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Abstract Natural variation of hardness of wheat kernels

often results in overlapping hardness indices (HI) distribu-

tions between hard and soft classes as measured with the

single kernel characterization system (SKCS). This is par-

ticularly true for the case of the hard white (HW) and soft

white (SW) wheat classes. To address this problem, a color

camera was incorporated into the SKCS system so that color

and kernel size data could be combined with SKCS mea-

surements for classification purposes. Samples of hard red

(HR), soft red (SR), HW, and SW wheat were classified

using the SKCS system with and without the camera and

results compared. Using the camera system, errors for sep-

arating HW from SW classes were reduced to less than 5%,

as compared to 17.1% using SKCS alone. Furthermore,

improved data processing applied to the low-level data

currently produced by the SKCS system led to greater than

50% reduction in classification errors between SW and HR

as compared to using HI data alone. Similar improvements

in classification accuracies for 300-kernel sample contain-

ing mixtures of SW and HW were also achieved. The 300

kernel sample classification is usually what inspectors and

grain traders use to determine sample purity rather than

individual kernel results. The techniques developed should

aid grain inspectors in properly identifying mixtures of these

two classes. Unfortunately, for the SR and HR classes,

incorporating the camera data decreased classification

accuracy while increasing the complexity of the system.

However, SR and HR classes can be adequately distin-

guished with the SKCS in its current form.

Keywords SKCS � Hardness � Image � Camera

Introduction

U.S. wheat standards classify grain according to several

distinct features such as hardness and color [1]. In the past,

certain varieties of wheat have been problematic for human

inspectors to correctly classify. For example, the Arkan

variety, a hard red winter (HRW) wheat grown in a hard

wheat region, was frequently classified as a soft red (SR)

wheat by official grain graders [2, 3]. Consequently, USDA

researchers developed an instrument to objectively mea-

sure the hardness of wheat samples [4]. The single-kernel

characterization system (SKCS) was designed to test 300

wheat kernels in about 3 min and determine the sample

average and standard deviation for several physical

parameters. The main parameters were hardness index

(HI), weight, moisture, and kernel thickness. The SKCS

was calibrated to give a mean HI of 75 for five reference

hard samples and a mean HI of 25 for five reference soft

samples [4]. However, the individual HI for the soft-wheat

reference samples ranged from 24 to 37 hardness units,

while the individual HI for the hard-wheat reference sam-

ples ranged from 63 to 86 hardness units [5]. However,

since the development of the SKCS and selection of the

NIST samples, single-kernel HI from some differing

hardness classes now may overlap, making it harder to
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determine if a sample is pure hard, soft, or a mixture of the

two classes.

Since the mid 1990’s, steadily increasing production of

hard white (HW) wheat has increased the importance of

this class. Production of HW wheat increased nearly three-

fold between 2002 and 2005 (from 0.35 to 0.93 million

metric tons) [6]. Grain inspectors have observed that in the

U.S. Pacific Northwest (PNW) region, discriminating soft

white (SW) from HW wheat has become increasingly

difficult; i.e. the SKCS HI of PNW HW varieties more

frequently resemble SW varieties, and vice versa. Many of

the SW varieties, as well as varieties of wheat which

contain both hard and soft wheat genetics, are similarly

difficult to classify. Some of the soft varieties are sold into

traditional soft wheat markets, although their SKCS HI

scores are higher than those expected from older white

wheat varieties and soft red winter (SRW) classes [7].

The SKCS HI is computed on the basis of kernel weight,

moisture, and histogram features of slopes of the crush

signal [4]. This method has worked well for discriminating

HRW from SRW as well as for determining some milling

qualities. However, the computations traditionally used to

determine HI do not consider the different phases of kernel

crushing as it is first compressed, fractured, and then ground

into finer particles before exiting the SKCS. The forces

experienced by the kernel as it is crushed exhibit three

distinct phases. The first phase describes the exerted force

up to the time when the kernel fractures, generally noted as

a very narrow but high-magnitude peak early in the crush

signal generated by the SKCS. It is expected that soft ker-

nels crumble into smaller pieces during this initial kernel

fracture, and thus their initial peak is generally smaller than

that of hard kernels. During the second phase, which fol-

lows the initial fracturing, the kernel fragments undergo

further crushing as the gap between the rotor and crescent of

the SKCS decreases. The crush signal during this phase

shows a smaller magnitude than during the first phase,

indicating less resistance by the kernel to further compres-

sion. In the third phase of crushing, small fragments are

slowly broken down until they exit the rotor/crescent. In this

final phase, the crush force increases at a higher rate for hard

classes, leading to a higher and broader peak. This is likely

caused by the more moderately-sized particles that remain

from the hard classes. In contrast, the small particles from

soft classes do not require as much crush force to break

down, leading to a lower and more lopsided peak.

SKCS crush force signals have been used to predict

single-kernel particle size distribution features measured

from the crushed kernel [8]. The predicted particle size

feature was used to help discriminate between hard and soft

wheat, including HW and SW wheat. Results indicated that

classification errors could be reduced by approximately

50% using these techniques. However, the sample set used

in this study was small, only a narrow range of moisture

contents was studied, and only SKCS parameters were

used. No images of the kernels were collected to determine

if they could lead to decreased classification errors.

Kernal shape features extracted from digital images

have been shown useful for discriminating between wheat

varieties [9]. However, computing limits at the time of this

study limited the sample size to only 30 images. Image

analysis of wheat has been extensively studied by many

researchers [10, 11], and the speed of image analysis has

increased dramatically while the cost of imaging and

computing hardware has decreased.

The first objective of this work was to test alternate

methods of analyzing crush-force signals and available

SKCS parameters to improve discrimination between hard

and soft wheat across a range of moisture contents. More

specifically, the objective was to investigate features in the

SKCS crush-force signal that permit the characterization of

the three phases of kernel crushing. The second objective

was to determine whether kernel image data combined with

SKCS data could improve discrimination between wheat

classes. Improved discrimination between HW and SW

wheat was specifically explored.

Materials and methods

Wheat samples

The sample set (Table 1) comprised hard red (HR), SR,

HW, and SW wheat. All samples were obtained from

breeders or NIST samples that were known to be pure.

Thus, the hardness classification for each sample was used

as the ‘‘ground truth’’ for the training and checking clas-

sification schemes. Each of these wheat subclasses were

represented by three varieties, some winter and some

spring. Samples (300 kernels) from each of the 12 varieties

were prepared at moisture levels of 10.0%, 12.2%, and

14.2% (all ?/-0.2%), for a total of 36 samples. Moisture

tempering were made by adding an appropriate amount of

water to a sample and tumbling it for 24 h. Each sample

was tested in the SKCS unit in two groups of 150 kernels.

Of the 10,800 samples processed, data from 396 individual

kernels were rejected because either the SKCS did not

record the data due to its own error checking, or an image

of the kernel was not captured, or both. Thus, data from a

total of 10,404 kernels were analyzed.

SKCS instrument

The SKCS crush-force signals were generated by a Perten

SKCS instrument (model 4100, Perten Instruments,

Springfield, IL). The instrument was controlled by an
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external laptop (PC#1, Fig. 1) via cabling between the

laptop com port and the SKCS internal computer. The raw

SKCS crush force and conductivity signals were collected

for each kernel. Basic SKCS measurements such as weight,

hardness, moisture, and kernel thickness were also col-

lected, in addition to the ‘‘low level’’ SKCS parameters

(crush area, Gompertz a, Gompertz b, and peak force) as

described in [4])

Image data were collected using a separate computer

(PC#2, Fig. 1). These data were synchronized with the

SKCS data using a feeder trigger signal and a USB inter-

facing circuit. When triggered, PC#2 collected an image

from the camera of the kernel in the weighing bucket

(Fig. 1). The color camera was mounted above the

weighing bucket as shown in Fig. 2. Details of the image

hardware, acquisition, and processing, including segmen-

tation of the kernel from the weigher bucket background

and extraction of morphological features from the kernel

have been previously reported [12]). It should be noted that

while two computers were used in this experiment, it is

possible to perform all necessary tasks with one computer

by integrating the SKCS software and image collection and

processing software.

After the wheat samples were tested, the crush signals

were further evaluated, and additional descriptive param-

eters were determined. Images were analyzed to determine

size and color parameters. The SKCS data and the image

data were collated, and discriminate analysis was per-

formed to classify kernels into the proper class. Figure 2

shows the flowchart for data collection and processing.

Alternative crush signal features for discrimination

between hard and soft classes

The SKCS system produces a standard hardness index

and parameters. These parameters do not satisfactorily

discriminate between HW and SW wheat. Several signal

Table 1 Sample list specifying wheat subclass, variety, average hardness index, and source

Subclass Spring/winter Variety Average hardness Source

Hard red Winter 2180 89 Kansas State Univ. 1994

Spring Len 89 GMPRC/NIST 1994

Winter Tam 105 76 GMPRC/NIST 1994

Soft red Winter Caldwell 5 USDA/Wooster, Ohio 1994

Winter Cardinal 23 GMPRC/NIST 1994

Winter Titan 24 GMPRC/NIST 1994

Hard white Spring Blanca grande 59 Washington Wheat Comm. 2005

Spring ID3775 65 Washington State Univ. 2004

Spring Klasic 59 Washington State Univ. 2004

Soft white Winter Eltan 23 Washington State Univ. 2004

Winter Madsen 39 Washington State Univ. 2004

Winter Tres 37 GMPRC/NIST 1994

Fig. 1 Flowchart for data signal collection Fig. 2 Schematic of camera relative to the weigher and crush-roll
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processing strategies were applied to the raw crush profile

to improve discrimination. First, combinations of the

normal parameters and ‘low-level’ parameters were

evaluated. Next, the crush signals of each kernel

were analyzed, and several additional signal features were

extracted. These features were taken from portions of the

crush signal where Gaussian features, variance features,

and signal frequency features were compiled. Finally,

image features were included for each kernel. Feature

selection schemes were employed, and several discrimi-

nant analysis schemes were evaluated for classification

accuracy. The parameters and features, the selection

schemes, and the classification schemes are discussed in

further detail below.

SKCS computed parameters

Initially, the normal parameters reported by the SKCS for

every kernel were used as potential discriminating features.

These basic parameters are hardness, moisture, weight, and

diameter. Next, the ‘‘low level’’ parameters were included

in analyses. These include features, combinations of fea-

tures, and transformations of features from the basic SKCS

signals. Example ‘‘low level’’ parameters include peak

crush force, logarithm of conductance, and parameters

from the derivative of the crush signal [4].

Crush signal Gaussian modeling

A Gaussian model describes the bell-shaped curve used

commonly in statistics to describe normal population

distributions. While the entire SKCS crush signal does not

resemble a bell-shaped curve, portions of the crush signal

profile have some similarity. The basic approach in this

analysis was to use the summation of three bell curves to

describe the crush force profile as shown in Fig. 3. The

Gaussian parameters (amplitude and width) were added to

all of the other low-level data generated by the SKCS

4100.

Normalization of the crush signals was performed prior

to modeling. This reduced the effects of kernel size and

moisture on the magnitude of the crush force signals,

because larger kernels produce crush signals of higher

magnitude, longer duration, and higher moisture kernels

produce crush signals of comparatively lower magnitudes.

The crush signals were normalized such that the signal data

length was 512 points to remove variance induced by larger

kernels producing crush signals of longer duration. Linear

interpolation was used to normalize the length of the crush

signal, reducing the effect of kernel size. Each value within

the 512 points was divided by the dry weight of the kernel

to compensate for the effect of kernel moisture.

The normalized crush profiles were non-linearly fit with

the summation of three Gaussian curves (Eq. 1). Each

Gaussian was restricted to a certain segment of the nor-

malized crush data.

y ¼ a1e�ððx�x1Þ=2b1Þ2 þ a2e
�ððx�x2Þ=2b2Þ2 þ a3e

�ððx�x3Þ=2b3Þ2 ð1Þ

where a1, a2, and a3 are the heights of the three Gaussians,

b1, b2, and b3 are the widths, x1, x2, and x3 are the centers of

the three Gaussians, x is the data point, and y is the fitted

crush profile. The center of the first Gaussian, x1, was

restricted to points 1–80. This segment physically repre-

sented the forces required to initially fracture the whole

kernel. The center of the second Gaussian, x2, was

restricted to points between 100 and 200, where large

fragments are broken down further. The center of the third

Gaussian, x3, was constrained to points between 350 and

450. This third segment physically represented the forces

on small kernel particles exiting the narrowest gap of the

SKCS. A typical plot of the three-part Gaussian model is

shown in Fig. 3.

Short time standard deviations of crush signals

While the SKCS parameters and Gaussian modeling

characterize the crush profile in a global sense, small dif-

ferences in the abruptness of kernel fracturing crush

profiles can be extracted by computing standard deviations

in short time windows across the entire length of the crush

profile. Hard kernels tend to fracture more abruptly, while

soft kernels are crushed in a slightly smoother manner.

Standard deviations of the 512-point normalized crush

profile were computed in short time windows (seven data

points), each window overlapping the previous one by

three points. This was done to highlight regions in which
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Fig. 3 Three-part Gaussian model of normalized SKCS crush signal.

The solid line is the model and the ?’s are the crush profile points
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the crush profile was undergoing abrupt changes This

technique has been successfully used in acoustical pro-

cessing for recognition and classification of sounds [13,

14]. Following the short time window computation, a

cumulative sum of these data was computed and normal-

ized to produce a signal starting at 0 and ending at 1. This

signal simply shows the contributions of different time

intervals to the total signal variance, without regard to the

crush profile magnitude. Figure 4 displays the normalized

crush profiles, deviation profiles, and cumulative deviations

for both soft and hard kernels. Hard kernels tend to have

high variances at the end of the crush profile, where par-

ticles start to exit the SKCS. In contrast, soft kernels tend to

have higher variances at the beginning of the crush profile.

The variance signal was reduced to 128 points by inter-

polation, and all points were saved as potential

discriminating features.

Crush signal frequency spectra processing

A discrete Fourier transform (DFT) was computed on the

256 points between points 45 and 300 of the 512-point

normalized crush profile. This portion of the crush profile

physically represents the larger kernel particles being cru-

shed into smaller-sized flour. Thus, this is a time period in

which many small-scale fractures occur, causing cyclic

changes in the crushing forces.

The magnitude of the 256-point DFT comprised 128

points. The resulting DFT magnitude was very noisy;

therefore a cumulative DFT was computed by integrating

from the lower frequencies up to each point. The cumu-

lative DFT was then normalized by dividing by the

magnitude of the zero frequency, or the mean magnitude.

The 128-point cumulative DFT was then smoothed by

averaging adjacent points and every other point was saved,
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Fig. 4 Example crush profiles,

deviation profiles, and

cumulative deviations. Note that

most of the variance in the

HRW kernel is at the end of the

profile while it is at the

beginning of the SRW kernel.

While the maximum short time

standard deviations were

considerably higher for the

HRW than the SRW, this was

not always a distinguishing

feature for discriminating

hardness classes, particularly for

HW and SW classes
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producing 64 features representing the frequencies in this

region of the crush profile.

Image features

Images of each kernel were segmented from the background

as described in [12]. The image was converted from RGB

representation to hue, saturation, and lightness (HSL) rep-

resentation using the Matlab software package (v7.04.365,

The Mathworks Inc., Natick, MA). Hue and saturation

represent the color of the kernel without regard to lightness

and are somewhat immune to fluctuations in intensity of the

lighting. After segmenting the kernel from the background,

the maximum, average, standard deviation, median, and

cumulative histograms of the hue and saturation compo-

nents of the kernel pixels were computed. The hue

histogram comprised 40 bins of intensities 0 through 40, as

all hue values fell within this range. Both hue and saturation

were represented with 8-bit resolution, so that the maximum

intensity was 255. Hue values from 0 to 40 represent colors

between pure red (hue = 0) and orange (hue = 40). The

saturation histogram comprised 90 bins, as all saturation

values fell below intensities of 90. A saturation value of 0

represents a mix of all colors, while a saturation value of 90

represents the mixture with greatest color purity. Morpho-

logical features of the kernels were also extracted using the

Matlab library; these included kernel cross-sectional area,

length, width, length/width ratio, and perimeter.

Parameter selection, discriminant analysis and single

kernel classification

The HW and SW data were randomly divided into training

and validation sets of equal size of 2,600 kernels for each

set. The HR and SR data was used in it is entirety in the

validation set in order to gain the best classification

improvements between HW and SW kernels. Stepwise

discriminant analysis (Pentry = 0.05, Pexit = 0.05) was used

as the selection scheme. After parameters were selected, a

discriminant function was developed using the training set

and tested on the validation set. The discriminant analysis

was performed using commercial statistical software [15].

Features and discriminant functions were developed using

only the SW and HW data from the training set. Reported

results are those from the validation set predictions applied

to all data not in the training set. Four separate parameter

sets and functions were developed:

1. only the main SKCS crush parameters: HI, weight,

moisture, and kernel thickness;

2. the main SKCS crush parameters combined with low-

level parameters such as crush area, Gompertz a,

Gompertz b, and peak force;

3. all main and low-level SKCS crush parameters com-

bined with the Gaussian model, short time standard

deviations, and DFT features;

4. all SKCS features combined with the image data.

300 kernel sample classification

The SKCS classifies a 300-kernel sample as ‘soft’, ‘mixed’

(hard and soft), or ‘hard’ based on the average hardness

index of the 300-kernel sample and a four-bin histogram of

the hardness values [16]. Samples having an average

hardness value less than or equal to 46 are classified as

‘soft’ or ‘mixed’, depending on the histogram of hardness

values from the sample. Conversely, samples having

average hardness values greater than 46 are classed as

‘hard’ or ‘mixed’. The histogram contains four bins com-

prising counts of hardness values in the ranges of: less than

or equal to 33 (bin I), 33 to 46 (bin II), 46 to 59 (bin III),

and greater than 59 (bin IV). These four bins are used to

classify a sample as mixed or pure. While the exact pro-

cedure to classify a sample as mixed or pure is fairly

elaborate, the most common route to classifying a sample

as mixed is if bin I is greater than 10% for samples having

an average hardness greater than 46; and bin IV greater

than 10% for those samples having an average hardness

less than or equal to 46.

A Monte Carlo simulation was used to randomly select

300-kernel samples from the HW and SW populations to

create HW/SW mixtures of pre-determined proportions.

Each simulation generated 1,000 simulated 300-kernel

samples. Blends were simulated in 1% increments from 0%

to 20% for both SW and HW wheat. The classification

based on the hardness index and the histogram of hardness

indices was performed and used as a benchmark. The

single-kernel classifications were used to enhance the

sample classification. If the predicted class of the wheat

matched the hardness index class (e.g. if the hardness index

was greater than 46 and the single kernel class was ‘hard’),

then nothing was done. However, if the class did not match,

then the hardness histogram bin containing the hardness

value in question was decremented by one, and the next

adjacent bin in the direction of the kernel’s predicted class

was increased by one. For example, if a kernel had a

hardness value of 20 but a predicted class of ‘hard’, then

the histogram bin containing counts of hardness values less

than 33 (bin I) was decremented by one, and the bin con-

taining counts between 33 and 46 (bin II) was increased by

one. This was done in order to utilize the single-kernel

classifications in the existing hardness classification sys-

tem. Data from the single-kernel classifications utilizing all

main and low-level SKCS crush parameters combined with

the Gaussian model, short time standard deviations, and
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DFT features, as well as all SKCS parameters combined

with the image data, were studied.

Results and discussion

Table 2 displays results for classifying kernels into their

own classes using hardness index only. Kernels were

classified as ‘hard’ if their HI was above 46, and as ‘soft’ if

it was below or equal to 46. While errors for HR were

below 2%, and errors for SR were below 6%, the errors for

HW and SW were much higher, averaging over 17%.

These results illustrate the difficulty in discriminating HW

from SW using the current configuration of the SKCS

system. When discriminant analysis was performed on the

feature set restricted to the main SKCS parameters of HI,

moisture, weight, and thickness, the validation set error

rates for HW and SW were both 17%. This result is, on

average, equivalent to that obtained when using HI alone.

Thus, adding moisture, weight and kernel thickness to HI

does not aid in classifying HW and SW kernels. This is not

surprising, as the computation of HI uses these other

parameters.

When the stepwise discriminant analysis procedure was

applied to the data set that included SKCS low-level fea-

tures (i.e. crush area, Gompertz a, Gompertz b, and peak

force) along with the four SKCS main parameters, the

validation set error rates for HW and SW white were

reduced slightly to 13.2% and 14.7%, respectively. These

error rates, approximately 3% lower (overall) than those

obtained with HI alone, represent a 17% reduction in error

rate over what is accomplished with hardness index alone.

This classification scheme would be very simple to

implement, since the SKCS already computes these fea-

tures. The stepwise selection procedure chose the following

four features in order: HI, (Gompertz b)9, crush area, and

kernel weight. Again, since these additional features are

used for the HI computation, it is somewhat expected that

they would not greatly improve discrimination power over

HI alone. This result demonstrates the need for other fea-

tures in order to improve classification accuracy.

Table 3 displays validation set results for discriminating

SW from HW using all of the SKCS features computed.

Error rates for discrimination of SW from HW averaged

7.7%, which is 55% lower than that from HI alone. These

results indicate that classification rates might be substan-

tially improved using current SKCS hardware, as only

software changes are needed to compute these features and

implement this classification scheme. The error rate of

7.7% for distinguishing SW from HW is nearly the same as

the previously developed method using predicted PSD

along with other SKCS low level data [8]. However, the

study by Pearson et al. [8] did not include different mois-

ture levels and had a fairly small sample size. The two

studies confirm that errors in distinguishing HW from SW

wheat can be reduced by over 50% with additional signal

processing in the SKCS software.

Average error rates for kernels at the low, medium, and

high moisture levels averaged 6.5%, 9.0%, and 7.6%,

respectively. While there does not appear to be a trend

between classification accuracy and moisture content, it

appears that more errors are made at moderate moisture

levels, which represent normal storage conditions.

The stepwise selection procedure selected eight features,

listed in Table 4, for discrimination between SW and HW

classes. The features are listed in the order of Wilks’ k
statistic for the discriminant model, which includes the

feature and all those above it. A lower Wilks’ k statistic

indicates a better group of features for discrimination [15].

Not shown in Table 4 is HI, which was selected as the

single best feature for discrimination but was later removed

from the model, as its significance was reduced in the

presence of the other features. The two most significant

features in the final discriminant model were the height of

the Gaussian curves on the third and first peaks. After

dividing all the crush forces by the dry weight, the HW

kernels tend to have higher normalized forces for the first

and third peaks. However, as can be seen from the means

and standard deviations, these features for HW and SW

Table 2 Classification results using HI alone. Note that the largest

errors occur for SW and HW classes

Class Class predicted by HI n

Hard Soft

HR 98.6% 1.4% 2568

HW 83.6% 16.4% 2646

SR 5.4% 94.6% 2638

SW 18.1% 81.9% 2552

Total 61.6% 38.4% 10404

Table 3 Average classification results using low level SKCS features

alone to discriminate SW from HW, then applied to the other classes

Class Classification results using all SKCS features n

Hard Soft

HR 97.2% 2.8% 2546

HW 93.3% 6.7% 1242

SR 4.5% 95.5% 2633

SW 8.7% 91.3% 1295

Total 61.1% 38.9% 7716

Results are from the validation set and averaged across the low,

medium, and high moisture levels

Improved discrimination of soft and hard white wheat 95

123



groups are not significantly different at the 95% confidence

level.

Note that the cumulative crush standard deviation at

window #4 was chosen as the third most important feature.

This represents cumulative standard deviations from short

time windows early in the crush signal. As shown in Fig. 5,

the crush profiles from soft kernels have a greater per-

centage of variance in short time windows at the beginning

and middle of the crush signal. In contrast, crush forces due

to breaking down smaller particles from hard kernels

contribute more variance to the end of the crush signal

(Fig. 4). While more force is usually required to initially

fracture hard kernels than soft kernels, the short-time var-

iance from these fractures does not contribute as much to

the overall variance, since variances due to the breaking

down of smaller hard kernel particles as the material exits

the SKCS are higher for hard kernels. Thus, the crush force

characteristics from fracturing smaller particles as the

kernel exits the SKCS are important phenomena for dis-

tinguishing between SW and HW kernels. This is not a

feature that is distinctly measured during the computation

of HI.

From the DFT features, the cumulative values at 250

and 1625 Hz were selected. As can be seen in Fig. 6, the

normalized cumulative frequency spectra of HW and SW

wheat are most different at 1625 Hz. Note that both HR

and SR followed the same trends as HW and SW in the

normalized frequency spectra, but the differences between

HR and SR are more pronounced. Since the harder kernels

fracture in a more abrupt manner, these kernels create more

high-frequency energy than soft kernels. While the crush

force slopes used to compute HI do capture some of these

characteristics, they are likely convoluted with crush force

slopes from other portions of the signal. By restricting the

DFT window to the middle portion of the signal, the crush

forces are better characterized. Additionally, the forces in

this portion of the signal are likely less prone to variation

due to the orientation of the kernel as it enters the crushing

rotor/crescent of the SKCS, since the kernel has already

been initially fractured.

The middle portion of the crush profile was also previ-

ously identified as important for predicting single kernel

particle size distributions (PSD) and distinguishing

between hard and soft wheat kernels [8] However, in that

study, DFT features and Gaussian curve fitting parameters

were not found useful for estimating particle size distri-

butions of single kernels but this study found these features

Table 4 Selected features for discriminating HW from SW

Feature Wilks’

k
Group means Group std dev

HW SW HW SW

Third Gaussian height 0.64 19.21 13.82 3.88 3.27

First Gaussian height 0.54 9.13 8.17 3.37 3.45

Cumulative std dev #4 0.52 0.03 0.04 0.011 0.013

Cumulative DFT 250 Hz 0.49 6.27 5.34 4.25 3.1

Cumulative DFT

1625 Hz

0.47 14.06 8.99 4.14 2.7

(Gompertz b)9 0.46 0.5 0.43 0.09 0.1

Weight 0.42 353.1 404.38 85.23 94.17

Note that all types of SKCS features were chosen (SKCS, Gaussian

model parameters, short time cumulative standard deviations, and

cumulative DFT features). Features are arranged by their contribution

to the Wilks’ k statistic for the group of selected features
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very useful in discriminating between HW and SW wheat.

This discrepancy suggests that particle size distribution of

resulting flour is not entirely dependent on the forces

required to crush a kernel. This phenomenon was also

observed in [8] as the highest classification accuracies

between hard and soft classes required PSD to be combined

with HI and other crush profile features.

Table 5 displays validation set classification results for

selecting features to discriminate between SW and HW

using combined SKCS and image features. Note that the

discrimination of SW from HW is greatly improved over

HI alone, but at the cost of reduced accuracy for SR. The

reduced accuracy of SR is likely due to the training set only

including HW and SW classes. Nevertheless, in areas

where SR is not grown or handled, the use of the SKCS

with a camera attachment may markedly improve an

inspector’s ability to determine the purity of HW and SW

wheat. Average error rates when discriminating between

SW and HW improved from a level over 17% for HI alone

to below 5% for low-level SKCS features combined with

image features. The error rates for HW and SW using

SKCS features combined with image features are approx-

imately 50% of those obtained when the feature set is

restricted to SKCS-generated features. However, the image

hardware adds complexity and cost to the system. Fur-

thermore, further study is required to test the robustness of

calibrations on a long-term basis and across different

instruments.

Average error rates for SW and HW varied slightly for

the three moisture-dependent calibrations. The average

error rates for kernels at the low, medium, and high

moisture levels were 2.5%, 4.6%, and 6.1%, respectively.

This indicates a slightly decreased ability to distinguish

HW from SW as moisture level increases when using

combined image and SKCS parameters.

A total of 15 features were selected from the pool of

combined SKCS and image features to discriminate HW

from SW wheat. The features and averages for the SW and

HW classes are listed in Table 6. Note that all types of

features were selected: image, Gaussian parameters, short

time standard deviations, and cumulative DFT. The most

significant feature was the median hue of kernel pixels,

followed by the height of the third Gaussian. During the

stepwise selection process, HI was never chosen; median

hue was a more significant discriminating feature than HI,

and median hue combined with HI was not as strong a

discriminating pair as median hue combined with the

height of the third Gaussian. The median hue from HW

kernels was slightly less than that for SW kernels, as HW

kernels tend to appear redder than SW kernels. Hue his-

togram values from bins 22 and 31 were chosen, as the hard

kernels tend to have slightly more red than the soft kernels.

The SW kernels tend to have less variance in color, or more

color purity, than HW kernels; this is indicated by the

average saturation and saturation histogram values selec-

ted. The average saturation for SW kernels was slightly

higher than for HW kernels. Among the saturation histo-

gram bins selected, bins 54 and 67 had higher counts for

SW kernels and lower counts for saturation histogram bin

22 than HW. Finally, kernel length was selected, as soft

kernels tend to be slightly larger than hard kernels.

Figures 7 and 8 display the percentages of samples that

were classified as ‘mixed’ from the Monte Carlo simula-

tions using various mixtures of HW and SW. For mixtures

comprising mostly soft or HW wheat, the single kernel

classifications have steeper curves, indicating that the

Table 5 Average classification results using low level SKCS features

combined with image features to discriminate SW from HW, then

applied to the other classes

Class Classification results using combined SKCS

and image features

n

Hard Soft

HR 100.0% 0.0% 2546

HW 96.2% 3.8% 1242

SR 54.6% 45.4% 2633

SW 5.0% 95.0% 1295

Total 71.0% 29.0% 7716

Results are from the validation set and averaged across the low,

medium, and high moisture levels. Note that the improved accuracy

for SW and HW classes but lowered accuracy for SR

Table 6 Selected features and averages of the features for the two

groups used to discriminate HW from SW. Features are arranged by

their contribution to the Wilks’ k statistic for the group of selected

features

Feature Wilks’

k
Group means Standard

deviations

HW SW HW SW

Median hue 0.46 24.59 26.34 0.51 1.04

Third Gaussian height 0.37 19.21 13.82 3.88 3.27

Sat hist bin #54 0.34 400.63 857.39 307.68 411.29

Sat hist bin #22 0.32 175.61 151.03 112.72 105.46

Hue hist bin #31 0.31 389.33 1929.65 271.64 1613.28

Sat hist bin #67 0.30 20.49 125.25 46.81 189.32

Cum DFT 1625 Hz 0.29 14.06 8.99 4.14 2.70

Cum std dev #9 0.28 0.10 0.13 0.03 0.04

First Gaussian height 0.28 9.13 8.17 3.37 3.45

Cum DFT 343 Hz 0.27 5.85 5.12 4.28 2.99

Hue hist bin #22 0.27 950.53 539.88 691.74 513.96

Kernel length 0.26 248.88 249.11 20.89 19.83

Avg saturation 0.26 44.31 46.63 2.14 3.15

Sat hist bin #20 0.25 191.60 159.04 83.71 87.67
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additional processing can allow for a sharper distinction

between a pure sample and mixed samples. When the

blending is less than 10% of a contrasting class, the addi-

tional crush profile processing and image data reduces the

number of samples classified as ‘mixed’, compared with

hardness index alone. For example, as shown in Table 7,

when the blending of HW is blended with six to 10% HW,

the number of samples classified as mixed is 9% compared

with 17% when only HI and histograms of HI are used.

However, in the case of hard wheat blended with small

amounts of SW wheat, the additional processing does not

improve the number of samples that should be classified as

mixed when the blending is over 10% SW. As shown in

Table 7, samples of HW wheat blended with 11–15% SW

have approximately the same percentages of samples cor-

rectly classified as mixed, about 75%. Samples that are

predominantly SW wheat blended with greater than 10%

HW wheat, the reported ‘‘mixed’’ classifications were

improved somewhat. For samples of SW wheat having 11–

15% HW blended into them, 39% are classified as mixed

when using HI and HI histograms alone while 47% are

classified as mixed when using additional crush force

processing and 60% are classified as mixed when using

additional crush force processing combined with image

features.

Conclusion

New data processing and imaging hardware additions to

the SKCS 4100 system were proposed and tested. While

the imaging hardware appears to aid in distinguishing HW

from SW kernels, it does add some complexity to the

system, and the robustness of calibrations over time and

across different instruments needs to be further investi-

gated. It does appear that additional data processing of the

raw crush profile acquired while kernels are crushed can

improve discrimination between SW and HW as well. This

method has the advantage that only software changes to the

SKCS are required for its implementation.

When SKCS data was combined with image features,

errors in distinguishing SW from HW were reduced to

less than 5%, from 17.1% using HI alone. However,

adding image data decreased hardness classification

accuracy for SR and added complexity to the system.

When additional data processing is applied to the low-

level data currently produced by the SKCS 4100, classi-

fication errors between SW and HR are reduced by over

50% with respect to HI alone (from 17.1% for HI to 7.7%

with additional data processing). Similar improvements to

classification accuracies were achieved with 300-kernel

samples when the individual kernel classification was

used to modify the histogram of HI values from the

sample. These results indicate that improved classification

for HW and SW can be achieved through additional data

processing software.

Fig. 7 Classification of mixtures containing hard white wheat

blended with low levels of soft white wheat

Fig. 8 Classification of mixtures containing soft white wheat blended

with low levels of hard white wheat

Table 7 Average number of mixed samples reported for various

HW–SW blends

Hard white

(%)

Soft white

(%)

Average percentage of mixed samples

reported

HI

only

Crush profile

features

Image ? crush

profile features

0–5 100–95 0 0 0

6–10 90–94 3 2 2

11–15 85–89 39 47 60

100–95 0–5 0 0 0

90–94 6–10 17 9 5

85–89 11–15 76 75 70
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