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ABSTRACT

Sorting systems based on optical methods have the poten-
tial to rapidly detect and physically remove seeds severely
contaminated by fungi, or infested internally by insect larvae or
pupae. Thus, the literature on sorting systems based on optical
methods for detecting and sorting seeds with these attributes was
reviewed. Sorting indices based on wavelengths useful for detect-
ing these attributes were emphasized. Surface characteristics of
seeds, like discoloration caused by fungi, are generally detectable
in the visible range of the electromagnetic spectrum, whereas in-
ternal attributes are detectable in the near-infrared range. The
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spectral differences between sound and infested seeds are usually
subtle, but full-spectrum and two-wavelength classification mod-
els have succeeded in detecting and classifying seeds based on
these attributes. For high sorting accuracies, wavelength identifi-
cation and proper selection of a sorting criterion are important.
Color, chitin, ergosterol, or hydrolysis of triglycerides have been
identified as indicators of seed fungal contamination whereas chi-
tin, protein, phenolic compounds, or changes in starch have been
useful indicators of internal insects in seeds.
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I. INTRODUCTION

Detection and removal of internal insects and fungal contamination from
seeds (grains, beans, and nuts) are important control measures for ensuring stor-
age longevity, seed quality, and food safety. Insect feeding and respiration may
create conditions favorable for fungal growth during storage [1]. A few insects
can increase rapidly and give rise to a serious infestation later [2]. Postharvest
grain losses caused by pests and poor storage practices total more than $1 billion
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per year in the U.S. [3] Mycotoxins, such as aflatoxin or fumonisin, from fungi-
contaminated grains have been linked to equine leukoencephalomacia, porcine
pulmonary edema, liver cancer and esophageal hyperplasia in rats, and human
esophageal cancer [4,5]. Hence, regulatory limits of seed contamination for food
and feed products are being strictly enforced in the grain trade. However, inter-
nal insects and fungal contamination in seeds may not be removed completely
by typical cleaning equipment.

Internal insect infestation of grains may be detected by staining of kernels,
flotation, radiographic techniques, acoustic techniques, uric acid measurement,
ninhydrin-impregnated paper, nuclear magnetic resonance, and immunoassays
[1]. These detection methods are either slow, labor intensive, expensive, or diffi-
cult to automate. Mycotoxins may be detected from ground samples by high-
performance liquid chromatography, thin-layer chromatography, mass spectros-
copy, and immunochemical methods [6]. None of these methods are amenable
to rapid and simple automation. The method based on blue-green-yellow fluo-
rescence indicates the presence of molds in seeds but is not a definitive indicator
of the aflatoxin. Promising results in photoacoustic spectroscopy (PAS) and
transient infrared spectroscopy (TIRS) have been reported for detecting fungal
infection in seeds [7–9]. However, PAS takes at least 10 minutes to get the
photoacoustic signal from a single corn kernel8. TIRS, on the other hand, is
useful for detection from a mass of solid materials moving at conveyor belt
speeds [9,10]. Neither PAS nor TIRS were designed for removal of infected
seeds which requires singulation and high speeds. There is, therefore, a need for
a rapid means of detection and removal of fungal or insect-infested seeds from
a seed lot.

High-speed sorting systems based on optical properties are being used in
some commodities, such as beans, peanuts, coffee, peas, and rice [11]. These
sorters depend mainly on color differences between “accept” and “reject” seeds
and other quality factors that are detectable visually. While surface fungal con-
tamination was shown to be detectable in the visible range of the light spectrum
(400–750 nm) [12,13], symptomless fungal contamination and insect larva or
pupae in seeds were not [14–18]. The unique absorption at specific wavelengths
in the near-infrared region has potential to detect these internal attributes.

Optical sorting machines use sorting indices for product segregation. A
sorting index is the form of the measured optical properties of a product that
maximizes the difference between acceptable and objectionable products. It
should correlate well with the quality attribute being evaluated, not be easily
affected by other physical parameters of the product, and should vary little with
the equipment variables [11]. Sorting indices for various products have been
formulated from single wavelengths [19], or two wavelengths in the form of a
ratio, difference, normalized difference, or normalized sum [19–24]. Advan-
tages and disadvantages of these indices have been reported [12,14,19,21,25–
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26]. Commercial sorters use either monochromatic (single wavelength) or bich-
romatic (two wavelengths) mode, or both, to sort for product defects [27–29].

Complexity of the sorting process and introduction of various spectral
pretreatments have led to the development of more sorting indices, many of
those are not applicable to high-speed implementation such as: (1) discriminant
analysis based on full-spectrum or regions of the spectrum [17] and (2) eigen-
vector-based models (multiple linear regression, principal component analysis,
and partial least-squares regression) that use regions of the spectrum [30, 31].
These models may not be useful for high-speed sorting, but help identify spe-
cific wavelengths that could be used later for developing few-wavelength
models.

An extensive review of optical, nondestructive quality evaluation encom-
passing various agricultural and biological materials was reported by Gunesa-
karan [32]. A later review by Chen and Sun [11] covered all nondestructive
methods, including optical methods, for quality evaluation of agricultural prod-
ucts. This review continues from where previous reviews stopped but focuses
only on seeds and two economically important quality factors: fungal contami-
nation and internal insects in seeds. The objective of this review was to integrate
information related to optical seed sorting for internal insects and fungal con-
tamination in order to identify sorting indices and principles relevant to these
applications.

II. DETECTING AND SORTING FOR
FUNGAL CONTAMINATION

A. Early Studies on Mold Detection

Using a research spectrometer described by Norris [20], Birth [25] ob-
served that the slope of optical density (log 1/T) curves between 750 and 1000
nm was proportional to the amount of smut in the wheat sample. He assumed
therefore, that optical density at any two wavelengths within that range, exclud-
ing the water absorption band at 970 nm, was a good measure of total smut
content. He developed a smut meter based on this principle. It was essentially
a photometer for measuring differences in optical density (log 1/T) at two wave-
lengths in the red or infrared region of the electromagnetic spectrum. A 28 V,
20 W reflector-type bulb was used as the light source. Two 5.1 x 5.1 cm narrow-
band interference filters isolated the desired wavelengths. A 55-g wheat sample
was placed in a 7 cm-diameter aluminum cup and inserted between the interfer-
ence filter and photomultiplier tube. Johnson [33] studied five different methods
of detecting smut content in bulk wheat. The methods were light transmittance,
sedimentation, catalase activity, light reflectance, and light absorption. For the
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light absorption method, the smut meter designed by Birth [25] was used.
Smutty wheat ranged from 0.5 to 3%. Johnson [33] found that the light absorp-
tion method was the fastest and most suitable method for routine smut testing.
Smut spores adhering to the wheat kernels increased the absorption of light
at the shorter wavelengths (700–850 nm), relative to the longer wavelengths
(850–1000 nm). The presence of smut was indicated by a lower transmittance
at 800 nm and a higher value at 930 nm, compared to non-smutty wheat. There-
fore, the ratio of transmittance at 800 to 930 nm was found to be the best
measure of smut content in wheat (r=0.95).

Birth and Johnson [12] evaluated four optical properties (total fluores-
cence, spectral characteristics of fluorescence, transmittance, and reflectance)
for detecting mold contamination in shelled yellow corn. The corn kernels var-
ied in mold contamination from slight to severe on a scale of 1 to 10. Sound
kernels fluoresced more than moldy kernels; molds quenched the natural fluo-
rescence of corn. The best results were obtained for a difference of logarithm
of fluoresced energy at 442 and 607 nm (<5% classification error). They ob-
served that a certain level of contamination must be reached in order to detect
fluorescence characteristics.

These early studies were concerned mainly with mold detection, not with
specific mycotoxins. But these principles were followed in ensuing studies that
aimed to detect specific mycotoxins.

B. Aspergillus Flavus and Aflatoxin

Aspergillus, Penicillium, and Fusarium species are the most prevalent my-
cotoxigenic fungi in stored products [6]. Mycotoxins of the greatest economic
concern are the aflatoxins, which are produced by A. flavus [6]. A. flavus-
contaminated corn can have particles that exhibit bright, greenish-yellow
(BGY) fluorescence when irradiated with UV light [34]—the basis for the
“black light test” to identify contaminated corn lots. A count of one BGY parti-
cle per kg obtained from a given corn sample is an indication that the sample
should be tested for aflatoxin by chemical means such as high-performance
liquid chromatography (HPLC) or enzyme-linked immunosorbent assay
(ELISA). However, corn contaminated with aflatoxin sometimes does not ex-
hibit BGY fluorescence [35].

The presence of internal fungal contamination may not be visible on the
kernel surface [36, 37]. X-ray scans could not detect internally moldy peanuts,
but nuclear magnetic resonance (NMR) scans could [36]. However, an NMR
scan is expensive and takes 10 min or more. Moreover, aflatoxin is unevenly
distributed in a seed lot and may be concentrated in a very small percentage of
the product [36, 38–40]. For example, aflatoxin is found in < 0.1% of the
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shelled peanuts, but the contamination level on a single kernel may be as high
as 1,000,000 ppb [38]. High levels of aflatoxin in edible peanuts can therefore
be reduced by removing contaminated kernels, which may comprise a small
percentage of the total lot. Hirano et al. [36] reported a study in which the
removal of just 5% of the peanuts lowered the aflatoxin content of an entire lot
of peanuts from 4.5 to 0.2 ppb.

Tyson and Clark [13] developed a technique based on fluorescence to
determine aflatoxin contamination in pecans. Pecan halves were soaked and
incubated for two days in a chloroform-aflatoxin B1 solution of varying concen-
trations (0.095, 0.95, 9.5, and 95 ppm). The top and bottom of each pecan half
was subjected to ultraviolet radiation at 365 nm and the intensity and wave-
length of light coming from each side of the pecan halves were recorded. Floure-
scence was measured at 10 nm intervals from 410 to 610 nm. Thin layer chro-
matography was used to analyze aflatoxin in each sample. The flourescence
ratios 440 to 490 nm (F440/F490) or 450 to 490 nm (F450/F490) measured from the
bottom side of the pecan halves yielded the highest correlation coefficients (0.86
and 0.83). They detected aflatoxin contamination 20 ppm with 90% confidence,
using these fluorescence ratios. Farsaie et al.[41] used the bright-greenish-yel-
low (BGY) fluorescence under UV excitation to detect aflatoxin in pistachio
nuts. They showed that the ratio of the fluorescence of pistachio at 490 and 420
nm could be a basis for detecting BGY fluorescence. These two wavelengths
were used in an automatic sorter for aflatoxin-infected pistachio nuts [42,43].
Each nut was viewed by the dual wavelength detectors for about 30–40 ms. The
average sorting rate was 18 nut/s.

A sorting machine for effectively separating peanuts infected by aflatoxin-
producing molds from good nuts was reported by Fraenkel et al [44]. It detects
both red and green light reflected from a peanut being viewed. The reflected
red light produces a first signal indicative of the amount of mold in the peanut.
The reflected green light produces a second signal indicative of the extent of
mechanical damage to the nut. The two signals are compared and the resulting
signal is passed to an ejector. When the extent of mechanical damage exceeds
a predetermined level, the ejector is actuated by the comparison signals. Hirano
et al.[36] used the transmittance ratio of peanuts at 700 to 1100 nm as a sorting
criterion between sound and moldy (surface and internal) peanuts. These are the
wavelength regions where spectral differences between the two classes were
highest. The transmittance ratio could even separate surface-moldy from inter-
nally moldy nuts. The hydrolysis of triglycerides in peanuts by the fungus
seemed to be the best explanation for changes in NIR spectra.

Pearson et al. [37] found that one reflectance ratio (R735/R1005) could dis-
criminate individual corn kernels highly contaminated (>100 ppb) with aflatoxin
from corn with low levels of aflatoxin (<10 ppb). The corn kernels were all
oriented so that reflectance was measured from the germ side of the kernel.
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Transmittance ratios at T710/T760 and T615/T645 were also found to have similar
results without the need to orient the kernels. Over 95% of the kernels with
aflatoxin >100 ppb or <10 ppb were correctly classified using these techniques.
Fungal discoloration of the kernels caused higher absorbance in the visible
wavelengths (<750 nm) as measured by either reflectance or transmittance.
Transmission measurements yielded slightly better results than reflectance. Fun-
gal invasion causes the kernel endosperm to be more powdery, thus a fungal-
infected kernel tends to scatter more light than a sound, vitreous kernel [45].

C. Fusarium

The fungi Fusarium monoliforme, F. proliferatum, F. graminearum, and
other fusaria produce a number of toxins of which fumonisins are of current
importance; these can infect wheat, corn, rice, sorghum, millet, and other food
products, both in the field or in storage, and infection can be symptomless
[5,16]. The genus Fusarium produces over 100 biologically active metabolites,
of which more than 50 have been shown to be toxic [46]. The presence of any
fungal invasion can be indicated by ergosterol. Presumptive fumonisin detection
uses thin-layer chromatography but requires gas chromatography and spectral
analysis for confirmation [47]. Existing laboratory methods for detecting fumon-
isin are expensive (>$50,000) or laborious; recent techniques may require about
30 minutes to process a sample [48]. Thus, there is a need for a sensitive, rapid,
and less expensive fumonisin-detecting procedure.

Greene et al.[7] identified features from Fourier transform infrared-photo-
acoustic (FTIR-PAS) spectra of corn that were indicative of attack from F. mon-
iliforme. These were the strong amide I (1650 cm−1) and amide II (1550 cm−1)
absorbances, suggesting an increase in protein or acetylated amino sugar con-
tent, methylene CH stretch (2855 and 2925 cm−1), and ester carbonyl stretch
(1740 cm−1). Absorption at the amide II region is linearly related to progressive
F. moniliforme invasion as determined by ergosterol levels. Dowell et al.[48]
evaluated reflectance and transmittance spectroscopy to detect fumonisin in sin-
gle corn kernels infected with Fusarium verticillioides at three levels of infection
(<10 ppm, <100 and >10 ppm, and ≥ 100 ppm). PLS regression was used to
classify kernels as fumonisin positive (10 ppm) or fumonisin negative (<10
ppm). Discriminant analysis was also performed using single feature (ratio of
two wavelengths) and two features (two ratios of two wavelengths) to classify
kernels as fumonisin positive or negative based on three threshold levels (10
ppm, 50 ppm, and 100 ppm). The reflectance spectra of kernels infected with
high levels of fumonisin showed higher absorbance at <750 nm; whereas, trans-
mittance spectra showed generally higher absorbance at wavelengths <900 nm.
It appeared that F. verticillioides caused kernels to darken and decrease vitreous-
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ness. In transmittance mode this is measured as more energy absorbed at visible
wavelengths, because light does not pass through an infected kernel as readily
as through a healthy, vitreous kernel [48]. In reflectance mode, this is measured
as less absorption in the NIR region because infected kernels scatter more en-
ergy back to the sensor [48]. The classifications (>97% accuracy) were relying
on kernel color, vitreousness, and kernel composition related to fumonisin con-
tent and fungal damage, not entirely on scattering.

Dowell et al. [48] also showed that classification for fumonisin levels of
>100 ppm and <10 ppm was excellent, but was generally poor for kernels hav-
ing fumonisin between 10 and 100 ppm (23.5–73.0%). Wavelength pairs which
performed well in discriminant analysis (for thresholds >100 ppm and <10 ppm)
were 640 and 910 nm (transmittance, kernels randomly oriented), 625 and 1555
nm (reflectance, kernels germ up), 835 and 1030 nm (reflectance, kernels germ
down), and 730 and 1360 nm (reflectance, randomly oriented). The classifica-
tions could be improved by redefining the classification threshold, measuring
fumonisin in each kernel instead of five-kernel groups, and placing kernels in
germ-up orientation [48]. Fumonisin-infected kernels tend to weigh less than
uninfected kernels; hence, accounting for kernel weight might improve separa-
tion accuracy. Beta coefficients for PLS models showed that wavelengths
around 450–500 nm contributed most to classifications between kernels infected
by Fusarium or A. flavus. This region corresponds to the blue-green region of
the spectrum and implies that the color of F. verticilioides differs significantly
from A. flavus.

The fungus Fusarium graminearum can cause scab damage in wheat. The
mold causes kernels to appear dull or chalky and may produce the toxin deoxy-
nivalenol (DON), commonly called vomitoxin. Dowell et al. [49] developed a
six-factor calibration based on partial least-squares (PLS) regression from ab-
sorbance at 400–1700 nm wavelength region that classified scab-damaged and
undamaged wheat kernels. The kernels were determined by Grain Inspection,
Packers and Stockyards Administration (GIPSA) inspectors as either scab-dam-
aged or undamaged. Many kernels with DON were predicted by the calibration
as scab-damaged, and these had been classified by GIPSA inspectors as sound.
Thus, the visible-NIR system could identify scab-damaged kernels with signifi-
cant levels of DON more accurately than human inspectors. Equations predict-
ing levels of DON (>5 ppm) and ergosterol (>50 ppm) were developed that
could be used as screening tools. Relevant wavelengths that contributed to scab,
DON, and ergosterol predictions are the visible region, and the absorption from
O-H (750, 950, and 1400 nm), C-H (1200, 1400, and 1650 nm), and N-H (1050
and 1500 nm) overtones.

Chitin is one compound that may be responsible for NIR absorption differ-
ences in mold-infected and sound products [50–52]. It is the major carbohydrate
in the cell walls of molds and is found in insects, diatoms, arachnids, nematodes,
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crustaceans, and some other organisms, but not in other plants or animals used
as food [53]. Chitin content was the reference for mold quantification in ground
barley [51,52]. Chitin, determined by NIRS, was correlated with the relative
mold index (scale of visual mold damage from 0 to 5; r=0.86); chitin determined
chemically was correlated with chitin determined by NIRS (r=0.98) [51,52].
Optical properties of chitin were reported by Muzzarelli [53]. Chitin as a mea-
sure of mold contamination of agricultural and food products was reviewed by
Cousin [54].

III. DETECTING AND SORTING FOR INTERNAL INSECTS

The first study on NIRS for detecting insects in bulk samples was done
by Wilkin et al.[55]. They detected the presence and predicted the number of
mites (Acarus siro L.) in pig feed using four principal components derived from
reflectance spectra (1100–2500 nm). The most important spectral feature that
could be related with presence of mites was an absorption peak at 1926 nm,
probably due to the mite haemolymph 56. Wilkin et al. 55 also used four-(1494,
1548, 1896, and 1914 nm) and two-wavelength (1706 and 1840 nm) calibration
models to predict levels of mites in pig feed. The two-wavelength regression,
which used first derivative of log 1/R, performed better than the four-wave-
length model (r=0.93 vs. 0.86 ).

Chambers et al. [2] followed up this study to detect external adult insects
mixed with whole wheat grain. Adult insects of four species were studied: grain
weevils (Oryzaephilus surinamensis), saw-toothed beetles (Sitophilus granarius),
red flour beetles (Tribolium castaneum), and foreign grain beetles (Ahasverus
advena). The insects were either live or freshly killed and presented in sample
cells in increasing numbers from 10 to 100 in steps of 10. The four species gave
similar log 1/R spectra, and all showed large absorptions at 1450 and 1940 nm
attributed to water and at 1520 nm attributed to –NH. Two to five principal
component models yielded r2 of 0.99 and standard error estimate of 0.46- 1.60,
depending on insect species. The shape of the first principal component was
similar for all four species but became increasingly different in subsequent com-
ponents. Second derivative spectra over the range 1450–1600 nm showed dis-
tinct changes with different numbers of insects.

Further studies on detection of external saw-toothed grain beetles (O. suri-
namensis) in bulk wheat and internal beetles in wheat kernels using NIRS were
conducted by Chambers et al [57]. The spectral difference between uninfested
and infested grains showed that absorption at 2290 nm increased with level of
infestation and was attributed to insect lipids. For internally infested kernels,
absorbance increased at 1139, 1320, and 1935 nm. The absorption at 1935 nm
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was probably due to the high water content of the larvae, while the absorbance
at 1139 and 1320 nm might be associated with insect chitin. Chambers et al.[58]
hypothesized that feeding, excretory, and other actions of the internal larvae
affected the spectral characteristics of the infested kernels.

Ridgway and Chambers [15] used NIRS (1100–2500 nm) to detect insect
(O. surinamensis) larvae in single-wheat kernels and external infestations in
bulk samples. Their best calibration equation was obtained from PLS regression
of standard, normal variate-transformed data (1100–2500 nm) against the infes-
tation level. Differences in absorption intensity appeared to be due to insect
cuticular chitin present in the kernels. They also plotted the derivative of spec-
tral response at two wavelengths (2046 and 2302 nm) that achieved an almost
compete classification. Discrimination of sound kernels and kernels infested
with pupae was also achieved by using the criterion log1/R(1194 nm)—log1/
R(1304nm), without any form of scatter correction [15]. The starch band at
1194 nm was less pronounced in the log 1/R spectrum of infested kernels, lead-
ing them to conclude that the spectral response could likely be due to wheat
starch lost as a consequence of insect feeding.

Ghaedian and Wehling [17] used discriminant analysis based on loadings
derived from principal component analysis (PCA) of full (1100–2498 nm) or
partial NIR spectra (1100–1900 nm) to classify sound and granary weevil-in-
fested wheat. Individual wheat kernels were placed in a parabolic reflector, both
crease up and down, to collect the radiation reflected from the entire surface of
the kernel. PCA of NIR spectra from sound kernels was used to construct cali-
bration models by calculation of Mahalanobis distances (MD). Kernels with MD
of <3 standard deviations from the training set center were classified as sound,
and those with MD 3 standard deviations were classified as infested. The models
were then applied to spectra obtained from both sound and infested kernels in
a separate validation set. A five-factor PCA model using data from NIR spectra
in the 1100–1900 nm region and transformed by first-derivative was the best
model for correctly classifying kernels. They found that the region 1980 to
2498 nm did not contain enough information for reliable classification. Scatter-
corrected spectra improved the prediction rate and used fewer factors. They
further used discriminant analysis based on MD applied to selected wavelengths.
Best results were obtained with a 12-wavelength model (1200, 1240, 1300,
1320, 1360, 1400, 1420, 1440, 1660, 1680, 1880, and 2220 nm). The best mod-
els were based on spectra of kernels positioned with crease down. PCA factors
and discrete wavelengths with high correlation against internal insects pointed
to protein, lipid (1200, 1360, 1440 and 1660 nm), and phenolic (1420 nm)
compounds as the major source of variation between sound and infested wheats.

Dowell et al. [30] identified the wavelength ranges 1000–1350 nm and
1500–1680 nm as important for internal insect detection in wheat kernels. These
corresponded to the C-H overtones and combinations. The C-H overtone regions
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corresponded to chitin absorption regions. They observed that absorbance peaks
of ground insect cuticle or chitin were at 1178 nm and 1500 nm, which con-
firmed their findings. Thus, chitin present in insect tissues may explain differ-
ences between sound kernels and those containing larvae. The effect of larval
size on detection accuracy was also determined. They were able to detect 3rd
and 4th instars in wheat kernels with 95% confidence but could not reliably
detect smaller larvae. Insect larvae could be detected independent of the effects
of wheat class, protein content, or insect species.

Baker et al. [31] used NIRS to rapidly differentiate single-wheat kernels
containing the parasitoid Anisopteromalus calandrae from rice weevils, and to
separate sound kernels from those containing weevil or parasitoid larvae or pu-
pae. Using 13 PLS factors, their model correctly classified 97.4% of uninfested
kernels and correctly classed as infested 90–100% of those kernels with either
host or parasitoid larvae or pupae. When differentiating weevils from parasi-
toids, kernels containing weevil larvae and pupa could be differentiated from
parasitoid pupa with 100% accuracy. The method could not reliably classify
parasitoid larva, probably because of their small size. Spectral differences be-
tween adult, pupal, and larval stages of the saw-toothed beetle were earlier re-
ported by Chambers et al. [2].

The studies of Dowell et al.30 and Baker et al.31 used a single-kernel
characterization system coupled with a diode-array spectrometer for automated
kernel handling and collection of spectra. With integration of NIR spectroscopy
and seed-sorting instrumentation, kernels containing parasitoid pupae could be
automatically collected from cultures of beneficial insects for mass rearing and
for later optimized release at a specific age and stage [31]. Automatic separation
of single-wheat kernels containing weevil larvae or pupae could also be done
using this technology.

In order to identify wavelengths for NIR imaging in the very near-infrared,
where sensitivity is better, and instrumentation is generally cheaper, Ridgway
et al.[59] evaluated the wavelength region 700–1100 nm for a sorting criterion.
Single wheat kernels infested with S. granarius larvae (3–4 weeks after egg-
laying) or pupae (4–5 weeks after egg-laying), as well as uninfested kernels,
were scanned using a reflectance cup. They have shown that two-wavelength
classification models, based on either log1/R (982 nm) log1/R(1014 nm) or
log1/R(972 nm)- log 1/R(1032 nm), could correctly classify wheat infested by
S. granarius larvae and uninfested wheat (>96% accuracy) as well as that of a
full-spectrum model. They have confirmed the earlier hypothesis of Chambers
et al.[58] that the spectral difference arose from the actions of the developing
insects, such as decreasing grain starch, for log1/R (982 nm) – log1/R(1014
nm), or increasing grain moisture, for log1/R(972 nm)- log 1/R(1032 nm), due
to insect activity. The NIR method can detect infestation up to about seven
weeks before insects emerge as adults.
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IV. FACTORS THAT LIMIT CLASSIFICATION
OR SORTING ACCURACY

A. Threshold Setting and Sorting Criterion

In many sorting situations, products do not classify neatly into “accept”
and “reject” categories. This is because acceptable and unacceptable products
can have spectral characteristics that range from very pronounced to very subtle,
thus making identification of the cutoff point difficult. Increasing the cutoff
increases the “accepts” in the reject portion, while decreasing the cutoff in-
creases the “rejects” in the accept portion. McClure and Farsaie [42], reported
the overlapping distributions in BGY and non-BGY fluorescent pistachio nuts.
Various methods have been proposed to define the cutoff or threshold, such as
the 99.5% reference value set by an adjustment knob [60], and adding 2.6 stan-
dard deviations to the highest mean reflectance of good light and good dark
fruits [61]. Often the most that can be done is to maximize the acceptance of
good products and minimize the acceptance of rejects. Since this is mainly an
economic decision, some commercial sorters leave this decision to the operator
with a threshold-adjusting knob or button to define acceptable shades of color,
as well as acceptable sizes of defects [28, 29].

A non-sensitive sorting criterion, not equipment limitation, was the main
cause of poor performance of existing sorters [19]. A criterion that worked in
one quality factor may not necessarily work on another quality factor; hence,
wavelength identification and proper selection of a sorting criterion are impor-
tant.

B. Moisture Content

Water absorption bands have been observed to interfere with spectral
bands of other constituents in detecting internal insects [17] and fungal contami-
nation [7.] This source of variation was eliminated by excluding water-absorb-
ing wavelengths in the prediction model and using other indicator wavelengths
[7]. Excluding water-absorption wavelengths (950 nm and between 1350–1500
nm) improved the classification of insect-infested and sound kernels [30].

C. Kernel Orientation and Biological Variation

There seemed to be a preferred orientation for NIR presentation of seeds
that is related to seed geometry. Chambers and Ridgway [62] reported that al-
though detection of internal insects in wheat kernels was successful regardless
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of orientation, the classification accuracy was greater when the kernels were
placed crease down. Ghaedian and Wehling [17] reported that crease-down ori-
entation yielded better predictions for internal insects. Tyson and Clark [13]
obtained higher correlation coefficients between aflatoxin contamination and
fluorescence when fluorescence was measured from the bottom side of pecan
halves. In corn kernels, the fungal infecting point may be important. Molds tend
to invade the germ more readily than other parts of the corn kernel [12]. Within
the corn kernel the fungus F. moniliforme is associated with the tip-cap end, the
point of attachment to the cob [5]. Variation in the shape of corn kernels made
it difficult to restrict transmittance measurements to the germ area of the kernel,
thus contributing to errors [12]. Random placement of the wheat kernel in the
instrument viewing area is a major source of classification error [30, 63]. How-
ever, they reasoned that because a commercial, automated larval detection de-
vice probably would not orient kernels, their results represent the potential for
larval detection with a commercial unit.

Biological variations such as lipid properties within a single insect64; pig-
ments in yellow corn [12]; and thickness of corn kernels [65] can also cause
spectral variations that lead to misclassifications.

V. SUMMARY AND CONCLUSIONS

Models that used spectral properties in the visible and near-infrared re-
gions, with or without spectral pretreatments, have performed well in detecting
and classifying seeds infested by internal insects and fungi. Some sorting models
based on ratio or difference of absorbance or fluorescence at two wavelengths
in these regions performed equally well and was of more practical importance.
Performance of sorting models varied depending on the seed, its orientation or
geometry, extent of infestation or contamination, and thresholds used. Wave-
lengths from both visible and near-infrared regions are useful in detecting fungal
contamination of seeds, which may indicate that visible damage or discoloration,
as well as chemical constituents, are different between infected and sound seeds.
For internal insects, the wavelengths for detection are mainly in the near-infra-
red. Wavelengths for detection depend on the infecting fungus or internal insect.
For fungal contamination in various seeds, the following wavelength pairs for
detection and sorting have been reported: (a) 440 and 490 nm; 442 and 607 nm
(by fluorescence), (b) 800 and 930; 700 and 1100; 710 and 760; 615 and 645;
640 and 910 nm (by transmittance), and (c) 735 and 1005; 625 and 1555 nm;
835 and 1030; 730 and 1360 nm (by reflectance). For internal insects in wheat,
the following wavelength pairs have been reported: (a) 982 and 1014, and (b)
1194 and 1304 nm (by reflectance). Further studies are needed for optical detec-
tion of internal insect and fungal contamination in other cereal grains. The prob-
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able constituent that yielded the unique spectral response, from which detection
models were based, varied according to each study.
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