DETECTION OF CORN KERNELS INFECTED BY FUNGI

T. C. Pearson, D. T. Wicklow

ABSTRACT. Single-kernel reflectance spectra (550 to 1700 nm), visible color reflectance images, x-ray images, multi-spectral
transmittance images (visible and NIR), and physical properties (mass, length, width, thickness, and cross-sectional area)
were analyzed to determine if they could be used to detect fungal-infected corn kernels. Kernels were collected from corn ears
inoculated with one of several different common fungi several weeks before harvest, and then collected at harvest time. It was
found that two NIR reflectance spectral bands centered at 715 nm and 965 nm could correctly identify 98.1% of asymptomatic
kernels and 96.6% of kernels showing extensive discoloration and infected with Aspergillus flavus, Aspergillus niges
Diplodia maydis, Fusarium graminearum, Fusarium verticillioides, or Trichoderma viride. These two spectral bands can
easily be implemented on high-speed sorting machines for removal of fungal-damaged grain. Histogram features from three
transmittance images (blue and red components of color images and another at 960 nm) can distinguish 91.9% of infected
kernels with extensive discoloration from 96.2% of asymptomatic kernels. Similar classification accuracies were achieved
using x-ray images and physical properties (kernel thickness, weight, length). A neural network was trained to identify

infecting fungal species on single kernels using principle components of the reflectance spectra as input features.
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ungal-infected maize (Zea mays L.) kernels are clas-

sified by plant pathologists according to type of dis-

ease symptoms produced, including kernel or ear

rots, streaked or blotched kernels, etc., and their
ecology (Wicklow et al., 1980; Samuels, 1984; Smith et al.,
1988; Wicklow, 1995; White, 1999). Kernel symptom ex-
pression is a product of infecting fungal species, drought
stress, and nutritional deficiencies (White, 1999). Reactions
associated with maize varietal resistance or susceptibility can
also contribute to the symptomology of infected grain
(Wright and Billeter, 1974; Hart et al., 1984; Lambert and
White, 1997; Walker and White, 2001; Naidoo et al., 2002;
Clements et al., 2003). Seed color and form changes, detect-
able visually, are actually preceded by chemical changes in
the grains caused by the fungus. For example, Aspergillus fla-
vus initially infects the oil-rich germ using grain lipids for its
growth and metabolism, and thus lipid hydrolysis takes place
faster than the degradation of protein or starch in stored grain
(Sauer and Christensen, 1969; Wacowicz, 1991; Pomeranz,
1992). Lipids are broken down by lipases to free fatty acids
and glycerol; thus, the free fatty acid content of grain has
been proposed as a sensitive index of incipient grain deterio-
ration (Christensen and Kaufmann, 1969; Faraq et al., 1981;
Richard-Molard, 1988; Pomeranz, 1992). Other more com-
mon species of kernel-rotting fungi (e.g., Fusarium verticil-
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lioides, Fusarium graminearum, Stenocarpella maydis (syn.
Diplodia maydis), Trichoderma viride, Nigrospora oryzae,
Penicillium oxalicum, etc.) may enter the seed proper based
on a different pathology and in earlier stages of kernel devel-
opment, producing different symptoms of kernel infection
(Clayton, 1927; Johann, 1935; Koehler, 1942; Caldwell et al.,
1981; Lawrence et al., 1981; Sutton, 1982; Bennett et al.,
1988; Smart et al., 1990; Klapproth and Hawk, 1991; Munk-
vold et al., 1997). These fungi can reduce yield, quality, and
nutritional value of the grain, while also contaminating it
with fungal-derived chemicals, some of which are recog-
nized as mycotoxins because of their deleterious biological
effects in animals and humans (Richard and Payne, 2003).
Mycotoxin contamination of grain can result in substantial
economic losses to maize growers, livestock and poultry pro-
ducers, grain handlers, and food and feed processors.
While corn kernels infected with fungi are more friable
and may have reduced densities (Shotwell et al., 1974; Shetty
and Bhat, 1999), it has been shown that grain cleaning will
not greatly reduce aflatoxin or fumonisin levels in commer-
cially harvested corn (Brekke et al., 1975; Pearson et al.,
2004). Near-infrared transmittance (NIRT) and near-infrared
reflectance (NIRR) spectroscopy have been used to evaluate
internal quality of many whole grains and nuts. It has been
shown that only a few absorbance bands in the visible and
near-infrared spectrum can detect whole corn kernels highly
contaminated in the field with aflatoxin (Pearson et al., 2001)
and fumonisin (Dowell et al., 2002). Continuing with this
work, Pearson et al. (2004) used NIR spectra to optimize a
dual-band, high-speed optical sorter for removing whole corn
kernels contaminated with aflatoxin and fumonisin. This
method was able to reduce aflatoxin by an average of 81%
and fumonisin by 85% for corn grown in Kansas. However,
no effort has been made to investigate the feasibility of this
technique for removing infected kernels in general or
distinguishing kernels infected by different species. Given
that fungal-damaged kernels are of low quality and may have
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undesirable traits besides containing mycotoxins, overall
corn quality may be improved further by removing all
fungal-damaged kernels through optical sorting. Further-
more, breeders attempting to investigate resistance to fungi
need rapid methods for identifying fungal-infected kernels
and, ideally, the species infecting each kernel.

OBJECTIVE

The purpose of this study was twofold:

e Determine if corn kernels infected with one of several
common fungi could be distinguished from un-infected
kernels by physical properties, imaging methods, or
with a pair of spectral bands as used in high-speed
(~1000 kernels/s) optical sorters. In regards to high-
speed optical sorting, the purpose was to identify spec-
tral bands that are optimal for identifying corn kernels
infected with a plurality of fungi rather than just a spe-
cific fungi, as was done by Pearson et al. (2004).

e It was also desired to identify species of the infecting
fungi using full NIR spectra so that infected kernels
could be separated at low speed (~1 kernel/s) using au-
tomated, full-spectrum, commercial NIR machines
such as those currently marketed by Brimrose Corpora-
tion (Baltimore, Md.) and Perten Instruments (Spring-
field, I11.).

MATERIALS AND METHODS

Reflectance spectra (550-1700 nm), visible color reflec-
tance images, x-ray images, multi-spectral transmittance
images, and physical properties (mass, thickness, and
cross-sectional area) of fungi-infected and non-infected corn
kernels were analyzed for their ability to identify fungal-in-
fected kernels. Samples originated from field-inoculated
corn. After harvest, measurements of all kernels were taken,
followed by incubation, and infecting species identification.
Each step in this process is explained in the following
sections.

FUNGAL INOCULATIONS OF CORN HYBRIDS
Corn kernels used in this study were collected from ears
that were wound-inoculated per Wicklow (1995) with one of

the fungi listed in table 1. Inoculations were performed in the
late milk to early dough stage of kernel maturity for two
commercial corn hybrids grown at Kilbourne, Illinois, in
2001 (Pioneer hybrid P-3394) and in 2002 (Farm Service
hybrid FS-7111). Another source for A. flavus infected
samples consisted of grain from ears of Pioneer 3394 that
were inoculated with A. flavus in 1997 (Pearson et al., 2004).
Shortly after harvest, the corn kernels were examined and
separated into one of the following categories based on their
visual characteristics: (1) “extensive discoloration” of 50%
or more of the kernel surface, (2) “minor discoloration” of
less than 50% of the kernel surface, and (3) no visible kernel
damage (asymptomatic). The actual wound-inoculated ker-
nels were discarded so that only those kernels where the
fungus spread naturally were studied. Friable kernels and
fragments were not included in this study as they are usually
removed by existing cleaning equipment at grain elevators.
A total of 1222 P-3394 kernels and 1120 FS-7111 kernels
were used for this study. Table 1 lists the number of kernels
used from each fungus and damage category. A total of 292
and 148 asymptomatic kernels were selected from the
Pioneer and Farm Service hybrids, respectively.

SINGLE-KERNEL MEASUREMENTS
NIR Reflectance Measurement

Whole-kernel reflectance spectra from 500 to 1700 nm
were measured using a diode-array near-infrared spectrome-
ter (DA7000, Perten Instruments, Springfield, Ill.). The
spectrometer measures absorbance using an array of silicon
(7 nm resolution) and indium-gallium-arsenide sensors
(11 nm resolution). The spectrometer sampled 15 spectra and
stored the average. Each spectrum was collected in 33 ms;
thus, 0.495 s was required for capturing all 15 spectra.

Kernels were manually placed on a bifurcated interac-
tance probe attached to the spectrometer and light source
(fig. 1). The viewing area was 17 mm in diameter and 10 mm
above the termination of the illumination and reflectance
fibers. The illumination bundle was a 7 mm diameter ring,
and the reflectance probe bundle was 2 mm in diameter.
Spectra were obtained of all kernels oriented at the germ-
down position (germ facing the optical fiber bundle), and
then a second set of spectra was collected for all kernels that

Table 1. Numbers of maize kernels selected showing minor versus extensive symptoms of
kernel discoloration resulting from infection by common species of kernel-rotting fungi.?!

Symptoms of Kernel Discoloration

Pioneer 3394[°] FS 7111lc]

Infecting Fungus Minor Extensive Minor Extensive
Acremonium zeae NRRL 6415, NRRL 13540, NRRL 13541 53 14 36 5
Aspergillus flavus NRRL 32355 299 148 38 59
Aspergillus niger NRRL 6411 40 12 0 52
Diplodia maydis NRRL 13615, NRRL 31249 112 71 69 100
Fusarium graminearum NRRL 13188, NRRL 31250 35 34 38 31
Fusarium verticillioides NRRL 25457 131 36 274 176
Nigrospora oryzae NRRL 6414 - - - -
Penicillium spp. 26 34 19 57
P. pinophilum (syn. P. funiculosum) NRRL 6420 - - — —
P. oxalicum NRRL 6416 - - — —
Trichoderma viride NRRL 6418 107 70 86 80
Total 803 419 560 560

[a] Kernels were selected from ears that were wound-inoculated with individual fungi, and the infecting species was confirmed by kernel platings.
[°] Pioneer 3394 maize hybrid grown at the University of Illinois River Valley Sand Farm, Kilbourne, Illinois, 1997 and 2001.
[c] FS 7111 maize hybrid grown in a commercial farm field, Kilbourne, Illinois, 2002.
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Figure 1. Reflectance sampling apparatus.

were viewed germ-up. The spectra were stored on a hard disk
for subsequent analysis.

Imaging

Visible color reflectance images, x-ray images, and
multi-spectral transmittance images were taken of all
kernels. For all image types except x-ray images, two sets of
images were acquired, one with the kernels oriented with
their germ facing the image sensor and the other with the
germ away from the image sensor. Kernels were placed onto
adhesive-backed plastic sheets in sets of 30 per sheet and
imaged together. Care was taken so that the kernels were not
touching each other. Every image utilized a white and black
standard to ensure that the intensities of all images were of a
consistent scale. Details of image pixel intensity standardiza-
tion are discussed in detail below.

Visible and NIR Transmittance Image Measurement
Multi-spectral transmittance images were acquired by
coupling a small camera (QuickCam Pro 3000, Logitech,
Fremont, Cal.) to a filter wheel to allow rapid acquisition of
12 different images at different spectral bands. The near-in-
frared blocking filter mounted onto the camera was removed
to allow images in the near-infrared spectrum to be acquired.
Eleven of the 12 filters used on the filter wheel were
interference filters allowing a 10 nm full-width, half-maxi-
mum (FWHM) band of light to pass through. The remaining
filter was a near-infrared blocking filter to allow acquisition
of color images. Pass bands of the interference filters were
centered at 780, 830, 870, 880, 890, 905, 920, 930, 960, 980,
and 1020 nm. Resolution of the camera was 640 X 480 pixels.
A 12 mm focal length lens (F54-854, Edmund Industrial
Optics, Barrington, N.J.) was fitted onto the camera so that
the entire area of an 80 X 95 mm backlight (QVABL, Dolan
Jenner Industries, Inc., Lawrence, Mass.) could be kept in
focus. The backlight was illuminated with a 250 W fiber optic
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light source (1250, Cuda Products, Jacksonville, Fla.). A
typical kernel contained nearly 2200 pixels and was approxi-
mately 40 pixels wide and 60 pixels tall.

The red, green, and blue components of the color transmit-
tance image were split to form three gray-scale images
representing their respective color components. For the NIR
images, the three color channels were averaged to form one
gray-scale image for that particular NIR band. A total of 14
gray-scale images representing different bands of light from the
blue region of the visible spectrum to 1020 nm were acquired.

Two neutral-density filters with optical densities of 1.5
and 3.0 (F47-209 and F47-212, Edmund Industrial Optics,
Barrington, N.J.) were permanently placed on the backlight
and imaged with every set of kernels to provide a means to
ensure that all images were of a consistent gray level.
Average pixel intensities corresponding to the two neutral-
density filters were used to histogram-stretch kernel images
between 0 and 255. All kernel pixels had intensities between
20 and 220 after this operation.

Color Reflectance Imaging

A sheet containing 30 kernels was placed on a scanner
(Expression 1680, Epson America, Long Beach, Cal.) and
scanned at a spatial resolution of 300 pixels per inch and 8 bits
per red, green, and blue channel. A gray-scale target
(F53-712, Edmund Industrial Optics, Barrington, N.J.) was
imaged with each set of kernels to ensure consistent
light-intensity levels in the images. Each red, green, and blue
channel of the images was split from the color image and
histogram-stretched so that the average of the white standard
represented 255, while the average of the black standard
represented 0.

X-Ray Imaging

Kernels were radiographed using a cabinet x-ray system
(43855A, Faxitron Corp, Wheeling, I1.) with 13 X 18 cm
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film (Kodak Industry M film, France) at an exposure of 18 kV
and 3 mA for 2 min. The x-ray film was digitally scanned at
800 pixels/inch (Expression 1680, Epson America, Long
Beach, Cal.) and the images were saved for analysis. Pieces
of clear Lexan of 1.7, 3.4, 5.1, 6.8, and 8.5 mm thicknesses
were placed on top of each x-ray film to ensure that the
exposure was consistent. All corn kernels had pixel intensi-
ties between the average of the 1.7 mm and 8.5 mm thick
Lexan pieces. Therefore, all images were histogram-
stretched so that the average of the 8.5 mm piece was zero and
the average of the 1.7 mm piece was 255.

Physical Property Measurement

Kernel thickness was measured with digital calipers
(54-115-333, Fowler Tools and Instruments, Boston, Mass.)
mounted on a horizontal platform. A single kernel was placed
on the platform, germ side up, and then measured at the
thickest point. Each kernel weight was measured on a digital
balance (40SM-200A, Precisa, Switzerland), one kernel at a
time.

FUNGAL EVALUATIONS

After all measurements were taken, the infecting species
was identified. Kernels were surface disinfected with 2%
Clorox and then plated on 3% malt extract agar. The fungus,
if any, grown out from individual plated kernels was
identified under a microscope and recorded. This fungus was
used as the infecting species for NIR calibrations to identify
infecting species on whole corn kernels.

DATA ANALYSIS
Selection of Spectral Bands for Sorting

The spectra were interpolated using Perten Simplicity
software to 5 nm resolution from 500 to 1700 nm, resulting
in 241 absorbance values. When considering the possible
application of the results to high-speed sorting operations,
only a few of the spectral bands can be economically
measured in real time. Many modern sorting machines
(e.g., Satake USA, Houston, Texas; Sortex, Ltd., London,
U.K., etc.) are capable of measuring two discrete spectral
bands (using optical filters) on two or three sides of a kernel,
and then determining acceptance or rejection of a kernel
based on one or more readings. As such, it was attempted to
select the best single band and combination of two spectral
bands to classify kernels as fungal positive or negative using
spectra from both germ-up and germ-down kernel orienta-
tions.

The spectra were convolved with Gaussian curves to
simulate different FWHM pass-band interference filters. A
k-nearest neighbor classification scheme was used as the
basis of a procedure to select an optimal small subset of
spectral bands for sorting a given “good” product and
“defect.” An exhaustive search was performed for the best
pair of spectral bands between 500 and 1700 nm. The
selection procedure had an additional constraint that the
spectral bands needed to be separated by at least 100 nm, as
this is the usual limitation of the optics in sorting machines.

In searching for the best pair of spectral bands in the
241 spectral bands from the normalized spectra, a randomly
selected sample of 30 good kernels and 30 extensively
discolored kernels was used as a training set, with the
remaining 886 kernels (356 kernels of P-3394 plus 530 ker-
nels of FS-7111) used as a validation set. Every kernel had
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two spectra associated with it, one from the endosperm side
and the other from the germ side. Thus, the training set
comprised 120 spectra from 60 samples. For each absorbance
value in the Gaussian-smoothed spectra, the mean and
standard deviation were computed for all kernels in the
training set. All absorbance values were then normalized by
subtracting the mean and dividing by the standard deviation:

(4. —A)

A, = M)
O

where AyA is the normalized absorbance centered at wave-

length A, A\ is the Gaussian-smoothed absorbance centered

at wavelength A, Z;b is the training set mean of the Gaussian-

smoothed absorbance centered at wavelength A, and o A is the
training set standard deviation at wavelength A.

For each spectrum in the validation set, the Euclidian
distance from a given pair of spectral bands was computed to
the corresponding pair of spectral bands in the training set.
This combination was performed for every possible pair of
spectral bands with the limitation that they were at least
100 nm apart. After performing these computations for every
pair of spectral bands, each kernel in the validation set had
two distances to every kernel in the training set; one was the
distance from the germ side and the other was from the
endosperm side of the kernel. Classification was performed
based on two different sorting cases. One case, called AND
logic, required that the distance from both germ and
endosperm spectra from each kernel be closest to a fungal-
damaged kernel in the training set to be classified as fungal
damaged; otherwise, it was classified as asymptomatic. The
other case, called OR logic, only required that the distance
from either the germ or endosperm spectra be closest to a
fungal-damaged kernel in order for a kernel to be classified
as fungal damaged. Most optical sorting machines can be set
to sort based on AND as well as OR logic. The pair of spectral
bands achieving the lowest classification error rate using this
procedure was chosen as the optimal pair of bands that might
be used in a sorting operation.

While AND logic tends to prevent asymptomatic kernels
from being misclassified as damaged, OR logic is more likely
to correctly classify kernels that have damage on only one
side. For training purposes, it was only attempted to
distinguish kernels with extensive discoloration from asymp-
tomatic kernels. Classification of kernels with minor discol-
oration into either the asymptomatic or extensively
discolored group was tested only after the classification
model was developed.

Classification Using Stepwise Discriminant Analysis

In all images, kernels were segregated from the back-
ground by thresholding. One threshold level was used for
each image modality. Features extracted from each kernel in
every image were mean kernel pixel intensity, pixel intensity
standard deviation, maximum pixel intensity, minimum
pixel intensity, and a cumulative histogram of pixel intensi-
ties in steps of 16 intensity levels. The histograms were scaled
to represent percentages of pixel intensities below each
histogram bin level. Data from the germ and endosperm sides
of each kernel were averaged and saved for analysis. The
cross-sectional area, kernel length, and kernel width were
also extracted from the blue component of the transmittance
images.
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All image data (x-ray, NIR transmittance, color reflec-
tance), physical property data, and NIR spectra were
combined into a single database. Half of the data from
extensively discolored and asymptomatic kernels was ran-
domly assigned to a training set and the other half was
assigned to a validation set. All data from kernels with minor
discoloration were assigned to the validation set. A stepwise
discriminant analysis search was performed to find the best
single feature and combination of two- and three-image or
physical property features to perform a two-way classifica-
tion of kernels as fungal-infected or undamaged. Only
asymptomatic kernels and kernels with extensive discolor-
ation were used to select features. The training set was used
to select the features using stepwise discriminant analysis;
the validation set was used to assess the classification
accuracy of the discriminant function. Feature selections and
classifications were made using all of the combined data as
well as using each image modality, the NIR spectra, and
physical properties separately.

Infecting Species Identification

Principle components of the average germ-up and germ-
down spectra were computed, and the 20 principle compo-
nents having the highest eigenvalues were fed as classifying
features into a neural network (NeuralShell Classifier V2.01,
Ward Systems Group, Inc., Frederick, Md.) to classify
kernels by their infecting fungus. For this analysis, the
spectra were mean-centered and then normalized by dividing
each absorbance value by the average of the highest 5% of
absorbance values in the entire spectra. Half of the data from
asymptomatic and extensively discolored kernels were
randomly assigned to a training set and the other half were
assigned to a validation set. All of the kernels with minor
discoloration were assigned to the validation set. The training
set was used to compute the principle components and then
train the neural network with these principle components.
The eigenvectors computed for the principle components of
the training set were applied to the validation set and used to
validate the neural network classification results. The neural
network training used the genetic training algorithm, as this
method is much less likely to overfit the data (Lestander et

al., 2003). The training started with all 20 of the principle
components. After the training was completed, the software
reported the relative importance of each principle component
to the classification. The least-important principle compo-
nent was removed, and the training started over again. This
procedure was repeated until no further improvement in
classification error was observed in the training set.

RESULTS AND DISCUSSION
SUMMARY OF CLASSIFICATIONS MADE USING NIR, IMAGE,
AND PHYSICAL PROPERTY DATA

Table 2 displays the classification results using each
measurement type for classifying kernels as fungal-infected
or undamaged. Only results from extensively discolored
kernels and asymptomatic kernels are listed; results from
kernels with minor discolorations as well as the use of
combinations of features are discussed in more detail later.
The number of features for the highest validation set
accuracy and the features selected are also listed. The
measurement having the highest average accuracy (given
equal weighting to undamaged and fungal-infected kernels)
was the NIR spectra from either the germ side or the
endosperm side of the kernel. Their average accuracy was
94%. Color reflectance image data had the lowest average
accuracy (82.5%). All other measurement types had average
accuracies above 91%.

Kernel thickness, weight, and length had an average
classification accuracy of 91.5%, on par with most of the other
measurements. These features indicate that the density of
fungal-infected kernels is reduced compared with undamaged
kernels. The mean mass for all fungal-infected kernels was less
than that of undamaged kernels at the 95% confidence level,
while kernel length and thickness were not significantly
different at the 95% confidence level. Additionally, the mean
x-ray intensity of fungal-infected kernels was significantly
lower (darker) than that of undamaged kernels at the 95%
confidence level. This also indicated lower density, as the
fungal-infected kernels absorbed less x-ray energy.

Table 2. Validation set classification results of fungal-infected kernels showing extensive discoloration and undamaged kernels.
Classification was performed by stepwise discriminant analysis where a maximum of three features were selected.

Undamaged  Fungal-Infected
Kernels Kernels
Classified as Classified as No. of
Undamaged Infected Features
Measurement Group (%) (%) Selected  Features
Physical properties 93 90 3 Thickness, weight, length
NIR transmittance images 93 90 3 % 780 nm pixels < 112; % 920 nm pixels < 208;
(avg. of endosperm and germ sides) and % 1020 nm pixels < 128
Color transmittance images 95 89 2 % blue pixels < 64; % red pixels < 160
(avg. of endosperm and germ sides)
Color reflectance images 90 75 2 Mean and maximum pixel intensity of blue image
(avg. of germ and endosperm sides)
X-ray images 100 82 3 Mean, standard deviation, and maximum pixel in-
tensity
NIR spectra 97 91 3 Absorbance at 1690, 1695, and 1700 nm
(germ side only)
NIR spectra 98 90 3 Absorbance at 535, 1690, and 1700 nm
(endosperm side only)
NIR spectra 98 85 3 Absorbance at 540, 780, and 1405 nm

(avg. of endosperm and germ sides)
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Figure 2. Plots of average spectra for fungus-infected kernels showing different symptoms of kernel discoloration (e.g., asymptomatic, minor discolor-

ation, extensive discoloration).

Classification accuracy for fungal-infected kernels using
the average of the germ and endosperm side spectra was
somewhat less than the accuracy using either the germ side
or endosperm side spectra alone. Features selected while
using spectra from the germ side or endosperm side were
absorbance values at 1690 and 1700 nm, but these were not
selected from the average of the germ and endosperm spectra.
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The variance of absorbance values at these wavelengths was
approximately 20% higher for the average spectra than for
the germ or endosperm only spectra. Both protein and starch
have high absorbances at these wavelengths, and differences
between the germ and endosperm in starch, and perhaps
protein, content could have increased the variance of the
average spectra at these wavelengths.

TRANSACTIONS OF THE ASABE



NIR REFLECTANCE SPECTRAL BAND SELECTION

Plots of the average reflectance spectra from kernels for
each fungus and symptom category are shown in figure 2. For
all fungal-infected kernels with extensive discoloration,
except A. zeae, the absorbance of fungal-infected kernels is
higher than that of undamaged kernels below 700 nm and
lower between 900 and 1700 nm. (Note: in this article, we use
absorbance units to represent log(1/R) data). In general, the
spectra from fungal-infected kernels with minor discolor-
ation more closely followed the spectra of asymptomatic
kernels. However, the variance of individual absorbance
values at each wavelength was high enough that no
absorbance values from the extensively discolored and
asymptomatic kernel groups were significantly different
from each other at the 95% confidence level. Differences in
absorbance spectra for extensively discolored kernels can
possibly be explained by the scattering and absorbance
characteristics caused by the fungus in the kernel. Discolor-
ation of the kernels would cause higher visible wavelength
(<~750 nm) absorbance. A fungal-infected kernel would also
scatter more light than a sound, vitreous kernel, since the
invasion of the fungus can cause the kernel endosperm to
become porous (Hesseltine and Shotwell, 1973; Lillehoj et
al., 1976). This scattering would cause less NIR radiation to
be absorbed in the reflectance mode. Powdery substances
with refractive indices different from that of air, such as those
in the air-endosperm interface of infected kernels, cause
more light to be reflected (Birth and Hecht, 1987), as opposed
to the more crystalline-like property of normal kernels.

The nearest-neighbor algorithm selected the spectral
bands at 715 and 965 nm as optimal for use in high-speed
sorting applications. Highest accuracy was achieved when
using OR logic. Use of AND logic gave considerably lower
classification accuracies for fungal-damaged kernels. Val-
idation-set classification accuracy for asymptomatic kernels
was 98.1%. Average classification accuracy for all fungi
types was 79.6% for extensively discolored kernels and
33.3% for kernels with minor discoloration. However,
classification performance for kernels infected with A. zeae
and Penicillium fungi were poor (39.3% and 17.6%,
respectively). By removing these from the average computa-
tion, an average of 96.6% of the other extensively discolored
kernels were correctly classified as fungal damaged, with a
range between 91.7% and 100% accuracy. Table 3 lists
classification results for kernels infected with all fungal types
showing extensive or minor kernel discoloration. Selection
of these two absorption bands indicated that fungal-damaged
kernels are generally discolored, as indicated by a selection
of 715 nm, and that oil concentration may be changed for
fungal-damaged kernels, as indicated by the selection of the
absorption band at 965 nm. These results, based on spectral
band selection by the nearest-neighbor algorithm, are similar
to the results from the stepwise discriminant analysis
procedure where three spectral bands were selected. Howev-
er, the two spectral bands and OR logic are easily implement-
ed in commercial sorting machines, whereas averaging three
spectral bands is not. Classification accuracy from stepwise
selection of just two spectral bands from the average of the
germ and endosperm spectra was 98% for undamaged
kernels and 74% for all fungal-damaged kernels having
extensive discoloration, lower than what was achieved by the
nearest-neighbor algorithm.
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Table 3. Percentage of visibly fungal-infected maize kernels (minor
vs. extensive discoloration) in the validation set correctly classified as
“fungal damaged” when using NIR absorbance values at 715 and
965 nm and OR logic from the spectral measurements from both sides
of the kernel.[2] Note that the validation set contained all of the
kernels with minor discoloration and all but 30 randomly
selected kernels with extensive discoloration.

Visible Kernel Discoloration[®]

Kernels in
Infecting Fungus Minor Extensive Training Set
Acremonium zeae 5.7% (89) 39.3% (19) 0
Aspergillus flavus 25.8% (337)  95.3% (204) 3
Aspergillus niger 28.8% (40) 91.7% (62) 2
Diplodia maydis 69.2% (181) 100% (167) 4
Fusarium graminearum 42.9% (73) 97.1% (63) 2
Fusarium verticillioides ~ 34.7% (405)  97.2% (205) 7
Penicillium spp. 28.8% (45) 17.6 % (88) 3
Trichoderma viride 30.4 % (193)  98.3 % (141) 9

Average of all fungi 33.3% (803)  79.6 % (949)

[a] Fungus-infected kernels selected from wound-inoculated ears of Pio-
neer 3394 and FS 7111 grown at Kilbourne, Illinois (see table 2). Ker-
nels with visible symptoms of discoloration but not classified as “fungal
damaged” were incorrectly classified as asymptomatic.

[Pl Number of kernels examined is shown in parentheses.

A scatter plot of asymptomatic kernels and fungal-in-
fected kernels at 715 and 965 nm is shown in figure 3.
Samples infected with A. zeae and Penicillium were omitted
from this plot for clarity, as samples infected with these two
fungi overlap with the control kernels. Kernels infected with
A. flavus generally have lower absorbances at 965 nm for a
given absorbance at 715 nm.

Pearson et al. (2004) reported that for optimal sorting of
yellow corn kernels infected with aflatoxin, a metabolite of
A. flavus, the spectral bands centered at 750 and 1200 nm
should be used. This study showed that when using these two
bands (on the same spectrometer as used in the earlier study)
97% of the kernels having aflatoxin greater than 100 ppb
could be separated from 100% of the kernels having no
detectable aflatoxin. These spectral bands were selected on
the basis of eliminating alflatoxin, not on the simple basis of
fungal infections. In this study, where the objective was to
detect kernels infected with fungi from a variety of species
without regard to mycotoxins, 95.2% of the kernels infected
with A. flavus and having extensive discoloration were found
separable from 98% of the control kernels. Thus, classifica-
tion results using the spectral pair of 715 and 965 nm for
kernels infected with A. flavus with extensive discoloration
are comparable to, but slightly less, than the classification
accuracy of kernels contaminated with greater than 100 ppb
aflatoxin. In Pearson et al. (2004), all but one kernel infected
with greater than 100 ppb also exhibited extensive discolor-
ation. The advantage of using the spectral pair of 715 and
965 nm is that elimination of kernels infected with several
other fungi besides A. flavus is optimized.

CLASSIFICATIONS BASED ON COMBINED IMAGE AND
PHYSICAL PROPERTY DATA

The best combination of the three features selected from
all image and physical property data were all from the
transmittance images. These features were the percentage of
blue image pixels having an intensity below 64, percentage
of red image pixels below an intensity of 160, and the
percentage of pixels in the 960 nm transmittance image with
an intensity below 160. These three features correctly
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Figure 3. Scatter plot of absorbance values at 715 and 965 nm for fungus-infected kernels with extensive discoloration selected from wound-inoculated

ears of Pioneer 3394 and FS 7111 grown at Kilbourne, Illinois.

classified 96.2% of the asymptomatic kernels, and among all
fungal species, averaged 91.9% of those kernels showing ex-
tensive discoloration and 66.1% of kernels showing minor
discoloration. This is slightly better than the classification re-
sults using two color transmittance features, but it is more dif-
ficult to measure, requiring two cameras or filter
arrangements. Table 4 displays the classification accuracy
for all kernels based on the infecting species using the three
selected features. Note that for Acremonium zeae and Peni-
cillium spp., the accuracy for all fungal-infected kernels, with
minor or extensive discoloration, was appreciably higher us-
ing imaging than with dual-spectra bands (table 3). The accu-
racy of the imaging method appears to be somewhat higher
for fungal-damaged kernels than the two spectral absorption
values at 715 and 965 nm (table 3). However, the imaging
method is not as conducive to high-speed sorting, while the
reflectance from two spectral bands is more favorable. It
should be noted that the two features from the color-transmit-
tance images offered similar accuracy to the spectral method,
and the hardware to acquire only color images would be

Table 4. Percentage of visibly fungal-infected maize kernels (minor vs.

extensive discoloration) from the validation set correctly classified as

“fungal damaged” when using three transmittance image features.[?]
Note that the validation set contained all of the kernels with minor
discoloration and half of the kernels with extensive discoloration.

Visible Kernel Discoloration[®]

Infecting Fungus Minor Extensive
Acremonium zeae 50% (89) 88.5% (9)
Aspergillus flavus 53.7% (337) 97.3% (103)
Aspergillus niger 50% (40) 91.7% (32)

Diplodia maydis 98.2% (181) 100% (85)

Fusarium graminearum 94% (73) 97% (33)
Fusarium verticillioides 61% (405) 91.2% (106)
Penicillium spp. 65.8% (45) 78 % (46)

Trichoderma viride 55.7 % (193) 92.3 % (75)

66.1 % (303) 91.9 % (489)

[a] Fungal-infected kernels selected from wound-inoculated ears of Pio-
neer 3394 and FS 7111 grown at Kilbourne, Illinois (see table 1). Kernels
with visible symptoms of discoloration but not classified as “fungal
damaged” were incorrectly classified as asymptomatic.

[°] Number of kernels examined is shown in parentheses.

Average of all fungi
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comparatively inexpensive; thus, this method may be useful
for low-volume or batch inspections.

INFECTING SPECIES IDENTIFICATION BY NEURAL NETWORKS

Tables 5 through 7 show the results of classifying kernels
based on the infecting species using a neural network with
principle components of the average germ-up and germ-
down reflectance spectra as input features. Training set error
rates were minimized with 18 principle components selected.
The first five principle components explained more than 98%
of the spectral variance. Since the neural network used higher
principle components, this suggests that minute variations in
the spectra were useful for distinguishing kernels showing
only minor discoloration from kernels showing extensive
discoloration, as well as asymptomatic kernels. The number
of principle components selected (18) is small compared to
the size of the validation set: 490 extensively damaged
kernels, and 1363 kernels with minor discoloration. Thus,
overfitting with the neural network is not likely; however,
more testing on a wider range of samples is needed to develop
a robust neural network. Accuracies for extensively discol-
ored kernels infected with A. flavus, D. maydis, F. graminea-
rum, F. verticillioides, or T. viride averaged 92.1% for P-3394
corn (table 5) and 94.8% for FS-7111 corn (table 6).
Classification accuracy for asymptomatic kernels with these
two calibrations was 100%. When the Pioneer and Farm
Service data sets were combined, classification accuracy
declined somewhat: 99.1% for asymptomatic kernels, and
averaging 83.4% for extensively discolored kernels infected
with A. flavus, D. maydis, F. graminearum, F. verticillioides,
and T. viride (table 7). Nevertheless, these results suggest that
full-spectrum methods can be used to identify the major
infecting species accurately within a corn hybrid and
reasonably well across different corn hybrids and growing
seasons.

Spectra of single kernels can be measured automatically
and sorted into different categories using commercial
instruments (e.g., Perten Instruments, Brimrose Corpora-
tion). Methods for distinguishing fungal species may be
implemented by these instruments. This may be of use to
breeders who need to rapidly screen samples for fungal
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damage from different species. However, accuracies for in-  nels need to show symptoms of extensive kernel infection in
fected kernels with minor discoloration fell by more than half order for the infecting species to be identified by this
compared with extensively discolored kernels. Thus, the ker-  method.

Table 5. Validation set accuracy of neural network classification for Pioneer 3394 maize kernels infected with different species of
kernel-rotting fungi and showing extensive (>50%) versus minor (<50%) endosperm discoloration. Note that the validation
set contained all of the kernels with minor discoloration and half of the kernels with extensive discoloration.

Classified as

No. of
Kernels Asymptomatic  A. flavus D. maydis  F. graminearum F. verticillioides T. viride Other fungi
Extensive endosperm discoloration (>50%)
Actual
Asymptomatic 146 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
A. flavus 74 1.4% 97.3% 0.7% 0.0% 0.7% 0.0% 0.0%
D. maydis 35 0.0% 2.8% 97.2% 0.0% 0.0% 0.0% 0.0%
F. graminearum 17 0.0% 2.9% 0.0% 94.1% 0.0% 2.9% 0.0%
E verticillioides 18 0.0% 2.8% 0.0% 0.0% 83.3% 0.0% 13.9%
T. viride 35 0.0% 0.0% 0.0% 11.4% 0.0% 88.6% 0.0%
Other fungi
A. zeae 7 0.0% 0.0% 0.0% 0.0% 7.1% 0.0% 92.9%
A. niger 6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
Penicillium spp.[2] 17 0.0% 0.0% 0.0% 2.9% 0.0% 0.0% 97.1%
Minor endosperm discoloration (<50%)
Actual
Asymptomatic 146 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
A. flavus 299 56.5% 41.1% 0.0% 0.3% 0.7% 0.3% 1.0%
D. maydis 112 0.0% 14.3% 72.3% 0.9% 0.9% 6.3% 5.4%
F. graminearum 35 8.6% 0.0% 0.0% 51.4% 0.0% 34.3% 5.7%
E verticillioides 131 14.5% 12.2% 3.1% 0.0% 30.5% 2.3% 37.4%
T. viride 107 29.9% 12.1% 0.9% 2.8% 2.8% 34.6% 16.8%
Other fungi
A. zeae 53 9.4% 5.7% 0.0% 3.8% 1.9% 1.9% 77.4%
A. niger 40 0.0% 0.0% 0.0% 0.0% 2.5% 0.0% 97.5%
Penicillium spp.[2] 26 1.3% 0.0% 2.5% 17.5% 1.3% 10.0% 67.5%

[al P, funiculosum, P. oxalicum.

Table 6. Validation set accuracy of neural network classification for FS 7111 maize kernels infected with different species of kernel-
rotting fungi and showing extensive (>50%) versus minor (<50%) endosperm discoloration. Note that the validation
set contained all of the kernels with minor discoloration and half of the kernels with extensive discoloration.

Classified as

No. of
Kernels Asymptomatic  A. flavus D. maydis  F. graminearum F. verticillioides T. viride Other fungi
Extensive endosperm discoloration (>50%)
Actual
Asymptomatic 74 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
A. flavus 29 0.0% 98.3% 0.0% 0.0% 1.7% 0.0% 0.0%
D. maydis 50 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0 %
FE graminearum 16 0.0% 0.0% 0.0% 90.3 % 9.7% 0.0% 0.0%
E verticillioides 88 2.3% 0.6% 0.6% 1.1% 88.1% 0.6% 6.8%
T. viride 40 0.0% 0.0% 0.0% 0.0% 2.5% 97.5% 0.0%
Other fungi
A. zeae 2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
A. niger 26 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
Penicillium spp.[2] 29 3.5% 0.0% 0.0% 0.0% 22.8% 0.0% 73.7%
Minor endosperm discoloration (<50%)
Actual
Asymptomatic 74 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
A. flavus 38 34.2% 44.7% 2.6% 0.0% 15.8% 2.6% 0.0%
D. maydis 69 20.3% 0.0% 59.4% 1.4% 15.9% 2.9% 0.0%
FE. graminearum 38 13.2% 0.0% 26.3% 5.3% 50.0% 2.6% 2.6%
F. verticillioides 274 31.4% 1.5% 6.2% 1.1% 43.8% 2.6% 13.5%
T. viride 86 5.8% 0.0% 11.6% 10.5% 27.9% 36.0% 8.1%
Other fungi
A. zeae 36 61.1% 2.8% 2.8% 0.0% 22.2% 2.8% 8.3%
Penicillium spp.[2] 20 25.0% 0.0% 0.0% 0.0% 0.0% 0.0% 75.0%

[al P, funiculosum, P. oxalicum.
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Table 7. Validation set accuracy of neural network classification for Pioneer 3394 and FS 7111 (combined) maize kernels infected with
different species of kernel-rotting fungi and showing extensive (>50%) versus minor (<50%) endosperm discoloration. Note that

the validation set contained all of the kernels with minor discoloration and half of the kernels with extensive discoloration.

No. of Classified as
Kernels Asymptomatic  A. flavus D. maydis  F. graminearum__F. verticillioides T. viride Other fungi
Extensive endosperm discoloration (>50%)
Actual
Asymptomatic 220 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
A. flavus 103 2.4% 87.9% 2.9% 1.0% 2.4% 1.9% 1.4%
D. maydis 86 1.2% 0.0% 96.5% 0.0% 0.0% 2.3% 0.0%
F. graminearum 32 6.2% 4.6% 6.2% 70.8% 4.6% 3.1% 4.6%
F verticillioides 106 7.5% 4.2% 4.2% 0.5% 73.1% 0.5% 9.9%
T. viride 75 3.3% 2.0% 2.7% 1.3% 1.3% 88.7% 0.7%
Other fungi
A. zeae 9 15.8% 0.0% 0.0% 10.5% 36.8% 0.0% 36.8%
A. niger 32 12.5% 3.1% 1.6% 0.0% 7.8% 0.0% 75.0%
Penicillium spp.[2] 46 6.6% 3.3% 2.2% 0.0% 6.6% 0.0% 81.3%
No fungus 1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100%
Minor endosperm discoloration (<50%)
Actual
Asymptomatic 220 99.1% 0.0% 0.2% 0.0% 0.0% 0.0% 0.5%
A. flavus 337 67.4% 13.9% 0.9% 0.9% 4.5% 7.1% 5.3%
D. maydis 181 29.8% 0.6% 34.3% 1.1% 6.1% 21.5% 6.6%
F. graminearum 73 49.3% 1.4% 8.2% 17.8% 5.5% 8.2% 9.6%
F. verticillioides 405 52.1% 1.7% 4.0% 0.7% 15.3% 3.2% 23.0%
T. viride 193 5.8% 0.0% 11.6% 10.5% 27.9% 36.0% 8.1%
Other fungi
A. zeae 89 71.9% 2.2% 0.0% 3.4% 4.5% 6.7% 11.2%
A. niger 40 0.0% 37.5% 2.5% 0.0% 5.0% 0.0% 55.0%
Penicillium spp.[2] 100 30.0% 2.0% 0.0% 9.0% 8.0% 12.0% 39.0%
No fungus 38 60.5 0.0% 5.3% 0.0% 7.9% 2.6% 23.7%
[al P, funiculosum, P. oxalicum.
CONCLUSION REFERENCES

It was found that multi-spectral transmittance imaging,
physical properties, and reflectance spectroscopy are all
viable tools for discriminating corn kernels infected with
various fungi from un-infected controls; each modality had
classification accuracies above 91%. Kernels infected with
one of several fungi can be distinguished from un-infected
controls using reflectance values at just two wavelengths
using the same decision logic as is used in high-speed optical
sorters. Two- or three-image histogram features from visible
and near-infrared transmittance images can also correctly
identify severely damaged kernels due to fungal infection
with good accuracy; however, implementation is more
difficult than the use of two spectral bands in commercial
high-speed sorters. Full-spectrum methods are needed to
identify infecting fungal species. These results indicate that
this technology can potentially be used to automatically and
rapidly detect fungal-infected corn kernels. This may be of
great assistance to breeders who are interested in developing
fungal-resistant varieties.
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