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SPECTRAL BAND SELECTION FOR OPTICAL

SORTING OF PISTACHIO NUT DEFECTS

R. P. Haff,  T. Pearson

ABSTRACT. A technique using near-infrared spectroscopy (NIR) was developed for selecting the optimal spectral bands for
use in dual-wavelength sorting machines commonly found in food processing plants. A variation of a nearest-neighbor
classification scheme selected the two optimal spectral bands given NIR spectra from both sides of an object. The optimal
bands were determined for two cases: when both sides contain the defect of interest (AND logic), or when the defect appears
on a single side (OR logic). A commercially available sorting machine was used to compare the sorting accuracy using the
spectral bands determined with this technique to the accuracy using bands recommended by the manufacturer. The product
stream tested was the removal of “small inshell” (small nuts with the shell intact) and shell halves from the stream of nuts
with no shells (“kernels”). Results for the selected spectral bands averaged 1.20% false negative (fn) for small inshell and
1.80% fn for half shells with 0.15% false positive (fp) vs. 1.70%, 2.40%, and 0.70%, respectively, using the spectral bands
recommended by the manufacturer. Optimal spectral bands were also determined and reported for a variety of other defects
and unwanted materials commonly sorted in the pistachio processing plant, including adhering hull, stained, sticks, mold,
insect damage and/or webbing, and black spots. Given the success of this technique in pistachio sorting experiments, it is
believed that it could be applied to any commodity sorted using commercially available, dual-wavelength, NIR sorting
devices.

Keywords. Dual-wavelength sorting, NIR spectroscopy, Pistachio nuts, Spectral bands.

igh-speed optical sorters have found extensive use
for removing blemished product and foreign ma-
terials for many different commodities including
tree nuts, peanuts, grain, and vegetables. Some

specific examples include removal of kernel bunt in wheat
(Dowell et al., 2002) and kernel color class separation (Pasi-
katan and Dowell, 2002). Pearson et al. (2001) reported algo-
rithms for use with commercially available monochromatic
image-based sorters to detect defects in pistachios. These al-
gorithms were able to distinguish normal nuts from nuts with
oily stain, dark stain, and adhering hull defects with an accu-
racy of 98%. The same algorithm also identified 89.7% of
nuts with kernel decay, 93.8% of nuts with Aspergillus molds
present, and 98.7% of nuts with damage from the naval
orange worm (NOW). These systems can inspect and sort ob-
jects at a rate of up to 100/second/channel, depending on the
size of the object to be sorted. Initially, these machines were
monochromatic  devices and sorting was based on the mea-
surement of a single band of light, usually in the visible por-
tion of the spectrum. More recently, devices have been
developed that measure light in the NIR (from 1000 to
1700 nm), allowing sorting based on chemical rather than
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visible differences among products. In pistachio processing
plants, visible light sorting devices have largely been re-
placed with NIR devices, and the commercially available
image-based sorters used by Pearson et al. (2001) are in fact
no longer in production.

Today, NIR sorting machines are available in a variety of
configurations.  The simplest is a monochromatic sorter
(fig. 1a), which can detect a single band anywhere between
400 and 1700 nm, depending on the choice of detector. Some
dual-band sorters measure a single band in the NIR region
using an InGaAs sensor with sensitivity between 1100 and
1700 nm and another band in the silicon region between 400
and 1000 nm (fig. 1b). These sorters employ two bandpass
filters, one over a silicon sensor and another over an InGaAs
sensor. The two sensors are located together at the point
where the product flows by the chute. Modular dual-band
sorters use a beam-splitting mirror, and then pass each beam
through an interference filter over a sensor (fig. 1c). This
design allows changing of the mirror, filters, and sensors, so
that a silicon-silicon, silicon-InGaAs, or InGaAs-InGaAs
arrangement is possible. This design has one limitation in that
the beam-splitting mirror requires at least 100 nm difference
between the wavelengths of the respective bands.

Dual NIR band sorters can measure specific bands as
required for a specific defect and commodity. This is
accomplished using a light source that covers roughly the
entire NIR spectrum, and selecting the wavelengths of
interest using optical bandpass filters. This allows for the
measurement of different bands by simply changing the
filters. The effectiveness of the sorter depends on the
selection of the appropriate filters for the product being
sorted. The simplest and most common technique for
selecting the two bands to be used is to compare reflectance
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Figure 1. The three most common commercially available NIR sorting de-
vices. The design of the modular dual-band sorter allows easy changing
of the mirror, filters, and detectors and is therefore able to detect any
bands between 400 and 1700 nm at either detector.

spectra for the good and bad product across the entire NIR
range and select the two bands where the differences are
greatest. However, this does not take into account variability
of absorbance values nor the synergistic effect that two bands
may have together, i.e., the ratio of the measurements at two
wavelengths can be a more effective basis for sorting than ab-
solute differences at specific wavelengths.

All sorters have at least two sensor modules so that at least
two sides of an object are inspected. A decision to reject an
object can be made if the measurement from only one side
indicates a defect (called OR logic) or if both sensors indicate
that a defect is present (AND logic). OR logic is required
when a defect typically appears on a single side of an object.
Otherwise, AND logic may be preferred to minimize the
rejection of good product. Thus, when selecting spectral
bands for dual-band sorters, both logic types should be tested.

Some statistical approaches exist to aid in selecting filters,
or a small number of spectral bands, given digitized spectra
to identify defects. One approach, used by Pasikitan and
Dowell (2002), is to use stepwise discriminant analysis to
select a small group of features. However, data within each
spectrum is highly correlated, resulting in ill-conditioned
matrices during the computation of the F statistic used in
stepwise discriminant analysis. This can sometimes lead to
selection of bands that are not at all optimal. Bajwa et al.
(2004) give a review of spectral band selection for use with
hyperspectral images. Two common approaches have been
used in recent years: genetic algorithms (GA) (Lestander et
al., 2003; Steward et al., 2005; Bajwa et al., 2004), and princi-
ple component analysis (PCA). Genetic algorithms select

features using improvements from randomly chosen subsets
of features. With PCA, the eigenvectors computed are in-
spected to ascertain spectral bands having high discrimina-
tion power (Bajwa et al., 2004; Lawrence et al., 2003; Mehl
et al., 2002). However, the GA and PCA methods do not take
into account that more than one spectrum from a different
location of each sample might be present and the AND/OR
decision logic used by the sorting machines. Additionally,
these methods do not exhaustively test all combinations of
spectral bands. With the PCA approach, it is assumed that the
higher weights of the eigenvectors are due to the different
classes of spectra; this may or may not be the case. Given that
each spectrum may contain 200 to 500 absorbance values,
testing all combinations of two or three bands is not a problem
for modern computers.

Pearson et al. (2004) developed a statistical procedure to
analyze visible and NIR spectra for the selection of spectral
bands for sorting yellow dent corn with mycotoxin contami-
nation in a dual-band sorter. The Mahalanobis distance from
absorbance band pairs from each side of a kernel to the
contaminated  and uncontaminated groups was computed for
each possible pair of spectral bands. A kernel was classified
as contaminated if the Mahalanobis distance (based on two
absorbance values) from either kernel side was closer to the
contaminated group than to the uncontaminated group. The
pair that resulted in the best classification accuracy was used
to test the sorter. However, this method assumes that the data
are normally distributed. For some defects, such as shell
halves, or where only one side of a kernel is discolored, the
spectra from each side of the object are substantially different
and the assumption of normal distributions may not be valid.
Another method of classification, the k-nearest neighbor
algorithm, does not need to assume any distribution of the
data, as it is trained by a relatively small number of
“examples” or instances of data points (Han and Kamber,
2001; Caltepe et al., 2004). However, there is no known
k-nearest neighbor software that selects features using an
exhaustive search of all possible features or that can integrate
the AND/OR logic used by sorting machines.

The pistachio industry has rigid quality standards for
certain defects. For example, no more than two pieces of shell
are generally allowed per ton of shelled kernels. Since this
level is not currently attainable using automated sorters
alone, product must be manually inspected, which is costly
($0.20/lb) and often inconsistent. The same is true for other
defects and foreign material, such as sticks, which are
removed with automated sorters. Improved performance
from these sorters would clearly benefit the industry.

The processing stream for pistachio nuts is generally divided
in two: those nuts still in their shells (“in shell”), and those with
no shells (“kernels”). Both streams make use of automated as
well as hand sorting. While most automated sorting is
performed with monochromatic sorters at visible wavelengths,
the newer dual-band sorting machines with NIR capability are
gaining acceptance in the industry. However, it is not clear that
the spectral bands currently used as a basis for sorting are
optimal. Improved band selection has the potential to increase
the accuracy of dual-band sorting devices at minimal cost, thus
reducing the need for costly hand sorting.

OBJECTIVE
The objectives of this study were: (1) to develop a

technique to determine which spectral bands are optimal for
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Figure 2. Common kernel defects found in pistachio nut processing streams.

Figure 3. Common defects found in inshell processing streams.

Figure 4. Controls for inshell and kernels.

specific sorting tasks using dual NIR band sorters, (2) to use
this technique to determine optimal bands for several com-
mon pistachio defects, and (3) to compare sorting results for
a few important pistachio defects (shell pieces and small in-
shell nuts mixed with kernels) using the selected bands to
those achieved using manufacturer-recommended filters.

MATERIALS AND METHODS
SAMPLE COLLECTION

Approximately 2 kg samples of several common defects or
foreign materials found in the pistachio processing streams were
collected at a processing plant after hand sorting by plant
personnel. Existing cleaning and sorting machines had pro-
cessed all samples, and hand sorting was the final step before
roasting, salting, and packaging. Figure 2 shows kernel defects
collected, figure 3 shows inshell defects, and figure 4 shows
controls for inshell and kernel processing streams.

SPECTRA COLLECTION

Single kernel/nut reflectance spectra from 500 to 1700 nm
were measured using a diode-array near-infrared spectrome−

ter (DA7000, Perten Instruments, Springfield, Ill.) with a
42 W tungsten halogen lamp light source. The spectrometer
measures absorbance using an array of silicon (7 nm resolu-
tion, 500 to 1000 nm) and indium-gallium-arsenide sensors
(11 nm resolution, 1000 to 1700 nm). Fifteen spectra from
each kernel were collected and averaged, and the time re-
quired to obtain each spectrum was approximately 33 ms.
Spectra of a reference material (Spectralon) were collected
after every thirty kernels for calibration purposes. This proce-
dure minimized the effect of fluctuations from the light
source. Spectra were obtained from 300 kernels of each de-
fect type and 300 of each control type. Kernels were manual-
ly placed on a bifurcated interactance probe attached to the
spectrometer and light source (fig. 5). The viewing area was
17 mm in diameter and rested 10 mm above the termination
of the illumination and reflectance fibers. The illumination
bundle was a 7 mm diameter ring, and the reflectance probe
bundle was 2 mm in diameter. Spectra were first collected
with each nut oriented on its flattest side, and then a second
spectrum was obtained with the kernel axially rotated
approximately  90°. This was generally sufficient to ensure
that the kernels were exposed through the shell split for in−
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Figure 5. Interactance probe used to collect reflectance spectra of individual kernels.

shell nuts. For split shells and split kernels, each sample was
rotated 180°, as they were too thin to acquire spectra at a 90°
rotation (side view). All spectra were digitally stored for sub-
sequent analysis.

FILTER SELECTION FROM SPECTRA

All spectra were interpolated (Perten Simplicity software)
into 5 nm bins between 500 and 1700 nm, resulting in
241 absorbance values. The spectra were then convolved
with Gaussian curves to simulate the effect of different 10 nm

wide bandpass filters. The Gaussian kernel used for the
convolutions had a full width at half maximum (FWHM) of
5 nm, matching the width of the bins into which the
absorbance bands were interpolated. The resulting spectral
bands were used for all further analysis. Figure 6 shows plots
of the average spectra for good kernels, small inshell nuts,
shell halves (outside), and shell halves (inside). The high
absorbance of the inside of the half shell is due to the fact that
the inner surface is darker than the outer surface, and the
concave inner surface does not reflect much of the incident
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Figure 6. Average spectra for the four streams selected for sorter testing.
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light straight back at the sensor. Spectra from small inshell
nuts and the outer surface of the half shells are similar, with
inshell nuts being slightly darker and having higher absor-
bance values. Spectra from the kernels exhibit a sharp peak
around 1200 nm and a minor peak around 930 nm, where oil
absorbs more light.

A k-nearest neighbor classification scheme was used to
select the optimal subset of spectral bands for sorting a given
“good” product and “defect.” The k-nearest neighbor algo-
rithm was chosen as it can accommodate different distribu-
tions of spectra taken from different sides of each nut. In
addition, with adaptation, the AND/OR decision logic of
sorting machines can be integrated into the feature selection
method.

An exhaustive search was performed for the best single
spectral band, pair of spectral bands, and triplet of spectral
bands. The best single spectral band accommodates monochro-
matic NIR sorters (fig. 1a). For the case of two spectral bands,
optimal band selection was conducted to accommodate the two
machine types (figs. 1b and 1c) with one pair constrained so that
one band was below 1050 nm (silicon region) and the other was
between 1100 and 1700 nm (NIR region). The other pair,
intended for the modular design, had no constraints when
separated by at least 100 nm, as required due to the
beam-splitting mirror. Although sorting machines that detect
three NIR spectral bands are not commercially available, the
selection of the best triplet of spectral bands was intended to
determine whether or not such a machine could improve sorting
accuracy compared to dual-band sorters.

For each class of nut (tables 1 through 3) a random sample
of 30 good kernels and 30 defect kernels were used as the
training set. The remaining 270 nuts for each class served as
the validation set. For each of the 241 Gaussian smoothed
absorbance values in the spectra, the mean and standard
deviation of the training set was computed. Each absorbance
value was normalized as shown in equation 1:

 
λ

λλ
λ σ

−= )( AA
AN  (1)

where AN� is the normalized absorbance centered at wave-
length �, A� is the Gaussian smoothed absorbance centered
at wavelength �, λA  is the training set mean of the Gaussian
smoothed absorbance at wavelength �, and � � is the training
set standard deviation at wavelength �.

When searching for the best single wavelength for
separating good kernels from defect kernels, each of the
241 Gaussian smoothed absorbance values (bins) that make
up the spectra for an individual kernel can be considered as
a point in one-dimensional space. For clarity, we refer to the
bins as wavelengths, although in actuality each bin represents
a 5 nm wide band of wavelengths. At each wavelength, the
spectra from each kernel in the validation set (front and back)
were evaluated to determine which k kernels in the training
set lie closest in that space. The value for k in this work was
chosen as 3, as this reduces the effect of outliers. Distance
between points was simply measured as the Euclidean
distance. For AND logic, the kernel was classified as defect
if absorbance values from both sides of the kernel were
closest to defect kernels in the training set, while OR logic
required only one side to be closer to a defect kernel. The
result was a 241-element array for each kernel in the
validation set, with the entries being either good or defect. At

each wavelength, entries for all kernels in the validation set
were compared to the known true conditions of the kernels,
and the classification accuracy was computed. Here, it would
be feasible to select a wavelength whose classification results
had desired characteristics, such as the lowest false positive
or lowest false negative rate. For this study, the wavelength
selected as “best” was that which yielded the lowest overall
error rate.

The procedure for selecting the best two wavelengths was
exactly as above, except that the Euclidean distances
between kernels was in a two-dimensional space, the two
dimensions being the selected wavelengths. Rather than
241 possible wavelengths to test in the one-dimensional case,
there were 2412 possible combinations, each of which was
tested as described above, and the combination with the
highest classification accuracy was selected. Extension to the
three-wavelength  case is the same, with distances compared
in three dimensions.

For the inshell product stream, clean inshell was used as
the control, or “good” product, and the defects listed in
table 2 were used as the “defect” product. Note that “small
inshell” is considered a defect in the kernel processing stream
and should not be confused with “clean inshell.” Each defect
was analyzed versus clean inshell separately. For kernel
processing streams, the “good” product comprised “kernel
pieces,” “split kernels,” and “whole kernels,” and the defects
are listed in table 1.

SORTER TESTING

A commercial, modular dual-band sorting machine
(fig. 1c) was used (Sortex 3000, Sortex, Inc., Stockton, Cal.).
The Sortex 3000 has three sensing modules per channel, so
a total of six filters and three mirrors were obtained (CVI
Laser, Albuquerque, N.M.), allowing the machine to sort at
the optimal bands determined as described above for
particular defect streams, which will be described below. The
accuracy of the machine with the new filters was compared
to the accuracy with the manufacturer’s recommended
filters.

Sorter testing was performed for shell halves and small
inshell product mixed with kernels. The testing was limited
to these two classes of defect because replacement of the
filters and mirrors is expensive and each defect type would
require different filters and mirrors. In this case, it turned out
that the optimal filters for these two defect types were the
same, so two streams could be tested while purchasing only
one set of new mirrors and filters.

Approximately 1 kg of kernels and 1 kg of defects (small
inshell or shell halves) were used to train the Sortex 3000
following the manufacturer’s instructions. The training
process involved feeding the two streams through the
machine, which created a map of the feature space. At the
completion of the training, the machine created a decision
boundary for separation of the two groups. Subsequent
samples were classified based on which side of the decision
boundary they were mapped to. While it is possible to
manually manipulate the decision boundary, for this experi-
ment the boundary determined by the machine was main-
tained in every case, as manipulating the boundary would
complicate  the comparison of accuracy between the new
bands and the manufacturer’s recommended bands. The
same 1 kg samples of kernels and defects were used for
training for both the new filter arrangement and the original.
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After training, 1000 small inshell nuts were mixed with
1000 kernels and processed through the sorting machine.
Under normal conditions, an air nozzle ejects the bad
product. However, it was determined that there was a
relatively high amount of misclassification that was the result
of failed attempts to eject the product. The testing was
therefore done by feeding the samples through one at a time
and listening for the sound of the air ejector to determine how
the samples were classified. The process was then repeated
with 1000 half shells mixed with 1000 kernels. This was done
first with the original mirrors and filters, and then with the
new ones. The machine was retrained for each stream and
each mirror-filter configuration.

RESULTS AND DISCUSSION
FILTER SELECTION

The classification results and wavelength combinations
selected using the NIR spectra are listed in table 1 for kernels
and table 2 for inshell product. The logic that facilitated the
best accuracy is also listed. In all cases, the same logic gave
the best accuracy for the different filter selections (one, two,
or three bands). The results indicate that dual-band sorters
should perform better than monochromatic sorters for most
defects mixed with inshell and good kernels. Single-band
classification of sticks and inshell nuts had a false negative
error rate (defects classified as good) of 12.5%, which fell to
0% for dual-band sorting. Classification errors using dual-
band for decayed kernels, immature kernels, shell halves, and
small inshell kernels mixed with good kernels fell by at least
50% over single-band discrimination for these defects.
Dual-band discrimination using two NIR bands over visible-
NIR discrimination improved the accuracy for shell halves
mixed with kernels. A hypothetical machine that can sense
three different spectral bands may improve sorting of
decayed kernels, immature kernels, and kernels with black
spots, but none of the defects found in inshell product.

In all cases except immature kernels, the false positive rate
(good product rejected as bad) was lower for dual-band
classification than for single band. In general, false positive
rates were much lower than false negative rates regardless of
which combination of filters was used. This occurred because
there was generally less variance in the spectra of the good
kernels than in most defect streams. As discussed, classifica-
tion decisions were made based on the distance of each
sample from the good group and the defect group. No
adjustment was performed to minimize false positive results.
In certain cases, it could be desirable to weight the results to
decrease the number of false positives, at the cost of higher
false negatives. This would depend on the relative risks
versus costs associated with the product streams. For
example, if a particular defect were associated with a food
safety issue, then it would be desirable to weight the results
so that false negative results are minimized, at the expense of
high false positives. In this study, classification was made to
minimize the total error rate with no preference between false
positive and false negative results.

It was confirmed, as expected, that OR logic gave the best
results for black spots, as these defects usually can only be
discriminated from one side. Similarly, shell halves are
usually sorted with OR logic using the spectral bands of 1200
and 1450 nm (manufacturer recommended). Figure 7 shows
a plot of the normalized Gaussian smoothed absorbance
values of 1200 nm versus those of 1450 nm for shell halves
(inside surface), shell halves (outside surface), and the two
sides of split kernels. Note that the shell inside surface cannot
always be separated from the kernels, resulting in reliance on
the shell outside to distinguish these products. Consequently,
approximately  2% of the shell is classified as kernels using
bands at 1200 and 1450 nm. The results indicate that using
AND logic and spectral bands at 1190 and 1350 nm resulted
in a more accurate separation of shell halves and kernels
(fig. 8). At these wavelengths, both halves of the shell
separate well from both halves of the split kernels.

Table 1. Classification results for kernel defects and foreign material. Good product comprised “good kernels,” “pieces good,” and “splits good.”

Best
Single Wavelength

Best Pair:
λ1 = 500 − 1050 nm,
λ2 = 1100 − 1700 nm

Best Pair:
500 − 1700 nm

Best Triplet:
500 − 1700 nm

Kernel Defect Logic fp[a] fn[b] λ fp fn λ1 λ2 fp fn λ1 λ2 fp fn λ1 λ2 λ3
Decay AND 10.1 20.1 960 2.2 9.8 1045 1155 2.2 9.8 1045 1155 2.5 3 750 1430 1615
Feeding AND 30.4 24.2 665 29 24.2 665 1205 17.9 30.7 1170 1365 10.2 19.8 1380 1515 1525
Immature kernels AND 1.7 14.7 760 3.4 3.3 905 1445 2.8 3.3 1105 1445 1.1 1.6 710 1060 1455
Small inshell AND 1.1 28.3 670 0.6 17.9 670 1440 0 2.7 1195 1345 0.1 2.2 1200 1350 1585
Shell halves AND 1.2 3.6 1410 0 1.2 510 1425 0 0 1190 1350 0 0 505 1205 1345
Black spots OR 22.3 40.0 1070 22.3 32.0 1050 1100 10.4 28.8 1075 1110 3.5 13.8 1030 1070 1095
Insect webbing AND 10.6 34.8 910 10.1 27.7 530 1135 9.5 25.5 620 1005 8.4 23.9 670 915 1245
[a] False positive (fp): Good product classified as defect.
[b] False negative (fn): Defect product classified as good.

Table 2. Classification results for inshell defects. The good product comprised “clean open.”

Best
Single Wavelength

Best Pair:
λ1 = 500 − 1050 nm
λ2 = 1100 − 1700 nm

Best Pair:
500 − 1700 nm

Best Triplet:
500 − 1700 nm

Inshell Defect Logic fp fn λ fp fn λ1 λ2 fp fn λ1 λ2 fp fn λ1 λ2 λ3
Adhering hull dark OR 1.3 9.0 790 1.3 7.0 855 1100 1.3 7.0 855 1100 1.3 7.0 835 950 1115
Adhering hull light AND 5.1 44.7 525 0.0 31.6 995 1205 0.0 30.3 1400 1650 0.0 25.5 515 1460 1645
Dark stain AND 12.2 50.0 705 2.5 31.8 785 1120 2.5 31.8 785 1120 1.3 21.6 750 1120 1510
Light stain AND 5.1 60.2 1405 2.5 29.5 505 1400 2.5 29.5 505 1400 3.8 25.0 515 1405 1685
Sticks AND 0.0 12.5 525 0.0 0.0 710 1410 0.0 0.0 710 1410 0.0 0.0 525 805 1400
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Figure 7. Scatter plot of spectral absorbance at 1200 and 1450 nm for split kernels and shell halves. Note that complete separation of shells and kernels
cannot be made at these wavelengths.
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Figure 8. Scatter plot of spectral absorbance at 1190 and 1350 nm for split kernels and shell halves. Note the difference in absorbance values for the
inside and outside of shells and the suture side and outside of split kernels.
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Figure 9. Scatter plot of small inshell nuts vs. whole kernels at the selected wavelengths of 1190 and 1350 nm.

For sorting small inshell mixed with kernels, nearly the
same filters were chosen as for shell halves. Again, AND
logic was more accurate than OR logic. Since small inshell
nuts are all intact, the inner side of the shell is not exposed;

thus, AND logic is able to identify more small inshell with
fewer false positive errors.

Figures 9 and 10 display scatter plots at the selected and
manufacturer-recommended spectral bands for small inshell
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Figure 10. Scatter plot at the manufacturer-recommended spectral band of 1200 and 1450 nm for small inshell nuts and whole kernels. Note that many
small inshell nuts are inseparable from kernels at these two bands.

and whole kernels, respectively. The accuracy at the selected
bands of 1190 and 1350 nm was 100% for kernels and over
97% for small inshell. However, to achieve 100% accuracy
for kernels at the manufacturer-recommended bands requires
that over 10% of the small inshell nuts be classified as ker-
nels. This inaccuracy can be seen on the scatter plots.

For a few defect types, results can be compared with those
reported by Pearson et al. (2001) using imaging algorithms
developed for high-speed image-based sorters. Pearson et al.
(2001) reported 98% accuracy in detecting adhering hull defect,
oily stain, and dark stain (individual results were not reported),
with 1.4% fp and 2.3% fn. Clearly, these are better than results
obtained with NIR in this study, probably since the imaging
methods were able to sense the texture of some defects, whereas
VIS-NIR sorters have no spatial resolution. The best results for
adhering hull (dark) were 1.3% fp and 7.0% fn for one, two, or
three wavelengths. For adhering hull (light), the best results
were 0% fp with 25.5% fn. The best results for detection of dark
stain were also disappointing, with 1.3% fp and 21.6% fn.

SORTING EXPERIMENTS

As stated above, the optimal spectral bands for use in the
modular dual-band sorter for the separation of both half shells
and small inshell nuts from kernels were 1350 and 1190 nm.
Table 3 shows the sorting results for 1000 samples of each
defect stream mixed with 1000 kernels. In separating shell
halves from kernels, false negatives fell from 2.4% with the
original filters to 1.8% with the new filters, while false
positives were reduced from 0.7% to 0.1%. Note that the
results are consistent with the roughly 2% false negatives
predicted from the band selection process described earlier.
For the small inshell / kernel stream, false negatives
decreased from 1.7% with the original filters to 1.2% with the
new filter setup, while false positives fell from 0.7% to 0.1%.
The substantial decrease in false positives for both streams is
particularly significant as this reduces the amount of
higher-value product diverted to a lower-value stream.
Results were analyzed using a �2 significance test; it was
found that the classification results using the computed bands
were significantly different from those using the manufactur-
er-recommended bands, with p-values of 0.01 for small
inshell and 0.02 for half shells.

Table 3. Results of sorting shell halves and small inshell from kernels
with a Sortex 3000 modular dual-band sorting machine. Each

stream consisted of 1000 defect samples and 1000 kernels.
Original Bands

(1200 and 1450 nm)
Computed Bands

(1190 and 1350 nm)

fp % fn % fp % fn %

Shell halves 0.7 2.4 0.2 1.8
Small inshell 0.7 1.7 0.1 1.2

It is important to note that the results reported here were
obtained using the default mapping that the machine
produces during the training process. This was done so that
results could be compared without introducing the complica-
tion of manually manipulating the decision boundary. Since
manual manipulation of the boundary generally improves the
sorting results, the results reported here do not necessarily
represent the best performance that can be obtained. Rather,
these results represent a comparison between the two
wavelength pairs under identical training conditions.

CONCLUSION
A method was developed to select the optimal spectral

bands for sorting using the three most common types of
commercially available NIR sorting machines. While the
method was applied to the sorting of pistachio streams in this
report, it should apply equally well to any product sorted
using these machines. The method is particularly suited for
use in modular dual-band sorting devices, as the mirrors and
filters used to select the sorting wavelengths can be easily
changed. The mirrors and filters required are relatively
expensive, depending on the wavelengths involved. The
mirrors obtained for this study cost in the neighborhood of
$1,000 US, but the price drops substantially as the quantity
increases, since the majority of the expense involves setup
costs for the fabrication of the mirrors. The filters cost
approximately  $200 each. Therefore, for a two-channel
Sortex 3000 with three modules per channel as used in this
study, the cost of converting to the new wavelengths was
approximately  $8,400 US. However, as stated above, conver-
sion of multiple machines would reduce the cost per machine.
This is a relatively small cost, compared to the price of a new
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machine, which can range from $40,000 US to around
$100,000 US depending on the model. Furthermore, im-
proved sorting, especially the reduction in false positives as
described earlier, should make conversion of these machines
cost-effective over a relatively short period of time.

While only two processing streams (split shell / kernels
and small inshell / kernels) were tested in this study due to
cost constraints, optimal bands were determined and reported
for most defects and foreign material commonly sorted in
pistachio processing plants. This was done for the three most
common types of commercially available NIR sorting
machines (monochromatic, dual-band NIR / silicon, and
modular dual-band NIR). It is anticipated that the improve-
ment in sorting accuracy demonstrated for the two processing
streams tested here would be repeated for other processing
streams by simply changing the machine optics to those
reported here.

Results indicate that addition of a third NIR band would
improve sorting accuracy for most processing streams. Such
machines are not commercially available at this time.

Finally, comparing results with those reported by Pearson
et al. (2001) for detection of defects using visible light
image-based sorters indicates that dual-band sorting with no
spatial resolution is not as effective for detecting certain
defect classes, including adhering hull and dark stain.
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