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An automated sorting system was developed that nondestructively 
measured quality characteristics of individual kernels using near-infrared 
(NIR) spectra. This single-kernel NIR system was applied to sorting 
wheat (Triticum aestivum L.) kernels by protein content and hardness, 
and proso millet (Panicum miliaceum L.) into amylose-bearing and 
amylose-free fractions. Single wheat kernels with high protein content 
could be sorted from pure lines so that the high-protein content portion 
was 3.1 percentage points higher than the portion with the low-protein 
kernels. Likewise, single wheat kernels with specific hardness indices 
could be removed from pure lines such that the hardness index in the 

sorted samples was 29.4 hardness units higher than the soft kernels. The 
system was able to increase the waxy, or amylose-free, millet kernels in 
segregating samples from 94% in the unsorted samples to 98% in the 
sorted samples. The portion of waxy millet kernels in segregating samples 
was increased from 32% in the unsorted samples to 55% after sorting. 
Thus, this technology can be used to enrich the desirable class within 
segregating populations in breeding programs, to increase the purity of 
heterogeneous advanced or released lines, or to measure the distribution 
of quality within samples during the marketing process.  

 
Most grain quality characteristics are measured on a composite 

of multiple kernels from bulk samples and therefore information 
on characteristics of single kernels are lost. For example, wheat 
(Triticum aestivum L.) grain protein content is measured using 
bulk samples, resulting in one average value for that sample. 
However, the protein content standard deviation among single 
kernels from one field can be 0.5 to 1.4 percentage points 
(Malloch and Newton 1934; Levi and Anderson 1950). This 
range in protein content is influenced by the environment and 
genetics, with the influence of genetics ranging from 15% 
(Sunderman et al 1965) to 83% (Stuber et al 1962). An accurate 
measure of the uniformity of protein content within a sample is an 
important factor in determining breadmaking potential, with 
higher protein content generally yielding larger loaf volumes 
(Bushuk et al 1969). Because protein content is related to product 
quality, uniform protein content within lots is important for mak-
ing specific, high-quality products. Thus, average protein content 
is important for determining specific end use markets, but there 
has been no method to determine whether protein content within 
samples is uniform, or whether a bulk lot is a blend of high- and 
low-protein content wheat. 

Wheat hardness is also not uniformly distributed within blended 
lots, or even within highly inbred lines or cultivars, and can have 
a standard deviation of ≈20 hardness units within a sample 
(Martin et al 1993). Hardness is influenced by the environment 
and genetics (Huebner and Gaines 1992; Morris et al 1999) and 
affects flour yield, starch damage, milling energy requirements 
(Evers and Bechtel 1988), and baking properties (Pomeranz et al 

1984). If hard and soft lots are blended, a small amount of soft 
kernels can have a large detrimental effect on baking quality 
(Morris 1992). Thus, uniformity in hardness can have a positive 
effect on baking quality. Chung et al (2004) showed that when 
samples within an advanced line were sorted into four hardness 
fractions, the bread quality from the four fractions increased with 
hardness. 

There are many other grain quality attributes with variability 
between kernels within a sample that is similar to or greater than 
protein content or hardness. These can include starch content, amy-
lose content, fusarium damage, insect damage, kernels that are 
nonvitreous, sprout damage, kernel color, etc. For those attributes 
influenced by genetics, nondestructively measuring quality charac-
teristics of individual kernels and subsequent sorting could help 
breeders select specific characteristics in segregating populations 
and in heterogenous advanced lines in their breeding programs 
and to study the effects of genetics and environment on selected 
characteristics. The ability to sort and recover seed with specific 
quality characteristics also would assist breeders engaged in the 
introgression of characteristics from one market class to another. 
For example, wheat breeders interested in introducing a disease 
resistance gene from soft to hard wheats could select hard-grained 
seed from early generation samples, and then discard soft kernels 
or use them for soft wheat breeding programs. This selection would 
greatly help a hard (or a soft) wheat breeder select lines with the 
hard (or soft) kernels. Also, the kernels with specific attributes 
could be removed from samples and planted in different environ-
ments to study the influence of environment and genetics on this 
selected characteristic. The technology could also be used at all 
stages of grain marketing, handling, and storage systems to deter-
mine distributions of quality factors within pure or blended lots. 

There has been research reporting technology for nondestruc-
tive measurement of single-kernel attributes such as protein content 
(Delwiche and Hruschka 2000; Shadow and Carrasco 2000; Ritti-
ron et al 2004), insect damage (Dowell et al 1998), hardness (Ma-
ghirang and Dowell 2003), vitreousness (Dowell 2000), class 
(Zayas et al 1996), density (Nielsen et al 2003), and color (Dowell 
1998). While some of this previous research included automated 
feeding and scanning, none included a means to automatically 
sort the kernels based on desired attributes. Pasikatan and Dowell 
(2004) reported segregating large samples by protein content using 
a commercial high-speed color sorter with a combination of color 
and NIR filters, but shifts in protein content were small and likely 
due to differences in color or vitreousness. 
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The objective of this research was to develop an automated 
system to measure attributes of single kernels, develop calibra-
tions for selected quality parameters, and then sort single kernels 
based on user-defined parameters. Sample applications are given 
for sorting wheat by hardness and protein content, and for sorting 
waxy (amylose-free) kernels from proso millet (Panicum milia-
ceum L.). 

MATERIALS AND METHODS 

SKNIR System 
A system to feed single kernels to a near-infrared (NIR) spec-

trometer and then sort the kernels based on user-defined criteria 
was developed by the USDA ARS Grain Marketing and Pro-
duction Research Center, Engineering Research Unit, Manhattan, 
KS, and commercialized by Perten Instruments (Stockholm, Swe-
den) (Fig. 1). This single-kernel NIR (SKNIR) system used a 
vacuum wheel from the SKCS 4100 (Perten Instruments, Stock-
holm, Sweden) to feed kernels to the spectrometer viewing area. 
The vacuum wheel consisted of a nearly vertical wheel ≈15 cm in 
diameter with eight evenly spaced 0.7-mm vacuum ports located 
0.6 cm from the edge of the wheel. The vacuum wheel picked up 
one kernel at a time from a kernel bin and deposited it into a V-
shaped trough (≈12 mm long, 10 mm wide, and 5 mm deep). The 
kernel was illuminated with white light through a fiber optic 
bundle. Reflected energy was transmitted to a spectrometer (Con-
trol Development, South Bend, IN) that used an indium-gallium-
arsenide sensor and measured absorbance at 950–1650 nm. The 
spectrometer integration time was 6.3 msec, and 24 spectra were 
averaged from each kernel. The time required to collect, average, 
and store the spectra was ≈0.5 sec for each kernel. The resulting 
spectrum was then used to determine kernel attributes through 
user-defined calibrations. After the kernel was analyzed, the trough 
was able to be rotated counterclockwise by a stepper motor to drop 

the kernel back into the original kernel bin for a repeated meas-
urement, or rotated clockwise so that the kernel dropped through 
a series of gates that led to one of four sorting bins based on 
predefined sort settings. A Spectralon diffuse-reflectance standard 
(Labsphere, North Sutton, NH) was mounted on the reverse side 
of the trough and was presented to the spectrometer for collecting 
baselines by rotating the trough 180°. Kernels were scanned and 
sorted at a speed of ≈ 1 kernel/2 sec. If kernel placement, scan-
ning, and sorting were optimized, then a two- to fourfold increase 
in speed may be possible. 

The system software allowed the user to sort kernels using 
calibrations developed with software such as Grams (Galactic 
Industries, Salem, NH) or Unscrambler (CAMO, Woodbridge, 
NJ). The user could also set reject criteria so that spectra from 
kernels that may not be fully in the field of view, poorly posi-
tioned kernels, spectra from broken kernels, etc., could be rejected. 
The reject criteria consisted of accepting only spectra with absor-
bance between specific values at a selected wavelength, or having 
a line slope between specific values between two selected wave-
lengths. The rejected kernels were returned to the original kernel 
bin. The user selected the sorting parameters for placing kernels 
in the four sorting bins, and a real-time histogram displayed the 
number of kernels in each bin during the sorting process. If reject 
criteria were properly selected, and if reference data were readily 
available, then calibrations could be completed in about one day. 

A camera captured images of each kernel positioned in the 
viewing trough and displayed the image on the computer screen. 
This assisted the user in ensuring the system was functioning 
correctly. The images were stored for subsequent color and dimen-
sional analyses, but this information could not presently be used 
for real-time sorting. 

The user selected the number of kernels to sort so that when 
this value was reached, the system stopped. The user also selected 
criteria so that the system automatically terminated after the 

 

Fig. 1. Automated system for sorting single kernels using near-infrared spectroscopy. 
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spectrometer had recorded a specified number of invalid spectra, 
which occurred when the spectrometer repeatedly measured 
spectra of the empty viewing area because no more kernels were 
available for sorting. 

Development of Wheat Calibration Models 
Calibration models were created for single-kernel protein content 

and hardness by using partial least squares (PLS) regression 
(Martens and Naes 1989) and Grams software (PLSPlus/IQ, Gal-
actic Industries, Salem, NH). The number of factors when the F-
ratio probability level was ≤0.75 was used for the calibration 
model. The regression equation, referred to as beta coefficients in 
Grams, was used to determine the wavelengths that were most 
important in the final calibration models. 

The calibration set for protein content consisted of 97 hard red 
winter wheat samples obtained from the Federal Grain Inspection 
Service in 2004. These samples had an average protein content of 
12.75% with a standard deviation of 1.71%. Spectra were collec-
ted from 100 kernels from each sample and then averaged to give 
one spectrum per sample. The bulk protein content (12% moisture 
content basis) was determined by Approved Method 39-25 (AACC 
International 2000), the NIR method for protein content in whole-
grain wheat using the Foss NIRSystems 6500 (Foss North Amer-
ica, Inc., Silver Springs, MD) equipped with a natural product 
sample cell. The protein content was then assigned to the average 
spectrum. In a preliminary study using crop year 2000 wheat, we 
compared 1) a calibration created from 1,000 hard red winter single 
kernel spectra (10 kernels from 100 samples) and corresponding 
single-kernel protein reference measurements (6.2–21.2% protein 
content); and 2) a calibration created from spectra of 100 kernels 
averaged from each of 100 samples and the corresponding bulk 
protein reference measurement (8.8–18.1% protein content). The 
calibrations were then used to predict the bulk protein of 120 in-
dependent samples (9.6–15.3% protein content) using 100 kernels 
from each sample. The standard error of prediction of both methods 
was ≈0.43. Thus, to simplify the calibration method for the results 
reported herein, bulk protein measurements were assigned to spec-
tra averaged from each sample. The repeatability for the protein 
reference method is ≈0.20% protein (Hunt et al 1977), and the 
protein content results should be within ≈0.50% (Osborne and 
Fearn 1983) of the Kjeldahl method (Approved Method 46-11A, 
AACC International 2000), the crude protein-improved Kjeldahl 
method, copper catalyst modification. 

The hardness calibration was created using 10 U.S. National 
Institute of Standards and Technology wheat hardness reference 
samples and 23 additional hard and soft wheat samples for a total 
of 14 soft and 19 hard samples. The average hardness index for 
this set was 46.8 with a standard deviation of 26.9. For each 
sample, spectra were collected from 100 kernels and then aver-
aged and assigned the average hardness index obtained using the 
SKCS 4100 (Approved Method 55-31, AACC International 2000), 
the single-kernel characterization system for wheat kernel texture. 

Wheat Test Sets 
The wheat test set consisted of different crosses of 22 F2 winter 

wheat crosses grown by Stephen Baenziger, University of Neb-
raska, in Yuma, AZ, in 2004. These samples were from single and 
three-way crosses involving various parents as would be expected 

in a traditional hard winter wheat breeding program. Some crosses 
included hard and soft kernel type parents and were made to 
increase the disease resistance and agronomic performance of 
subsequent selections for the desired hard kernel types. Four sam-
ples were sorted into four protein content levels, and 18 samples 
were sorted into four hardness levels. The sorting criteria chosen 
for binning into four hardness or protein content levels were set 
so that ≈25% of each sample was sorted into each of the four bins. 
Sorting was terminated when ≈40 g were sorted for each bin. 
Protein content and hardness of the unsorted and sorted wheat test 
set samples were measured as described above. 

Proso Millet Calibration Models and Test Sets 
Proso millet (Panicum mileaceum L.) (also known as proso or 

broomcorn millet) samples were selected at random from several 
F3 populations. Populations were derived from the following 
matings: Earlybird/PI 436626, PI 436625/Earlybird, PI 170597/PI 
436626, Huntsman/PI 436626, or Sunrise/PI 436626. PI 436225 
and PI 436226 are waxy selections, originally from China and 
now housed in the USDA-ARS North Central Regional Plant Intro-
duction Center at Ames, IA. PI 170597 is a wild-type (nonwaxy) 
selection from Turkey. The remaining lines are wild-type (non-
waxy) proso cultivars developed by the University of Nebraska 
and adapted to dryland conditions of the western Great Plains area. 
The F3 populations were field-grown in 2004 at the University of 
Nebraska Panhandle Research and Extension Center, Scottsbluff, 
NE (Table I). Plant selections from F3 populations derived from 
waxy/wild-type proso crosses are either true-breeding (pure) 
waxy, true-breeding (pure) wild-type, or segregating waxy/wild-
type. However, it is difficult to obtain 100% pure waxy samples. 
Proso seed is small, and mechanical mixtures from harvest 
machinery are difficult to avoid. Also, while proso largely is self-
pollinated, natural outcrossing can occur at frequencies of up to 
10% (Baltensperger and Cai 2004). Preliminary genetic studies 
(Graybosch and Baltensperger 2004) have determined the waxy 
trait of proso is determined by the presence of duplicate recessive 
genes. The presence of a dominant gene at one of the two post-
ulated waxy loci is enough to confer wild-type phenotype. Thus, 
segregating plants from F3 populations may produce wild-type/ 
waxy progeny in ratios of either 15:1 (or 93.75% wild-type) or 
3:1 (75% wild-type), depending on whether the heterozygous 
individual carries one or two dominant genes. 

The following single plant selections were harvested and 
threshed individually: 23 white seeded samples composed of 
>95% waxy kernels; 17 white seeded samples containing 80–95% 
waxy kernels; eight red seeded waxy samples; 38 white seeded 
wild-type individuals; 31 white seeded segregating samples, or 
samples that had a large percentage of waxy and wild-type 
kernels; and seven red seeded segregating samples. The frequency 
of waxy kernels in each sample was verified by the rapid iodine 
staining method (Pedersen et al 2004) on 48 kernels from each 
sample. Only the 23 white seeded waxy samples that were >95% 
pure and the 38 wild-type samples were used in the calibration 
set. The remaining 25 white and red waxy, and the 38 white and 
red segregating samples containing waxy and wild-type kernels 
were used as a test set. 

For the calibration development, 100 seeds from the 23 white 
waxy and 38 wild-type calibration samples were scanned. Spectra 

TABLE I 
Number of Bulk Samples Used for Calibration and Test Sets for Sorting Single Proso Millet Seeds  

Using a Single-Kernel Near-Infrared Sorting System 

 White Samples  Segregating Samples Wild-Type Samples 

Sample Set >95% Waxy 80–95% Waxy Waxy Red Samples White Red White 

Calibration set 23 – – – – 38 
Test set – 17 8 31 7 – 
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resulting from misplaced kernels that may not have been removed 
by the SKNIR reject criteria were removed manually, and the 
resulting spectra for each sample were averaged into one spec-
trum representing each sample. The calibration was developed 
using a PLS analysis and was subsequently used to attempt to 
select waxy kernels from all waxy and segregating samples. For 
the PLS calibration, the waxy samples were assigned a value of 
“1” and the wild-type were assigned a value of “2”. The sorting 
criterion was adjusted to place ≈50% of the seeds in bins 1 and 2, 
and 50% in bins 3 and 4. Samples were sorted until about 10 g of 
seed was obtained by combining bins 1 and 2. Twenty kernels 
were obtained from each bin to confirm the sorting accuracy by 
iodine staining. 

RESULTS AND DISCUSSION 

Sorting Wheat by Protein Content 
The single-kernel protein content calibration model had R2 = 

0.92 and SECV = 0.47% when using five PLS factors. The 
reference sample had a protein content range of 9.4–16.3% (Avg 
= 12.8%; SD = 1.73%), while the validation samples had a pro-
tein content range of 12.8–15.4% (Avg = 13.9%; SD = 0.69%). 
This agrees well with the single-kernel protein content study re-
ported by Delwiche and Hruschka (2000) where they achieved R2 
= 0.91 and SECV = 0.37% for hard red winter wheat with a pro-
tein content range of 8.4–16.4%. The regression coefficients of the 
calibration equation occurring at 985, 1140, 1185, and 1435 nm 
(Fig. 2) agree with those identified by Williams (2001) as some of 
the principal protein content absorption bands. 

Table II shows the protein content of the four unsorted and 
sorted samples. The average difference between the bins with the 
highest and lowest protein contents (bins 1 and 4) was ≈3.1 per-
centage points. For each sample, the average difference between 
consecutive bins was ≈1 percentage point. Thus, the system was 
effective at sorting samples into four protein content fractions. 

Sorting Wheat by Hardness 
The hardness calibration model had R2 = 0.85 and SECV = 

10.4 hardness units when using five PLS factors. The regression 
equation showed the most important wavelengths occurred at 
≈950, 1310, 1405, 1460, and 1650 nm (Fig. 2). Maghirang and 
Dowell (2003) reported slightly better results with R2 = 0.88 and 
SECV = 8.8 hardness units when using a wider wavelength range 
of 550–1700 nm. They also reported similar important absorption 
regions occurring at 1405, 1460, and 1650 nm. These wave-
lengths likely relate to the protein and starch interface because the 
degree of adhesion between starch and protein may influence 
hardness (Simmonds et al 1973). 

The hardness indices of the unsorted and sorted samples are 
given in Table III. The average difference in the hardness of bin 1 
and 4 was 17 units, with the smallest and largest differences being 
2.8 and 29.4 hardness units, respectively. The average difference 
between consecutive bins was 5.7 hardness units. The average 
standard deviation of hardness index within samples was 19.9 
units for the unsorted samples, and this reduced to an average of 
18.3 units within each bin for the sorted samples. Thus, the 
SKNIR system was effective at sorting samples by hardness and 
also narrowed the distribution of hardness within sorted samples. 

TABLE II 
Results From Using a Single-Kernel Near-Infrared System to Sort Samples into Four Protein Content (PC) Rangesa  

  Sorted Samples (PC %) 

Sample ID Unsorted Samples (PC %) Bin 1 Bin 2 Bin 3 Bin 4 

548 14.0 12.7 13.3 13.7 15.4 
549  13.6 12.0 12.9 13.5 14.9 
550  15.4 13.2 14.5 15.2 17.1 
551 14.3 12.6 13.1 13.9 15.6 

a Reported on a 12% moisture content basis. 

 

Fig. 2. Regression coefficients resulting from a partial least squares regression analysis of near-infrared spectra when measuring protein content and 
hardness of single wheat wheat, and when sorting proso millet containing amylose from amylose-free kernels. The absolute value of the regression 
coefficient at each wavelength shows the influence of each wavelength on the prediction equation. 
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Sorting Proso Millet by Waxy Character 
Although the SKNIR system was developed for wheat, it was 

able to sort millet kernels by installing an air bypass valve in the 
vacuum line to reduce suction and prevent multiple millet seeds, 
which are much smaller than wheat seeds, from being picked up 
by the vacuum ports. The length of the V-shaped trough was also 
reduced to keep the millet seed centered under the fiber optics. 
The calibration to separate samples containing amylose (wild-type) 
from amylose-free (waxy) samples resulted in R2 = 0.65 and SECV 
= 0.29 when using six PLS factors. A cross-validation showed 
that all waxy samples and 89.5% of the wild-type samples were 
correctly identified. The regression coefficients (Fig. 2) showed 
important wavelengths at ≈985, 1180, 1440, and 1650 nm that 
correspond to starch absorption regions reported by Williams 
(2001). These results were obtained by classifying spectra averaged 
from multiple kernels from one sample, but further analysis showed 
how the calibration performed when sorting individual kernels. 

For the waxy samples, sorting to select out waxy kernels in-
creased the waxy kernels in 42 of the 48 waxy samples (Table IV) 
and increased the percentage of waxy kernels in these samples 
from an average of 94% in the unsorted samples to 98% in the 
sorted samples. Six samples showed an average decrease in waxy 
kernels from 94.5 to 93%. This slight decrease may be due to sam-
pling error because only 48 kernels were tested per sample and due 
to the subjectivity involved when the staining is not definitive on 

some samples. The calibration set samples had an increase in 
waxy kernels from 96 to 99%, the white test set samples had an 
increase from 91 to 97%, and the red test set samples had an in-
crease from 95 to 99% in the unsorted and sorted samples, res-
pectively. Thus, the calibration performed well for the calibration 
set and test set, including samples with red kernels. It was not 
expected that the kernel color would affect the sorting accuracy 
because the SKNIR system does not measure visible wavelengths. 

For the segregating samples, sorting increased the waxy kernels 
in 35 of the 38 segregating samples (Fig. 3). The waxy kernels in 
the unsorted segregating samples averaged 32%, and this was 
increased to 55% after sorting. The red samples had an increase in 
waxy seed from 32% in the original sample to 50% in the sorted 
samples, and the white samples showed an increase from 32 to 
56%. Again, there appeared to be little influence of kernel color 
on the sorting efficiency, and the system was effective at increas-
ing waxy kernels in sorted millet samples. Some samples respon-
ded well to the sorting process, while others show little or no 
increase in waxy seeds. The reason for this discrepancy in sorting 
efficiency should be investigated in future tests. 

Although the system was demonstrated by sorting wheat by 
protein content and hardness, and millet by waxy character, the 
system may have applications in selecting other characteristics 
such as vitreousness, sprout damage, scab damage, or internal or 
parasitized insects in wheat. The system could also have appli-
cations to other small grains such as sorghum, rice, or barley, or 
to other biological materials such as fly pupae that have morpho-
logical characteristics similar to single grain kernels as demon-
strated by Dowell et al (2005). 

CONCLUSIONS 

The SKNIR system was effective at sorting kernels based on 
measured levels of selected characteristics. Wheat samples were 
sorted into protein content fractions, with the highest and lowest 
fractions differing by ≈3.1 percentage points. Samples were 
sorted by hardness index, with the highest and lowest fractions 
differing by 17 hardness units. The system was also effective at 
increasing the waxy seeds in proso millet advanced lines that are 
predominately waxy, and also in segregating population samples. 

After calibrations were developed and installed, the system 
required little user skill and attention. This system will provide 
breeders with a tool to nondestructively select desirable character-
istics from segregating populations and to increase the purity of 
heterogeneous advanced or released lines. Experiments are cur-

TABLE IV  
Percentage of Waxy Proso Millet Kernels in Unsorted Samples and After 

Sorting Using an Automated Single-Kernel Near-Infrared System 

 
Sample Set 

 
No. Samples 

Unsorted Waxy 
Kernels (%) 

Sorted Waxy 
Kernels (%) 

Calibration set 20 87.4–99.8 100.0 
 1 93.6 94.7 
 1 95.5 95.2 
 1 97.9 94.7 
Test set (white) 10 78.8–99.4 100.0 
 1 95.8 95.0 
 1 64.8 95.0 
 1 97.4 94.7 
 1 88.3 90.0 
 1 89.1 90.0 
 1 90.4 90.0 
 1 89.7 88.2 
Test set (red) 6 93.0–99.8 100.0 
 1 88.9 95.5 
 1 93.9 95.0 

TABLE III 
Average Hardness Index in Unsorted Samples and After Sorting Using a Single-Kernel Near-Infrared Systema 

  Sorted Sample 

Sample ID Unsorted Sample Bin 1 Bin 2 Bin 3 Bin 4 

115 56.0 (22.8) 46.5 (22.6) 51.8 (21.3) 59.3 (24.8) 67.8 (25.2) 
262  79.0 (15.4) 77.5 (12.7) 81.1 (12.6) 82.6 (14.0) 85.2 (13.1) 
354 68.3 (18.1) 61.6 (20.4) 70.7 (17.5) 70.5 (16.7) 74.6 (13.7) 
356 64.6 (22.4) 52.8 (22.6) 59.0 (24.4) 68.8 (19.9) 74.6 (17.2) 
358 66.3 (20.9) 55.3 (21.1) 66.6 (20.0) 74.7 (18.4) 76.8 (17.2) 
359  64.0 (23.2) 47.9 (21.9) 57.0 (20.7) 66.6 (22.6) 77.3 (19.4) 
365  58.9 (25.3) 43.6 (20.0) 53.5 (20.9) 59.6 (24.4) 67.3 (22.3) 
444 65.0 (24.4) 53.3 (25.5) 63.2 (24.5) 69.6 (23.0) 76.6 (18.7) 
511  71.9 (23.1) 61.3 (21.5) 64.5 (25.0) 72.7 (22.7) 82.4 (17.6) 
513 67.8 (23.4) 54.7 (24.1) 61.2 (21.9) 70.9 (19.5) 77.3 (16.6) 
530 68.1 (16.9) 64.0 (13.0) 65.4 (18.3) 69.5 (15.0) 71.4 (17.1) 
NE01643 59.2 (15.6) 57.4 (10.7) 53.8 (15.0) 63.3 (14.1) 60.2 (16.9) 
Infinity 63.6 (13.8) 63.2 (11.3) 65.6 (12.8) 66.0 (14.0) 67.1 (15.3) 
Hallam-04Y 60.3 (13.5) 55.9 (11.3) 57.4 (17.0) 62.1 (13.7) 63.9 (17.5) 
441 64.4 (23.7) 55.5 (23.7) 62.7 (22.7) 62.4 (24.0) 77.9 (20.2) 
507 60.4 (24.3) 51.7 (19.9) 60.2 (18.6) 65.7 (21.7) 76.0 (15.6) 
Hallam-02Y 44.7 (14.7) 36.5 (11.5) 44.4 (13.7) 47.7 (12.8) 52.3 (15.6) 
NI98439-02Y 43.1 (16.9) 33.6 (13.3) 42.2 (13.8) 45.0 (12.9) 50.8 (15.4) 

a Numbers in parentheses indicate standard deviation. 
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rently underway or being designed to study the effects of genetics 
and environment on kernels with selected characteristics obtained 
using this technology. The system could also be used by various 
other grain industry segments to measure the distribution of 
quality characteristics within samples for marketing, storage, or 
processing purposes. 
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