SPECTRAL BAND SELECTION FOR OPTICAL SORTING OF PISTACHIO NUT DEFECTS

R. P. Haff, T. Pearson

ABSTRACT. A technique using near-infrared spectroscopy (NIR) was developed for selecting the optimal spectral bands for use in dual-wavelength sorting machines commonly found in food processing plants. A variation of a nearest-neighbor classification scheme selected the two optimal spectral bands given NIR spectra from both sides of an object. The optimal bands were determined for two cases: when both sides contain the defect of interest (AND logic), or when the defect appears on a single side (OR logic). A commercially available sorting machine was used to compare the sorting accuracy using the spectral bands determined with this technique to the accuracy using bands recommended by the manufacturer. The product stream tested was the removal of “small inshell” (small nuts with the shell intact) and shell halves from the stream of nuts with no shells (“kernels”). Results for the selected spectral bands averaged 1.20% false negative (fn) for small inshell and 1.80% fn for half shells with 0.15% false positive (fp) vs. 1.70%, 2.40%, and 0.70%, respectively, using the spectral bands recommended by the manufacturer. Optimal spectral bands were also determined and reported for a variety of other defects and unwanted materials commonly sorted in the pistachio processing plant, including adhering hull, stained, sticks, mold, insect damage and/or webbing, and black spots. Given the success of this technique in pistachio sorting experiments, it is believed that it could be applied to any commodity sorted using commercially available, dual-wavelength, NIR sorting devices.

Keywords. Dual-wavelength sorting, NIR spectroscopy, Pistachio nuts. Spectral bands.

High-speed optical sorters have found extensive use for removing blemished product and foreign materials for many different commodities including tree nuts, peanuts, grain, and vegetables. Some specific examples include removal of kernel bunt in wheat (Dowell et al., 2002) and kernel color class separation (Paskanian and Dowell, 2002). Pearson et al. (2001) reported algorithms for use with commercially available monochromatic image-based sorters to detect defects in pistachios. These algorithms were able to distinguish normal nuts from nuts with oily stain, dark stain, and adhering hull defects with an accuracy of 98%. The same algorithm also identified 89.7% of nuts with kernel decay, 93.8% of nuts with Aspergillus molds present, and 98.7% of nuts with damage from the naval orange worm (NOW). These systems can inspect and sort objects at a rate of up to 100/second/channel, depending on the size of the object to be sorted. Initially, these machines were monochromatic devices and sorting was based on the measurement of a single band of light, usually in the visible portion of the spectrum. More recently, devices have been developed that measure light in the NIR (from 1000 to 1700 nm), allowing sorting based on chemical rather than visible differences among products. In pistachio processing plants, visible light sorting devices have largely been replaced with NIR devices, and the commercially available image-based sorters used by Pearson et al. (2001) are in fact no longer in production.

Today, NIR sorting machines are available in a variety of configurations. The simplest is a monochromatic sorter (fig. 1a), which can detect a single band anywhere between 400 and 1700 nm, depending on the choice of detector. Some dual-band sorters measure a single band in the NIR region using an InGaAs sensor with sensitivity between 1100 and 1700 nm and another band in the silicon region between 400 and 1000 nm (fig. 1b). These sorters employ two bandpass filters, one over a silicon sensor and another over an InGaAs sensor. The two sensors are located together at the point where the product flows by the chute. Modular dual-band sorters use a beam-splitting mirror, and then pass each beam through an interference filter over a sensor (fig. 1c). This design allows changing of the mirror, filters, and sensors, so that a silicon-silicon, silicon-InGaAs, or InGaAs-InGaAs arrangement is possible. This design has one limitation in that the beam-splitting mirror requires at least 100 nm difference between the wavelengths of the respective bands.

Dual NIR band sorters can measure specific bands as required for a specific defect and commodity. This is accomplished using a light source that covers roughly the entire NIR spectrum, and selecting the wavelengths of interest using optical bandpass filters. This allows for the measurement of different bands by simply changing the filters. The effectiveness of the sorter depends on the selection of the appropriate filters for the product being sorted. The simplest and most common technique for selecting the two bands to be used is to compare reflectance...
The processing stream for pistachio nuts is generally divided in two: those nuts still in their shells (“in shell”), and those with no shells (“kernels”). Both streams make use of automated as well as hand sorting. While most automated sorting is performed with monochromatic sorters at visible wavelengths, the newer dual-band sorting machines with NIR capability are gaining acceptance in the industry. However, it is not clear that the spectral bands currently used as a basis for sorting are optimal. Improved band selection has the potential to increase the accuracy of dual-band sorting devices at minimal cost, thus reducing the need for costly hand sorting.

Objective

The objectives of this study were: (1) to develop a technique to determine which spectral bands are optimal for
specific sorting tasks using dual NIR band sorters, (2) to use this technique to determine optimal bands for several common pistachio defects, and (3) to compare sorting results for a few important pistachio defects (shell pieces and small in-shell nuts mixed with kernels) using the selected bands to those achieved using manufacturer-recommended filters.

MATERIALS AND METHODS

SAMPLE COLLECTION

Approximately 2 kg samples of several common defects or foreign materials found in the pistachio processing streams were collected at a processing plant after hand sorting by plant personnel. Existing cleaning and sorting machines had processed all samples, and hand sorting was the final step before roasting, salting, and packaging. Figure 2 shows kernel defects collected, figure 3 shows inshell defects, and figure 4 shows controls for inshell and kernel processing streams.

SPECTRA COLLECTION

Single kernel/nut reflectance spectra from 500 to 1700 nm were measured using a diode-array near-infrared spectrometer (DA7000, Perten Instruments, Springfield, Ill.) with a 42 W tungsten halogen lamp light source. The spectrometer measures absorbance using an array of silicon (7 nm resolution, 500 to 1000 nm) and indium-gallium-arsenide sensors (11 nm resolution, 1000 to 1700 nm). Fifteen spectra from each kernel were collected and averaged, and the time required to obtain each spectrum was approximately 33 ms. Spectra of a reference material (Spectralon) were collected after every thirty kernels for calibration purposes. This procedure minimized the effect of fluctuations from the light source. Spectra were obtained from 300 kernels of each defect type and 300 of each control type. Kernels were manually placed on a bifurcated interactance probe attached to the spectrometer and light source (fig. 5). The viewing area was 17 mm in diameter and rested 10 mm above the termination of the illumination and reflectance fibers. The illumination bundle was a 7 mm diameter ring, and the reflectance probe bundle was 2 mm in diameter. Spectra were first collected with each nut oriented on its flattest side, and then a second spectrum was obtained with the kernel axially rotated approximately 90°. This was generally sufficient to ensure that the kernels were exposed through the shell split for in-
shell nuts. For split shells and split kernels, each sample was rotated 180°, as they were too thin to acquire spectra at a 90° rotation (side view). All spectra were digitally stored for subsequent analysis.

Filter Selection from Spectra

All spectra were interpolated (Perten Simplicity software) into 5 nm bins between 500 and 1700 nm, resulting in 241 absorbance values. The spectra were then convolved with Gaussian curves to simulate the effect of different 10 nm wide bandpass filters. The Gaussian kernel used for the convolutions had a full width at half maximum (FWHM) of 5 nm, matching the width of the bins into which the absorbance bands were interpolated. The resulting spectral bands were used for all further analysis. Figure 6 shows plots of the average spectra for good kernels, small inshell nuts, shell halves (outside), and shell halves (inside). The high absorbance of the inside of the half shell is due to the fact that the inner surface is darker than the outer surface, and the concave inner surface does not reflect much of the incident
light straight back at the sensor. Spectra from small inshell nuts and the outer surface of the half shells are similar, with inshell nuts being slightly darker and having higher absorbance values. Spectra from the kernels exhibit a sharp peak around 1200 nm and a minor peak around 930 nm, where oil absorbs more light.

A k-nearest neighbor classification scheme was used to select the optimal subset of spectral bands for sorting a given “good” product and “defect.” The k-nearest neighbor algorithm was chosen as it can accommodate different distributions of spectra taken from different sides of each nut. In addition, with adaptation, the AND/OR decision logic of sorting machines can be integrated into the feature selection method.

An exhaustive search was performed for the best single spectral band, pair of spectral bands, and triplet of spectral bands. The best single spectral band accommodates monochromatic NIR sorters (fig. 1a). For the case of two spectral bands, optimal band selection was conducted to accommodate the two machine types (figs. 1b and 1c) with one pair constrained so that one band was below 1050 nm (silicon region) and the other was between 1100 and 1700 nm (NIR region). The other pair, intended for the modular design, had no constraints when separated by at least 100 nm, as required due to the beam-splitting mirror. Although sorting machines that detect three NIR spectral bands are not commercially available, the selection of the best triplet of spectral bands was intended to determine whether or not such a machine could improve sorting accuracy compared to dual-band sorters.

For each class of nut (tables 1 through 3) a random sample of 30 good kernels and 30 defect kernels were used as the training set. The remaining 270 nuts for each class served as the validation set. For each of the 241 Gaussian smoothed absorbance values in the spectra, the mean and standard deviation of the training set was computed. Each absorbance value was normalized as shown in equation 1:

$$A_{\lambda} = \frac{(A_{\lambda} - \bar{A}_{\lambda})}{\sigma_{\lambda}}$$ \hspace{1cm} (1)

where A_{λ} is the normalized absorbance centered at wavelength λ, \bar{A}_{λ} is the Gaussian smoothed absorbance centered at wavelength λ, \bar{A}_{λ} is the training set mean of the Gaussian smoothed absorbance at wavelength λ, and σ_{λ} is the training set standard deviation at wavelength λ.

When searching for the best single wavelength for separating good kernels from defect kernels, each of the 241 Gaussian smoothed absorbance values (bins) that make up the spectra for an individual kernel can be considered as a point in one-dimensional space. For clarity, we refer to the bins as wavelengths, although in actuality each bin represents a 5 nm wide band of wavelengths. At each wavelength, the spectra from each kernel in the validation set (front and back) were evaluated to determine which k kernels in the training set lie closest in that space. The value for k in this work was chosen as 3, as this reduces the effect of outliers. Distance between points was simply measured as the Euclidean distance. For AND logic, the kernel was classified as defect if absorbance values from both sides of the kernel were closest to defect kernels in the training set, while OR logic required only one side to be closer to a defect kernel. The result was a 241-element array for each kernel in the validation set, with the entries being either good or defect. At each wavelength, entries for all kernels in the validation set were compared to the known true conditions of the kernels, and the classification accuracy was computed. Here, it would be feasible to select a wavelength whose classification results had desired characteristics, such as the lowest false positive or lowest false negative rate. For this study, the wavelength selected as “best” was that which yielded the lowest overall error rate.

The procedure for selecting the best two wavelengths was exactly as above, except that the Euclidean distances between kernels was in a two-dimensional space, the two dimensions being the selected wavelengths. Rather than 241 possible wavelengths to test in the one-dimensional case, there were 241^2 possible combinations, each of which was tested as described above, and the combination with the highest classification accuracy was selected. Extension to the three-wavelength case is the same, with distances compared in three dimensions.

For the inshell product stream, clean inshell was used as the control, or “good” product, and the defects listed in table 2 were used as the “defect” product. Note that “small inshell” is considered a defect in the kernel processing stream and should not be confused with “clean inshell.” Each defect was analyzed versus clean inshell separately. For kernel processing streams, the “good” product comprised “kernel pieces,” “split kernels,” and “whole kernels,” and the defects are listed in table 1.

SORTER TESTING

A commercial, modular dual-band sorting machine (fig. 1c) was used (Sortex 3000, Sortex, Inc., Stockton, Cal.). The Sortex 3000 has three sensing modules per channel, so a total of six filters and three mirrors were obtained (CVI Laser, Albuquerque, N.M.), allowing the machine to sort at the optimal bands determined as described above for particular defect streams, which will be described below. The accuracy of the machine with the new filters was compared to the accuracy with the manufacturer’s recommended filters.

Sorter testing was performed for shell halves and small inshell product mixed with kernels. The testing was limited to these two classes of defect because replacement of the filters and mirrors is expensive and each defect type would require different filters and mirrors. In this case, it turned out that the optimal filters for these two defect types were the same, so two streams could be tested while purchasing only one set of new mirrors and filters.

Approximately 1 kg of kernels and 1 kg of defects (small inshell or shell halves) were used to train the Sortex 3000 following the manufacturer’s instructions. The training process involved feeding the two streams through the machine, which created a map of the feature space. At the completion of the training, the machine created a decision boundary for separation of the two groups. Subsequent samples were classified based on which side of the decision boundary they were mapped to. While it is possible to manually manipulate the decision boundary, for this experiment the boundary determined by the machine was maintained in every case, as manipulating the boundary would complicate the comparison of accuracy between the new bands and the manufacturer’s recommended bands. The same 1 kg samples of kernels and defects were used for training for both the new filter arrangement and the original.
After training, 1000 small inshell nuts were mixed with 1000 kernels and processed through the sorting machine. Under normal conditions, an air nozzle ejects the bad product. However, it was determined that there was a relatively high amount of misclassification that was the result of failed attempts to eject the product. The testing was therefore done by feeding the samples through one at a time and listening for the sound of the air ejector to determine how the samples were classified. The process was then repeated with 1000 half shells mixed with 1000 kernels. This was done first with the original mirrors and filters, and then with the new ones. The machine was retrained for each stream and each mirror-filter configuration.

RESULTS AND DISCUSSION

FILTER SELECTION

The classification results and wavelength combinations selected using the NIR spectra are listed in table 1 for kernels and table 2 for inshell product. The logic that facilitated the best accuracy is also listed. In all cases, the same logic gave the best accuracy for the different filter selections (one, two, or three bands). The results indicate that dual-band sorters should perform better than monochromatic sorters for most defects mixed with inshell and good kernels. Single-band classification of sticks and inshell nuts had a false negative error rate (defects classified as good) of 12.5% which fell to 0% for dual-band sorting. Classification errors using dual-band for decayed kernels, immature kernels, shell halves, and small inshell kernels mixed with good kernels fell by at least 50% over single-band discrimination for these defects. Dual-band discrimination using two NIR bands over visible-NIR discrimination improved the accuracy for shell halves mixed with kernels. A hypothetical machine that can sense three different spectral bands may improve sorting of decayed kernels, immature kernels, and kernels with black spots, but none of the defects found in inshell product.

In all cases except immature kernels, the false positive rate (good product rejected as bad) was lower for dual-band classification than for single band. In general, false positive rates were much lower than false negative rates regardless of which combination of filters was used. This occurred because there was generally less variance in the spectra of the good kernels than in most defect streams. As discussed, classification decisions were made based on the distance of each sample from the good group and the defect group. No adjustment was performed to minimize false positive results. In certain cases, it could be desirable to weight the results to decrease the number of false positives, at the cost of higher false negatives. This would depend on the relative risks versus costs associated with the product streams. For example, if a particular defect were associated with a food safety issue, then it would be desirable to weight the results so that false negative results are minimized, at the expense of high false positives. In this study, classification was made to minimize the total error rate with no preference between false positive and false negative results.

It was confirmed, as expected, that OR logic gave the best results for black spots, as these defects usually can only be discriminated from one side. Similarly, shell halves are usually sorted with OR logic using the spectral bands of 1200 and 1450 nm (manufacturer recommended). Figure 7 shows a plot of the normalized Gaussian smoothed absorbance values of 1200 nm versus those of 1450 nm for shell halves (inside surface), shell halves (outside surface), and the two sides of split kernels. Note that the shell inside surface cannot always be separated from the kernels, resulting in reliance on the shell outside to distinguish these products. Consequently, approximately 2% of the shell is classified as kernels using bands at 1200 and 1450 nm. The results indicate that using AND logic and spectral bands at 1190 and 1350 nm resulted in a more accurate separation of shell halves and kernels (fig. 8). At these wavelengths, both halves of the shell separate well from both halves of the split kernels.

Table 1. Classification results for kernel defects and foreign material. Good product comprised “good kernels,” “pieces good,” and “splits good.”

<table>
<thead>
<tr>
<th>Kernel Defect</th>
<th>Logic</th>
<th>Best Single Wavelength</th>
<th>Best Pair: (\lambda_1 = 500 - 1050 \text{ nm}, \lambda_2 = 1100 - 1700 \text{ nm})</th>
<th>Best Pair: (\lambda_1 = 500 - 1700 \text{ nm})</th>
<th>Best Triplet: (\lambda_1 = 500 - 1700 \text{ nm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decay</td>
<td>AND</td>
<td>10.1 20.1 960</td>
<td>2.2 9.8 1045 1155</td>
<td>2.2 9.8 1045 1155</td>
<td>2.5 3 750 1430 1615</td>
</tr>
<tr>
<td>Feeding</td>
<td>AND</td>
<td>30.4 24.2 665</td>
<td>29 24.2 665 1205</td>
<td>17.9 30.7 1170 1365</td>
<td>10.2 19.8 1380 1515 1525</td>
</tr>
<tr>
<td>Immature kernels</td>
<td>AND</td>
<td>1.7 14.7 760</td>
<td>3.4 3.3 905 1445</td>
<td>2.8 3.3 1105 1445</td>
<td>1.1 1.6 710 1060 1455</td>
</tr>
<tr>
<td>Small inshell</td>
<td>AND</td>
<td>1.1 28.3 670</td>
<td>0.6 17.9 670 1440</td>
<td>0.2 2.7 1195 1345</td>
<td>0.1 2.2 1200 1350 1585</td>
</tr>
<tr>
<td>Shell halves</td>
<td>AND</td>
<td>1.2 3.6 1410</td>
<td>0 1.2 510 1425</td>
<td>0 0 1190 1350</td>
<td>0 0 505 1205 1345</td>
</tr>
<tr>
<td>Black spots</td>
<td>OR</td>
<td>22.3 40.0 1070</td>
<td>22.3 32.0 1050 1100</td>
<td>10.4 28.8 1075 1110</td>
<td>3.5 13.8 1030 1070 1095</td>
</tr>
<tr>
<td>Insect Webb.</td>
<td>AND</td>
<td>10.6 34.8 910</td>
<td>10.1 27.7 530 1155</td>
<td>9.5 25.5 620 1005</td>
<td>8.4 23.9 670 915 1245</td>
</tr>
</tbody>
</table>

[fn] False positive (fp): Good product classified as defect.
[fn] False negative (fn): Defect product classified as good.

Table 2. Classification results for inshell defects. The good product comprised “clean open.”

<table>
<thead>
<tr>
<th>Inshell Defect</th>
<th>Logic</th>
<th>Best Single Wavelength</th>
<th>Best Pair: (\lambda_1 = 500 - 1050 \text{ nm}, \lambda_2 = 1100 - 1700 \text{ nm})</th>
<th>Best Pair: (\lambda_1 = 500 - 1700 \text{ nm})</th>
<th>Best Triplet: (\lambda_1 = 500 - 1700 \text{ nm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhering hull dark</td>
<td>OR</td>
<td>1.3 9.0 790</td>
<td>1.3 7.0 855 1100</td>
<td>1.3 7.0 855 1100</td>
<td>1.3 7.0 835 950 1115</td>
</tr>
<tr>
<td>Adhering hull light</td>
<td>AND</td>
<td>5.1 44.7 525</td>
<td>0.0 31.6 995 1205</td>
<td>0.0 30.3 1400 1650</td>
<td>0.0 25.5 515 1460 1645</td>
</tr>
<tr>
<td>Dark stain</td>
<td>AND</td>
<td>12.2 50.0 705</td>
<td>2.5 31.8 785 1120</td>
<td>2.5 31.8 785 1120</td>
<td>1.3 21.6 750 1120 1510</td>
</tr>
<tr>
<td>Light stain</td>
<td>AND</td>
<td>5.1 60.2 1405</td>
<td>2.5 29.5 505 1400</td>
<td>2.5 29.5 505 1400</td>
<td>3.8 25.0 515 1405 1685</td>
</tr>
<tr>
<td>Sticks</td>
<td>AND</td>
<td>0.0 12.5 525</td>
<td>0.0 0.0 710 1410</td>
<td>0.0 0.0 710 1410</td>
<td>0.0 0.0 525 805 1400</td>
</tr>
</tbody>
</table>
Figure 7. Scatter plot of spectral absorbance at 1200 and 1450 nm for split kernels and shell halves. Note that complete separation of shells and kernels cannot be made at these wavelengths.

Figure 8. Scatter plot of spectral absorbance at 1190 and 1350 nm for split kernels and shell halves. Note the difference in absorbance values for the inside and outside of shells and the suture side and outside of split kernels.

Figure 9. Scatter plot of small inshell nuts vs. whole kernels at the selected wavelengths of 1190 and 1350 nm.

For sorting small inshell mixed with kernels, nearly the same filters were chosen as for shell halves. Again, AND logic was more accurate than OR logic. Since small inshell nuts are all intact, the inner side of the shell is not exposed; thus, AND logic is able to identify more small inshell with fewer false positive errors.

Figures 9 and 10 display scatter plots at the selected and manufacturer-recommended spectral bands for small inshell...
and whole kernels, respectively. The accuracy at the selected bands of 1190 and 1350 nm was 100% for kernels and over 97% for small inshell. However, to achieve 100% accuracy for kernels at the manufacturer-recommended bands requires that over 10% of the small inshell nuts be classified as kernels. This inaccuracy can be seen on the scatter plots.

For a few defect types, results can be compared with those reported by Pearson et al. (2001) using imaging algorithms developed for high-speed image-based sorters. Pearson et al. (2001) reported 98% accuracy in detecting adhering hull defect, oily stain, and dark stain (individual results were not reported), with 1.4% fp and 2.3% fn. Clearly, these are better than results obtained with NIR in this study, probably since the imaging methods were able to sense the texture of some defects, whereas VIS-NIR sorters have no spatial resolution. The best results for adhering hull (dark) were 1.3% fp and 7.0% fn for one, two, or three wavelengths. For adhering hull (light), the best results were 0% fp with 25.5% fn. The best results for detection of dark stain were also disappointing, with 1.3% fp and 21.6% fn.

SORTING EXPERIMENTS

As stated above, the optimal spectral bands for use in the modular dual-band sorter for the separation of both half shells and small inshell nuts from kernels were 1350 and 1190 nm. Table 3 shows the sorting results for 1000 samples of each defect stream mixed with 1000 kernels. In separating shell halves from kernels, false negatives fell from 2.4% with the original filters to 1.8% with the new filters, while false positives were reduced from 0.7% to 0.1%. Note that the results are consistent with the roughly 2% false negatives predicted from the band selection process described earlier. For the small inshell / kernel stream, false negatives decreased from 1.7% with the original filters to 1.2% with the new filter setup, while false positives fell from 0.7% to 0.1%. The substantial decrease in false positives for both streams is particularly significant as this reduces the amount of higher-value product diverted to a lower-value stream. Results were analyzed using a χ^2 significance test; it was found that the classification results using the computed bands were significantly different from those using the manufacturer-recommended bands, with p-values of 0.01 for small inshell and 0.02 for half shells.

<table>
<thead>
<tr>
<th></th>
<th>Original Bands (1200 and 1450 nm)</th>
<th>Computed Bands (1190 and 1350 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fp %</td>
<td>fn %</td>
</tr>
<tr>
<td>Shell halves</td>
<td>0.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Small inshell</td>
<td>0.7</td>
<td>1.7</td>
</tr>
</tbody>
</table>

It is important to note that the results reported here were obtained using the default mapping that the machine produces during the training process. This was done so that results could be compared without introducing the complication of manually manipulating the decision boundary. Since manual manipulation of the boundary generally improves the sorting results, the results reported here do not necessarily represent the best performance that can be obtained. Rather, these results represent a comparison between the two wavelength pairs under identical training conditions.

CONCLUSION

A method was developed to select the optimal spectral bands for sorting using the three most common types of commercially available NIR sorting machines. While the method was applied to the sorting of pistachio streams in this report, it should apply equally well to any product sorted using these machines. The method is particularly suited for use in modular dual-band sorting devices, as the mirrors and filters used to select the sorting wavelengths can be easily changed. The mirrors and filters required are relatively expensive, depending on the wavelengths involved. The mirrors obtained for this study cost in the neighborhood of $1,000 US, but the price drops substantially as the quantity increases, since the majority of the expense involves setup costs for the fabrication of the mirrors. The filters cost approximately $200 each. Therefore, for a two-channel Sortex 3000 with three modules per channel as used in this study, the cost of converting to the new wavelengths was approximately $8,400 US. However, as stated above, conversion of multiple machines would reduce the cost per machine. This is a relatively small cost, compared to the price of a new
machine, which can range from $40,000 US to around $100,000 US depending on the model. Furthermore, improved sorting, especially the reduction in false positives as described earlier, should make conversion of these machines cost-effective over a relatively short period of time.

While only two processing streams (split shell / kernels and small inshell / kernels) were tested in this study due to cost constraints, optimal bands were determined and reported for most defects and foreign material commonly sorted in pistachio processing plants. This was done for the three most common types of commercially available NIR sorting machines (monochromatic, dual-band NIR / silicon, and modular dual-band NIR). It is anticipated that the improvement in sorting accuracy demonstrated for the two processing streams tested here would be repeated for other processing streams by simply changing the machine optics to those reported here.

Results indicate that addition of a third NIR band would improve sorting accuracy for most processing streams. Such machines are not commercially available at this time.

Finally, comparing results with those reported by Pearson et al. (2001) for detection of defects using visible light image-based sorters indicates that dual-band sorting with no spatial resolution is not as effective for detecting certain defect classes, including adhering hull and dark stain.

REFERENCES

