relative amounts of starch, protein, and oil. 
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and fl2 mutants as well as the sh1 and h1 mutants showed distinct 
mutant and normal kernel classes, but the borders between these 
classes had overlapping kernels (Fig. 4B and Supplemental Figure 
1E).  

Finally, wx and ae did not have apparent mutant and normal 
classes (Fig. 4C and Supplemental Figure 1). However, the mu-
tant kernels for these loci clustered and the NIR spectra could be 

used to greatly enrich for mutant or normal kernels. Although the 
starch biosynthetic mutants show a mutant class with reduced 
seed weight (Fig. 4E), the protein and starch quality mutants do 
not affect seed weight (Fig. 4D, 4F). Combined, these data indi-
cate that the glass tube NIR instrument can be used to identify or 
sort kernels based on quantitative changes in starch content or 
qualitative phenotypes for which there are no calibrations. 

 

Fig. 4. Differentiation of seed composition mutants. Segregating families were generated for 11 known seed composition mutants. NIR and seed weight 
data were collected from 96 kernels for each mutant. Kernels were indexed in 48-well microtiter plates. Mutant and normal phenotypes were confirmed 
with destructive analysis when needed. A–C, Scatter plots of the first two components (PC1 and PC2) from principal component analyses for individual
segregating families. D–F, Histograms of seed weight for each family in A–C.  
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CONCLUSIONS 

We have shown that acquiring NIR spectra from single maize 
kernels as they fall through an illuminated glass tube provides a 
quantitative and comprehensive prediction of seed composition 
and weight. The PLS calibrations presented here indicate that the 
glass tube NIR instrument provides equivalent or improved pre-
dictions to bulk, whole grain NIR analyzers, but at single-kernel 
resolution. Similar to earlier studies (Ormann and Schumman 
1991; Baye et al 2006), we found it difficult to obtain accurate 
percent starch predictions. We have also shown that single-seed 
spectra can be used to identify kernels with qualitative changes in 
seed composition with mutations that alter endosperm structure 
(o2, fl1, fl2, h1) being the simplest to differentiate. 

These results indicate that our glass tube NIR spectrometer 
provides a platform to study the maize seed phenome. Impor-
tantly, this design combines good accuracy with high throughput 
data collection. The instrument has the potential to collect NIR 
spectra at a rate of 10 kernels/sec. This technology enables ge-
netic screens, QTL or association analysis, and breeding for com-
position phenotypes at the single-kernel level. Based on earlier 
work (Armstrong 2006) on soybean, the glass tube instrument can 
provide seed phenotype information for multiple plant species. 
Appropriate scaling of the glass tube should allow this technology 
to be extended to plant species with seeds of different sizes. 
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