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Abstract An automatic recognition algorithm was

developed and tested for detection of certain defects or

contaminants in X-ray images of agricultural commodities.

Testing of the algorithm on wheat kernels infested with

larvae of the granary weevil, Sitophilus granarius (L.)

yielded comparable results to those obtained by human

subjects evaluating digitized X-ray film images (14.4%

overall error vs. 15.6% for human subjects). Further tests

on X-ray images of olives infested with the Olive Fly,

Bactrocera oleae (L.), yielded a total error of 12% for large

infestations and over 50% for the smallest infestations with

false positive results below 10%. Testing of alternate

training strategies showed that for this type of algorithm,

which uses a form of discriminant analysis with a generally

‘‘fuzzy’’ decision boundary, best results are obtained when

training with samples that map far away from the bound-

ary, then applying the derived decision function to all

samples to be classified.

Keywords X-ray � Imaging � Detection � Infestations �
Sorting

Introduction

X-ray imaging has become a well-established method for

the inspection of certain agricultural products for defects

and contaminants. In particular, many packaged products

are inspected using linescan X-ray equipment for the

presence of metal, plastic, or bone, as these are high-den-

sity targets and easily recognized in an X-ray image. For

many other detection problems in agriculture, X-ray

imaging has not been well established in the processing

plant environment. Many contaminants or defects, such as

insect infestation, are much more difficult to detect with

X-ray imaging due to the small size of the object of interest

and the small difference in X-ray density between the

target material and its surroundings.

Detection of insects, as well as other defects, is a high

priority for the food industry for quality assurance and food

safety reasons. Beyond the direct loss of product, stringent

import controls by many countries aimed at preventing the

introduction of alien species make insect infestation a

potential threat to U.S. export markets. Wheat producers

alone in the U.S. can lose as much as one billion dollars in

a bad year [1, 2]. Insect infestation is a major component of

USDA grading standards, but only account for live insects

and do not address the problem of insects growing inside

the kernels. Since many of these defects are internal and

invisible to most detection methods, X-ray imaging is often

the only feasible recourse. X-ray examination has been the

official method of the Association of Analytical Chemists

(AOAC) for inspection for internal insect infestation in

grain or seeds since 1961 [3]. Consequently, improving

X-ray technology for the purpose of food inspection has

been an area of active research for many years. Within this

field of research there are generally two active areas. The

first seeks to improve X-ray equipment to generate images
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of higher resolution and lower noise, so that little areas of

small density differences can be detected. The evolution of

high resolution and low noise CCD arrays for the digital

camera market has allowed a great deal of progress in this

area, as CCD chips are commonly used as detectors in

X-ray equipment. Second is the development of algorithms

to automatically identify features of interest within the

X-ray images for sorting purposes. This area of research is

vital, as any detection method must operate at the high

speeds typical of a food processing plant environment.

There has been some work reported on algorithms to

detect insect infestation in X-ray images of wheat kernels.

Keagy and Schatzki convoluted masks mimicking larvae

with X-ray images of infested wheat kernels and were able

to identify large infestations [4]. Karunakaran et al. re-

ported a digital X-ray system, including an automatic

classification algorithm, for the inspection of wheat for rice

weevils that was over 95% accurate [5]. The algorithm was

limited by the fact that the images used were acquired with

a fine focus X-ray microscope arrangement, yielding high

quality images but impractical for operating at high speed.

Haff and Slaughter used Bayesian classifiers to detect

Granary weevil infestations in wheat kernels [6]. This

method was up to 98% effective for larger larvae but could

not reliably detect smaller larvae. Other work has been

reported to develop algorithms to identify defects in X-ray

images of a variety of crops, including watercore damage

in apples [7], insect damage in almonds [8], and Naval

Orange Worm in pistachios [9].

Discriminant analysis using Bayesian classifiers can be

well suited for high speed image analysis, depending on the

number of features to be extracted from the images and the

computation required deriving those features. The general

principle involves mapping features derived from the

images into ‘‘feature space’’ and computing a decision

boundary in that feature space that separates the classes of

images with minimum error. One objective is to identify

features that can be extracted with minimal computation.

Another is to restrict the number of features to as small a

set as possible while still retaining the essential information

that allows proper separation into classes. The form of the

derived discriminant function is partially dependant on the

a priori probability of a kernel being infested in the first

place. Manipulation of the a priori probability can be used

to influence the sensitivity of an algorithm, allowing

control over the amount of non-infested kernels falsely

identified as infested (false positives) at the expense of

decreasing the amount of infested kernels correctly clas-

sified.

There has been a significant amount of work reported in

using statistical approaches in selecting features for use in

detection algorithms, although for the most part this work

applies to selection of spectral bands from digitized spec-

tra, primarily for NIR or hyperspectral inspection. One

approach is to use stepwise discriminant analysis to select a

small number of spectral bands from generalized spectra

[10]. Genetic algorithms have been developed in recent

years which select features using improvements to ran-

domly selected subsets of features [11, 12, 13]. Principle

component analysis (PCA) has been used to select spectral

bands with high discriminating power [14, 15]. While these

statistical methods are useful in selecting optimal spectral

bands from spectra, they do not address the problem of

extracting features from images. They are therefore suited

to spectroscopic methods of inspection and sorting, such as

with NIR and hyperspectral analysis, but not helpful in

detecting defects or contaminants in X-ray images.

The objective of this research was to develop a com-

puter algorithm based on discriminant analysis that can

detect defects or contaminants in X-ray images of agri-

cultural commodities. The algorithm was to be tested on

existing databases of X-ray images of wheat kernels

infested with larvae of the granary weevil, and on images

of olives infested with the Olive Fly. Results should

compare favorably with those obtained by human subjects

viewing the same digitized images. Finally, training strat-

egies meant to deal with the inherent fuzziness at the

boundary between classes that is inherent in the X-ray

images should be conceived and tested.

Materials and methods

Algorithm

The algorithm extracts an arbitrary number of features

from each X-ray image for use in an iterative discriminant

analysis routine, which tests each combination of an arbi-

trary number of the features for the best performance in

distinguishing the classes to be sorted. For real-time sort-

ing, the number of features extracted is mostly dependant

on the available time for image processing. Generally,

using more features yields better results up to a point,

beyond which performance diminishes. For this research,

64 features were extracted from each image, and the dis-

criminant analysis routine was used to test every possible

combination of three features. From this best combination

of features, the routine computes a boundary condition of

the form shown in equation 1 for use in real-time sorting:

AF1 þ BF2 þ CF3 � 0 ? ð1Þ

where F1, F2, and F3 are the numerical values of the three

features extracted and A, B, and C are the decision

boundary coefficients. For each sample to be sorted, if

equation 1 is true then the sample is classified in a certain

group, otherwise it is classified in the other.
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Creating a sorting algorithm using discriminant analysis

requires a large number of X-ray images of samples from

each class. In this research, the two classes are infested and

non-infested (clean). The images were separated into two

sets, one for training and the other for testing, or validation.

Half of the images from each class were assigned to the

training set and half to the validation set. The images in the

training set are used to compute the boundary condition,

which is then used to classify each image in the validation

set. Since the true condition of each validation set image

(infested or clean) is known, this allows determination of

the accuracy of the computed decision boundary. This

process was repeated using each possible combination of

three out of the 64 chosen features to determine which

combination gives the best sorting accuracy. Once this

‘‘optimal’’ decision boundary is determined, all that is

required for classifying samples in real-time sorting is to

extract the three chosen features and apply the decision

boundary. The procedure for selecting the best combination

of features is outlined in the shaded portion of the flow

chart shown in Fig. 1.

The feature selection portion of the algorithm is deriv-

ative based and maps the differences in pixel values in the

image to a set of 64 numbers, or features, each of which

represents the number of instances in the image where a

particular derivative (range) occurs in a given direction.

First, the step was defined as the distance between pixels

over which each derivative was computed and the spread as

the distribution of levels into which the gray scale (0–255)

was divided for the mapping. For each pixel location in the

image, excluding a border region consisting of the number

of pixels in the step, the derivative was computed in eight

directions corresponding to the eight points of the compass.

The eight derivatives are defined in Table 1, where Ix, y is

the pixel intensity at pixel location (x, y) and ss (short step)

is defined as step*cos (45) = step*0.7071. Taking the

derivative in different directions is meant to compensate

for differences in images that occur because of the orien-

tation of either the commodity or the direction of insect

tunnels. It is expected that the best results would be

obtained as the number of directions tested increases.

However, as the number of directions increases so does the

size of the feature histogram and the computational

requirements in deriving the algorithm.

The step defines the radius of a circle around the current

pixel location, and the derivatives are the differences in

pixel intensities between the center of the circle and pixel

locations on the circumference at angles separated by

45 degrees. The spread defines the segmentation of the

gray scale between 0 and 255 for eight bit applications

(Table 2).

The derivative directions (Table 1) and the derivative

magnitudes (Table 2) form the axis of an 8 · 8 feature

histogram (Fig. 2). For each pixel location in the image

(excluding the edges at a depth equal to the step) there are

eight derivative values, thus eight of the bins in the feature

histogram are incremented. The total number of entries (R)

in the histogram should therefore be:

X
¼ 8 H � 2sð Þ W � 2sð Þ ð2Þ

where H is the image height in pixels, W is the image width

in pixels, and s is the step size. The example in Fig. 2

represents a feature histogram for a 90 · 130 image with a

step of 5. The sum of the entries should therefore be

76,800. Note that for 8 bit images the maximum spread is

36, so that 7*spread <255.

Image generation, wheat

Grain infested with Granary Weevils was imaged on X-ray

film using a Faxitron X-ray cabinet (20 KeV, 3 mA,

90 sec). Film images were used for creation of the algo-

rithm because of their high quality. In applying the algo-

rithm for high speed sorting, real-time digital X-ray

equipment with a much shorter exposure time on the order

of a few milliseconds would be used. The resulting film

was inspected with a microscope (3x) to determine which

kernels were infested. The infestations were classified by

measuring the width of the tunnels with an objective

micrometer and following established criteria [16]. Fifty of

each life stage were selected as well as 450 non-infested

images. A digital image of each selected kernel was created

from the film with a film scanner (ScanPremio ST, Acer

Peripherals, San Hose, CA, with Adobe Photoshop 5.5) at a

resolution of 174 pixels per cm (57.6 l per pixel). The

corresponding image size was 90 pixels by 130 pixels. The
Fig. 1 Flow chart describing the selection of optimal parameters and

features for sorting images by class
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data set thus consisted of 900 images, half of which were

from infested kernels. Each image was subjected to a

threshold so that the background was uniform with a pixel

intensity of zero. The distribution of the images by life

stage of the insect in the infested kernels is shown in

Table 3. Figure 3 shows sample images of each of the life

stages, as well as images of non-infested kernels.

Image generation, olives

As a second trial for the algorithm, olives infested with the

Olive Fly (Bactrocera Oleae L.) were collected from

California olive orchards and imaged on film using an

X-ray cabinet (43804N, Faxitron X-ray Corporation,

Wheeling, IL) at 28 KeV, 3 mA for 180 sec. The film was

visually inspected to determine which olives were infested.

The damage due to infestation was subjectively classified

as slight, moderate, or severe. Figure 4 shows sample

X-ray images for each classification.

The data set consisted of 410 images, 249 of which were

infested and 161 non-infested. Of the infested samples, 31

were classified as having slight damage, 46 moderate, and

172 severe. The uneven distribution of samples was a

consequence of the limited number of samples available. A

digital image of each olive was generated from the film as

previously described at a resolution of 59 pixels per cm

(169.5 l/pixel). Images were divided between training and

validation sets and the algorithm applied following the

same methodology used for wheat kernels.

Algorithm testing, wheat

The images of wheat kernels were used to train the algo-

rithm as previously described and the resulting discrimi-

nant functions were applied to the validation set to obtain

classification error rates. Two different strategies were used

for training the algorithm. The first strategy was to use all

900 images, thus including each life stage for both training

and validation. Second, images of infested kernels were

divided into two sets based on insect size. Eggs through the

3rd instar stage were classified as small, while the

remainder were classified as large. With this strategy, only

the large set was used for training. Separate training

strategies were devised because in many cases the smaller

infestations, particularly at the egg stages, are not dis-

cernible in the digital images as some loss of image quality

occurs in the digitization process. Also, the original iden-

tification and classification of infestations was done under a

microscope. The result is that the algorithm is presented

with images from different classes that are not really dif-

ferent in certain cases, thus confusing the training process.

One of the goals, therefore, is to determine the preferred

training strategy.

Classification error rates were tabulated for the best

combination of step, spread, and three optimal features for

each of the training strategies described. Error rates were

also compared with those obtained by human subjects

Table 1 Definitions of the eight derivatives that generate the ex-

tracted features

Derivative # Direction (�)a Value

1 0 Ix, y – Ix, y-step

2 45 Ix, y – Ix + ss, y-ss

3 90 Ix, y – Ix + step, y

4 135 Ix, y – Ix + ss, y + ss

5 180 Ix, y – Ix, y + step

6 225 Ix, y – Ix-ss, y + ss

7 270 Ix, y – Ix-step, y

8 315 Ix, y – Ix-ss, y-ss

a 0�= Up (North)

Table 2 Division of eight bit gray scale for histogram binning

Derivative magnitude bin # Derivative values (D)

1 0 £ D < spread

2 0 £ D < 2* spread

3 2* spread £ D < 3* spread

4 3* spread £ D < 4* spread

5 4* spread £ D < 5* spread

6 5* spread £ D < 6* spread

7 6* spread £ D < 7* spread

8 7* spread £ D < 225

Fig. 2 Binning of derivative directions and magnitudes into the 64-

bin feature histogram. Each instance of a particular derivative

magnitude and direction increments the appropriate bin
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inspecting film with a magnifying glass, the most common

method currently used for quality control inspection [6].

When sorting the output file from the algorithm, it is

possible to select the parameters (step, spread, features)

that yield the lowest overall error, the lowest false positive

error (good product classified as bad) or the lowest false

negative error (bad product missed). Which of these results

is most desirable depends on a cost–benefit analysis of the

product being sorted. Generally, the lowest false positive

rate is desirable, as in real-time sorting the false positive

percentage represents the portion of the product that is

being discarded. However, if the defect or contaminant is

of great concern, generally for food safety reasons, then the

lowest false negative error rate would be desired. The

objective here is mainly to detect insect infestations, which

are generally a food quality issue. Therefore, for the sake of

brevity, we report only the results that yield the lowest

overall error rates and the lowest false positive error rates.

Scatter plots were generated in feature space showing

the best three features as well as the decision boundary

derived from the discriminant function for certain training

instances. The decision boundary was derived by equating

the discriminant functions for the two classes. In other

words, the decision boundary consists of all points in fea-

ture space where the distance to the centroid (location of

average image of a particular class) for each class is equal

and defines a plane in three-dimensional space. The plots

were rotated to give the appearance of looking along the

edge of the decision plane, which therefore collapses into a

line allowing a clear visualization of the separation of the

two classes in feature space.

Algorithm testing, olives

Algorithm testing for the images of olives was conducted

similarly to the procedure for the images of wheat kernels.

For the case of olives, however, there is no previous work

with which to compare results, either for machine recog-

nition or human recognition. Training was conducted using

all available images in the training set because the data set

is much smaller than that for the wheat kernels.

Results and discussion

Wheat

Classification results for minimal false positive classifica-

tion are shown in Table 4. The first column represents

using all images in the training set for training, and

applying the derived decision function to the entire vali-

dation set (first training strategy). In the second column,

only images with large infestations (as well as clean) were

used, both for training and validation. Finally, the third

column represents training with only images of large

infestations, and applying the decision function to the

entire validation set. Note that the decision function is the

Table 3 Distribution of images by age of the insect

Life Stage # of images Life Stage # of images

Egg 50 prepupa 50

1st instar 50 pupa 50

2nd instar 50 adulta 50

3rd instar 50 Tunnelb 50

4th instar 50 Tot infested 450

Non-infested 450

a pre-emergent
b post-emergent

Fig. 3 Digitized X-ray film images of infested and non-infested

wheat kernels

Fig. 4 Sample X-ray images of olives with various levels of

infestation damage caused by the olive fruit fly
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same for the second and third columns, and so the vali-

dation results will be identical for stages four through

eight. These results are shown in a separate column

because the difference between the false positive rates is of

interest. The results indicate that training with only large

infestations gives the best results, with false positive rates

reduced to 1.8%, or 4 incorrectly classified out of 225

images of non-infested kernels in the validation set. As

expected, false positives were higher for classification of

all images in the validation set vs. only the large infesta-

tions (1.8% vs. 1.3%). For large training, the best step was

17, the best spread was 22, and the three best features were

7, 38, and 50. The eight derivatives computed for each

pixel were therefore taken as the difference in pixel

intensity between the current pixel and the intensity at

eight points of the compass lying on a circle of radius 17

pixels with the current pixel at the center. The derivatives

were mapped into the feature histogram with bin bound-

aries of 0, 22, 44, 66, 88, 110, 132, 154, and 255. The

features (7, 38, 50) correspond to the number of pixel

locations at which: the derivative between current pixel and

NW along circle described above is less than 22; the

derivative between current pixel and W is between 88 and

110; the derivative between current pixel and E is between

132 and 154. Figure 5 shows the scatter plots for the two

training scenarios for minimal false positive training, with

the plot on the left corresponding to training with all

images and that on the right with only the large images.

Black dots on the gray side of the boundary represent false

positives.

Classification results for minimal total error classifica-

tion are shown in Table 5. Each column represents strategy

as described above for minimal false positive classification.

Again the results indicate that training with only large

infestations gives better classification, with total error

reduced to 14.4%. False positives were again higher for

classification of all images in the validation set vs. only the

large infestations (4.9% vs. 3.1%). For large training, the

best step was 18, the best spread was 27, and the three best

features were 6, 47, and 61. Figure 6 shows the scatter

plots for the two training scenarios for minimal total error

training, with the plot on the left corresponding to training

with all images and that on the right with only the large

images. As above, black dots on the gray side of the

boundary represent false positives.

Table 6 shows percent recognition for human observa-

tion of digitized film for wheat kernels infested with the

granary weevil [6]. Overall results between the algorithm

and human recognition are comparable. Humans are much

Table 4 Classification error rates for parameters selected to mini-

mize false positive rates. (row 9). Column 1 all/all refers to the in-

stance where images of all stages were used for both training and

validation. Columns two and three have similar notation

Stage All/all %

error

Large/large %

error

Large/all %

error

Egg 84.0 x 64.0

1st Instar 60.0 x 52.0

2nd Instar 52.0 x 44.0

3rd Instar 48.0 x 38.0

4th Instar 32.0 40.0 40.0

Prepupa 28.0 20.0 20.0

Pupa 24.0 20.0 20.0

Adult 24.0 16.0 16.0

Empty Tunnel 28.0 24.0 24.0

Total infested 42.0 24.0 35.3

Non-Infested 3.6 1.3 1.8

Total 22.9 8.8 18.7

All/all step = 26 spread = 34 large/large step = 17 spread = 22

Fig. 5 Scatter plots of mapping the features into the feature space for

minimizing false positive classification. The plot on the left is the

result of training with all images, while that on the right is the result

of training with just the large images. While the decision boundary is

a plane in the feature space, the plots have been rotated so that the

plane collapses into a line, allowing visualization of the separation of

the two classes. Black represents non-infested kernels and grey

represents infested. Black dots on the grey side represent the false

positives
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more reliable at correctly classifying advance infestations,

while the algorithm is more reliable for distinguishing

small infestations from non-infested kernels. Another fac-

tor to be considered is the variability in the human data

between the four subjects, a problem that computers do not

share.

Olives

The results for testing the algorithm with all levels of

infestation damage are shown in Table 7. As expected, the

recognition was low for slight and moderate damage, at

50% and 52% respectively. For severe damage the recog-

nition rose to 87%. False positives were 16%. Total error

rate for infested images was 24%. As stated earlier, the

poor results and high false positives are believed to be a

consequence of the small number of slight and moderate

classifications in the training set, hindering the effort to

derive a proper decision boundary between the two regions.

The results obtained testing the algorithm with just the

severely damaged olives are shown in Table 8. As

expected, the recognition of severe damage remained

almost unchanged, while false positives dropped from 16%

in the previous case to 10%. We are predominantly inter-

ested in the severe damage caused by infestation, although

Table 5 Classification error rates for parameters selected to minimize

total error rates

Stage All/all % error Large/large % error Large/all % error

Egg 68.0 x 56.0

1st Instar 60.0 x 48.0

2nd Instar 40.0 x 38.0

3rd Instar 28.0 x 24.0

4th Instar 24.0 18.0 18.0

Prepupa 8.0 8.0 8.0

Pupa 4.0 4.0 4.0

Adult 4.0 4.0 4.0

Empty tunnel 8.0 16.0 16.0

Total

infested

27.1 9.6 24.0

Non-infested 12.4 3.1 4.9

Total 19.8 5.6 14.4

All / all step = 17 spread = 34 large/large step = 18 spread = 27

Fig. 6 Scatter plots of mapping

the features into the feature

space for minimizing total error.

The plot on the left is the result

of training with all images,

while that on the right is the

result of training with just the

large images. Black represents

non-infested kernels and grey

represents infested. Black dots

on the grey side represent the

false positives

Table 6 Recognition results for

digital observations[6]
Stage Percent Error

Subject 1 Subject 2 Subject 3 Subject 4 Avg.

Egg 86.4 96.4 82.9 92.1 89.4

1st Instar 72.7 90.1 64.4 72.7 75.0

2nd Instar 44.3 69.3 40.7 40.0 49.6

3rd Instar 21.6 48.6 20.3 23.6 28.5

4th Instar 3.4 9.5 0 3.4 4.1

Prepupa 2.0 4.0 3.0 0 2.2

Pupa 2.2 2.0 1.2 0 1.3

Adult 1.7 3.4 1.7 1.0 1.9

Empty tunnel 2.0 6.7 2.0 2.0 3.2

Total infested 26.3 36.7 24.0 26.1 28.3

False positive 5.7 0.7 4.0 1.3 2.9

Total 16.0 18.7 14.0 13.7 15.6
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detection of all damage would be ideal. However, when

considering the desire to detect all damage with the need to

reduce the false positive rate, the latter is far more

important. Future work will concentrate on reducing the

false positive rate, which presumably can be accomplished

by training with a larger number of samples so that a more

precise decision boundary can be achieved. Unfortunately

for our research, but fortunate for the California olive

industry, infestations in the last olive season occurred at

lower levels than previous years and infested samples were

difficult to obtain. This was probably due to the hot, dry

conditions experienced last season, which tend to hamper

the buildup of olive fruit fly populations [17].

One of the benefits of the feature selection process used

here is that it requires no prior knowledge of what features

in the image are significant, as the process will sort them

out. The technique should work just as well for any sets of

images that can be sorted into distinct classes. There may

be more suitable criteria for setting up the feature histo-

gram than derivatives and pixel intensities, and the spacing

of the histogram bins is an important factor that must be

considered.

Conclusion

An automatic recognition algorithm has been developed for

detection of inclusions in X-ray images of certain agricul-

tural commodities. Testing of the algorithm on wheat kernels

infested with larvae of the granary weevil yielded compa-

rable results to those obtained by human subjects evaluating

digitized X-ray film images. The low success of properly

classifying images containing small infestations by either the

algorithm or human subjects suggests that improved results

may be dependant on the development of X-ray equipment

capable of generating higher quality images with higher

resolution and less noise. Testing of alternate training strat-

egies showed that for this type of algorithm, which uses a

form of discriminant analysis with a generally ‘‘fuzzy’’

decision boundary, best results are obtained training with

samples that map far away from the boundary, then applying

the derived decision function to all samples to be classified.
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Table 7 Classification results using images for all stages of infesta-

tion

Infestation

Damage

# in validation

set

# Correctly

classified

%

Recognition

Slight 16 8 50

Moderate 23 12 52

Severe 86 75 87

Non-infested 80 67 84

Total 205 162 79

Table 8 Classification results using only images of large infestations

Infestation

damage

# in validation

set

# Correctly

classified

%

Recognition

Severe 86 74 86

Non-infested 80 72 10

Total 166 146 88
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