AUTOMATED DETECTION OF INTERNAL INSECT INFESTATIONS
IN WHOLE WHEAT KERNELS UsSING A PERTEN SKCS 4100

T. C. Pearson, D. L. Brabec, C. R. Schwartz

ABSTRACT. The wheat industry is in need of an automated, economical, and rapid means of detecting whole wheat kernels
with internal insect infestation. The feasibility of the Perten Single Kernel Characterization System (SKCS) to detect internal
insect infestations was studied. The SKCS monitors compression force and electrical conductance as individual kernels are
crushed. Samples of hard red winter (HRW) wheat and soft red winter (SRW) wheat infested with rice weevil [ Sitophilus oryzae
(L.)] and lesser grain borer [ Rhyzopertha dominica (F.)] were run through the SKCS and the conductancef/force signals saved
for post-run processing. Algorithms were developed to detect kernels with live internal insects, kernels with dead internal
insects, and kernels from which insects have emerged. The conductance signal was used to detect live infestations and the
force signal for dead and emerged infestations. Live insect detection rates were 24.5% for small-sized larvae, 62.2% for
medium-sized larvae, 87.5% for large-sized larvae, and 88.4% for pupae. The predicted, and observed, false positive (sound
kernels classified as infested) rate was 0.01%. Dead insect detection rates were 60.7% for large-sized larvae, 65.1% for
pupae, and 72.6% for kernels where the insect emerged. The fal se positive rate of the dead insect detection algorithm ranged
from 0.2% for SRW to 0.5% for HRW. In all cases, insect detection rates were higher for rice weevil than lesser grain borer.

The classification algorithms were robust for a wide range of moisture contents.
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nternal insect infestation of wheat kernels degrades

quality and value of wheat and is one of the most diffi-

cult defects to detect. Insect infestation causes grain

loss by consumption, contaminates the grain with ex-
crement and fragments, causes nutritional losses, and de-
grades end-use quality of flour (Sanchez-Marinez et d.,
1997; Pederson, 1992). While stored grain is vulnerable to
both external and internal damage by insects, internal infesta-
tions are generally considered the most damaging (Pederson,
1992). Five species of insects develop through larval stages
and into adults while inside of wheat kernels. The develop-
ment time ranges from four to seven weeks during which vis-
ible signs of seed damage are not apparent. The insect |eaves
an exit hole in the seed once the insect reaches the adult stage
and emerges. These are the rice weevil [Stophilus oryzae
(L.)], maize weevil [Stophilus zeamais (Motsch)], granary
weevil [Stophilus granarius (L.)], lesser grain borer [Rhy-
zopertha dominica (F.)], and angoumois grain moth [Stotro-
ga cerealella (Olivier)]. Angoumois grain moth infestations
are usually limited to the top few inches of the bin for stored
grain, while the other insects can infest grain in pockets any-
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where in the bin. Weevils and lesser grain borer insects have
been identified as the most common internal infesters of
wheat (Storey et al., 1982).

United States whesat standards consider kernels as insect
damaged when exit tunnels or holes are observed on the
kernel surface (Federal Grain Inspection Service, 1997).
However, insects have aready emerged from these kernels.
A wheat load is reduced to U.S. Sample Grade if 32 or more
insect-damaged kernels are found in a 100 gram wheat
sample (Federal Grain Inspection Service, 1997). Inspecting
for insect-damaged kernels is labor intensive and may miss
most of the infested kernels where an immature insect has not
emerged from the kernel. Storey et a. (1982) reported that as
many as 12% of all wheat samples from export loads have
hidden internal insects but go undetected during the normal
grain inspection process. Grain inspectors at milling facilities
need to know the quantity of kernels with hidden insect
damage so that loads with excessive infestations can be
cleaned or diverted for other uses.

Several methods have been used, or are currently under
development, to detect insect damage inside whole wheat
kernels. Pederson (1992) reviewed many of the techniques
for detecting internal insects. These methods include staining
the egg plug to detect weevil infestation, flotation methods,
X-ray imaging, acoustic detection of larval movement and
chewing, carbon dioxide measurement, and staining of
amino acids specific to insect body fluids. However, most of
these methods have only achieved limited implementation
either because they are slow, labor intensive, expensive, or
can only detect specific insect species. In more recent work,
Haff (2001) developed an image analysis program to
automatically scan x-ray images for insect infestation. Other
researchers have investigated the use of near-infrared (NIR)
spectroscopy to detect hidden insects in wheat kernels
(Dowell et a., 1998; Ridgway and Chambers, 1996;
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Ghaedian and Wehling, 1997). Both x-ray and NIR spectros-
copy can detect internal insects with high accuracy, and cost
of the required equipment has fallen in the past few years.
However, x-ray and NIR instrumentation suffer from high
false positive error rates (good kernels classified asinfested),
are still cost prohibitive for many commercia applications,
and current NIR instrumentation requires complex proce-
dures and calibrations (Dowell et a., 1998). Thus, no
economically viable and simple equipment utilizing these
technol ogies has yet become available for grain inspectors to
use to detect internal insects.

The single-kernel characterization system (SKCS)
(SKCS 4100, Perten Instruments, Springfield, I11.) measures
kernel weight, moisture content (MC), diameter, and hard-
ness at a rate of two kernels per second, and reports the
average and standard deviation of these parameters from a
300-kernel sample. These systems are used worldwide in
many inspection facilities to determine the physical proper-
ties of wheat. To measure MC and hardness, electrical
conductance and compression force are monitored and stored
by the SKCS, while akerndl is crushed between a corrugated
rotor and crescent (Martin et al., 1993). Since alive insect has
amuch higher MC than properly stored sound wheat kernels,
it may be that the presence of live internal insects can be
detected through processing the conductance signal during
crushing. Additionally, the force signal may be useful for
detecting internal tunnels created by insects that have died
and dried out inside the kernel or where the insect has
matured and emerged from the kernel. The objective of this
study was to determine the feasibility of using the standard
hardware of the SKCS to detect kernels with live interna
insects, kernels with dead internal insects, and kernels from
which insects have emerged.

EXPERIMENTAL PROCEDURES
INSECT REARING AND MATURITY ESTIMATION

Two species of insects, the rice weevil and the lesser grain
borer, were reared in kernels from two different wheat
classes, hard red winter (HRW) and soft red winter (SRW),
for atotal of four insect-wheat class combinations. The HRW
wheat was of the Pioneer 2180 variety, grown in central
Kansas, and harvested in 2000; while the SRW wheat was of
the Caldwell variety, grown in Ohio, and harvested in 1994.
Both stocks of whest were stored at 10°C after harvest. Insect
rearing was performed in quart-sized jars with screen lids,
with approximately 350 g of wheat and 300 adult insects. The
jars were incubated at 26°C and 60% RH. Starting at the
second week after incubation began, samples of kernelswere
removed on a weekly basis until the end of the sixth week.
These samples were radiographed using a cabinet x-ray
system (#43855A, Faxitron Corp., Whedling, 1ll.), with 13-
x 18-cm film (Kodak Industry M film, France), at an
exposure of 18 kV and 3 mA for 2 min. To estimate insect
maturity, the x-ray film was digitally scanned at 800
pixels/in. (Expression 1680, Epson America, Long Beach,
Cdlif.), and the larval cross-sectional area was measured in
an image-editing program (Adobe Photoshop LE 5.0, Adobe
Systems, San Jose, Calif.). Kernels were assigned to one of
Six categories, as listed below, based on the insect larval size
and insect morphology:
e Sound: no insect present
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Small larvae: larval area approximately 0.2 to 0.7 mm?

Medium larvae: larval area approximately 0.9 to 1.4 mm?

Large larvae: larval area approximately 1.6 to 2.8 mm?

Pupae: pupae area approximately 1.6 mm? or larger with

limbs, snout, or wing features visible

e Emerged: exit hole of insect visible from exterior of ker-
nel.

For rice weevils, the small larvae approximately corre-
sponds to the first and second larval instar maturity stage,
while the medium and large larvae correspond to the third and
fourth larval instar stages, respectively (Kirkpatrick and
Wilbur, 1965). In al life stages, the lesser grain borer is
smaller than the rice weevil. Thus, within each size category,
lesser grain borers are likely more mature than the rice
weevils, and so the categories of small, medium, and large
larvae would likely refer to a more mature insect for lesser
grain borer than rice weevil.

For the live insect detection study, kernels were processed
within 24 h after maturity estimation. For the dead insect
detection study, infested and sound kernelswere held at -8°C
for five days to kill the insects, then stored at room
temperature for approximately three months to allow the
kernel MC to equilibrate, before processing in the SKCS
4100. The numbers of kernels collected for the live and dead
insect detection studies, from all combinations of insect and
wheat classes, are listed in tables 1 and 2, respectively. The
dead insect study did not include small or medium larvae
infestations because preliminary work showed the detection
accuracy for these larval maturity levels was very low.

CONDUCTANCE AND FORCE M EASUREMENT

After insect maturity was estimated, kernels were pro-
cessed with the SKCS. The weight, MC, hardness, and
diameter measurements that the SKCS automatically com-
putes were saved for analysis. Additionaly, the SKCS
software was set to save the conductance and force signals of
each kernel for off-line analysis. The SKCS digitizes the
voltage acrossthe kernel at arate of 4000 Hz while the kernel
is being crushed, but only every fifth data point is actually
stored. Data acquisition is triggered by the compression

Table 1. Number of kernels used from each insect —wheat class
combination for liveinsect detection experiment.

Rice Rice L esser L esser
Weevil -  Weevil - Grain Borer - Grain Borer -

Insect Maturity ~ HRwId SRW HRW SRW
Small larvae 113 101 106 112
Medium larvae 111 101 103 104
Large larvae 122 110 105 125
Pupae 113 109 106 129
Sound 343 352 350 340

[d HRW = Hard Red Winter Wheat; SRW = Soft Red Winter Wheat.

Table 2. Number of kernels used from each insect - wheat class
combination for dead insect detection experiment.

Rice Rice L esser L esser
Weevil -  Weevil - Grain Borer - Grain Borer -
Insect Maturity ~ HRWIA SRW HRW SRW
Large larvae 73 93 105 111
Pupae 131 133 115 126
Emerged 141 134 141 134
Sound 316 392 375 375

[d HRW = Hard Red Winter Wheat; SRW = Soft Red Winter Wheat.
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force exceeding a factory-set threshold. A kernel remains
between the crescent and rotor of the SKCS for approximate-
ly 150 ms while it is crushed, so each conductance signal
contained 135 to 140 points. The force is digitized at 4000
Hz, and every point is saved, so each profile had approxi-
mately 675 to 700 points.

For the live insect study, the MC of the sound kernels
removed from the insect rearing jars averaged 12.0%, as
computed by the SKCS. For the dead insect study, the kernels
averaged 10.9% MC at the time of processing, as computed
by the SKCS. After processing half of these kernels, the other
half were tempered up to an average 13.0% MC before
processing in the SKCS. Kernels at these two MCs were
studied to determine the effect of varied MC on the force
signals for detecting kernels with dead infestations.

PROCESSING OF CONDUCTANCE SIGNALS
FOR LI1VE INSECT DETECTION

Figure 1 displays typical conductance signals acquired in
this study for infested and un-infested kernels of various MC.
In the SKCS, a kernel acts as one resistor in a two-resistor
voltage divider circuit (Martin et al., 1993). Conductance is
monitored by measuring the voltage across the kernel. A
low-voltage measurement corresponds to low-kernel resist-
ance, which istypical of high-MC kernels. If aliveinsect is
present inside akernel, there will likely be alarge downward
dope in the conductance signal, as shown in figure 1. This
rapid voltage drop is probably caused by high-moisture
insect parts and fluid (hemolymph) coming into contact with
the crushing rotor or crescent and drastically lowering its
resistance. Occasionaly, adry non-infested kernel will have
a sharp peak in its conductance signal that will include a
downward dlope of similar magnitude caused by insects.
However, these slopes always occur at levels greater than the
initial voltage level acrossthe kernel. Thissignal characteris-
tic isshown in figure 1, which displays typical conductance
signals from several types of kernels. Furthermore, the range
of voltage levels in the conductance signal, when computed
as the difference between the initial voltage level and the
minimum voltage level, will be low for sound kernels of all
MC levels and much higher for kernelsinfested with insects.
Thus, a program was written to read all stored conductance
signals, and compute the maximum downward gradient
value and the range of voltages. Gradient was computed
using equation 1 and voltage range computed using equa-
tion 2.

. _ \/X __\/X'Flif \/X < \4) (1)
Grad'e”t‘{ 0if Vi > Vo
Range = Vg —Vmin 2

Voand Vmin are the initial and minimum voltages measured
across the kernel, respectively. Vy, Vy+1 are the voltages of
sampled points x and x+1, respectively. When Vy was greater
than Vo, the gradient values were set to zero since these
gradients were due to peaks in the conductance signal from
dry kernels.

PROCESSING OF FORCE SIGNALS FOR DEAD
AND EMERGED INSECT DETECTION

Figure 2 displays typical force signals acquired in this
study for infested and un-infested HRW and SRW wheat
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Figure 1. Typical conductance signals obtained in thisstudy askernelsare
being crushed in the SKCS 4100.

kernels. The duration of each crush force signal was
highly variable, mostly due to differences in kernel size. To
reduce this variability, al force signals were scaled to 128
points by fitting the original data to a fourth order, 9-point
Savitzky -Golay smoothing filter (Press et al., 1992) and
using this mathematical fit to estimate the force magnitude
of the scaled signal at each of 128 equally spaced points. This
processing gave some consistency in location of peaks
among all force signals. If adead insect was present inside the
kernel, or if the insect had emerged from the kernel, the
magnitude of the first peak, and upward slope to the first
peak, tended to be lessthan if the kernel was not infested. The
dlopes and magnitudes of the force signals are quite different
for SRW and HRW; however, differencesin force signals for
sound and insect infested kernels can be seen within each
wheat class. The first peak always occurred in the first
40 points of the scaled force signal and most of the useful
features for distinguishing insect-infested kernels from
non-infested kernels were found in the first 40 points.

To detect insect-infested kernels, the following three
features were extracted from the first 40 pointsin the scaled
force signal: maximum upward gradient (as computed by
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Figure 2. Typical crush force signalsobtained in thisstudy askernelsare
being crushed in the SKCS 4100.
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eg. 3), maximum downward gradient, and maximum crush
force.

Crush force gradient = F¢_1— Fx+1 (3)

Fx-1and Fx4+1 are the crush force magnitudes at points x-1
and x+1, in analog to digital (A/D) counts.

The integration value for every point, from its location to
the start of the signal, was saved for atotal of 128 features of
this type. The scaled signal was al so further smoothed by an
11-point box-car moving average filter. All points in the
smoothed averaged signal were saved as potential features.
In addition, parameters normally computed for each kernel
by the SKCS were used as potential discriminating features.
These parametersinclude: maximum crush force in the entire
signal, kernel weight, kernel diameter, MC, and hardness
index (Martin et al., 1993). A total of 264 features were
extracted from each force signal.

Discriminant analysis was used as the classification
procedure (Huberty, 1994). Features used to perform classifi-
cations were selected by performing an exhaustive search,
using al possible combinations of one, two, three, and four
individual features from the 264 feature data set. Classifica-
tion using both pooled and non-pooled covariance matrices
were tested. The Mahalanobis distances were computed from
each kernel to the insect-infested and sound kernel groups.
A kernel was classified into the group with the lowest
corresponding Mahalanobis distance. To minimize the
number of false positive errors, the prior probabilities for
infested and sound kernels were set at 5% and 95%,
respectively. The sample means and covariance matrices for
each group were computed using half of the samples,
randomly selected. The feature set that obtained the lowest
classification error rate on the other half of the samples was
recorded. This procedure was run separately for HRW and
SRW samples to obtain optimal classification accuracies for
each class.

ADDITIONAL SAMPLE SETS FOR FALSE POSITIVE TESTING

In addition to the sound kernels picked out from the insect
colonies, atotal of 12,900 SRW and 14,400 HRW kernels, of
various varieties, were collected from commercial farms
shortly after the 2001 and 2002 harvests so they could be
assured of not containing any internal infestations. These
kernels wererun in the SKCSin sets of 300 (43 setsfor SRW
and 48 sets for HRW), as is the normal operating procedure
for the SKCS. The SRW kernels came from either Missouri
or Arkansas and the HRW kernels came from either Kansas,
Oklahoma, or Colorado. The MC of these samples ranged
from 9.8% to 13.3% for SRW and 9.0% to 14.25% for HRW.
The SRW varieties included 3235, Ernie, Madison, 9663,
Pat, Roane, and Sisson. The HRW varieties included Pioneer
2137, 2163, 2174, Custer, Jagger, Karl, Millennium, Neeley,
Proghorn, Rampart, and Wesley.

The effect of MC of sound kernels was tested by tempering
sets of 25 HRW kernels and SRW kernels (unknown
varieties) up to 14%, 16%, 18%, and 20% MC to determine
if high MC decreased classification accuracy.

None of these additional samples were used in the
development of the classification algorithms. They were only
used for testing the final classifiers.
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REsuULTS AND DiscussioN
CLASSIFICATION OF LIVE INSECT INFESTATIONS
FROM CONDUCTANCE SIGNAL FEATURES

Figure 3 displays a scatter plot of all maximum gradient
values and voltage ranges in the conductance signals from all
kernels removed from the rearing jars. The elipse with a
solid boundary is a 99.90% prediction interval for sound
kernels of al MCs. Since it is important to minimize
false-positive errors (sound kernels classified as infested), a
99.99% prediction ellipse was computed and al data points
falling outside this ellipse were classified as insect infested.
As such, afalse-positive classification error of 0.01% can be
expected with this method. There were two false-positive
errors made when this classification scheme was applied to
the 27,300 sound kernels not used in the classification
algorithm development, a 0.01% false positive error rate.
Live insect detection results for each insect-whest class
combination are shown in figure 4. Higher classification
accuracy is obtained for more mature insects. This result is
expected given that insect size increases with maturity.
Average classification accuracy for all infested kernels from
both whest classes were 24.5% for small larvae, 62.2% for
medium larvae, 87.5% for large larvae, and 88.4% for pupae.
The best classification results were obtained for HRW
infested with rice weevils. Generally, HRW had better
classification results than SRW, and more rice weevil
infestations were detected than lesser grain borer infesta-
tions. Rice weevils are alarger insect than lesser grain borers,
thus insect or tunnel size may have been a factor in their
higher detection rate. Additionally, HRW may break apart
more suddenly than SRW, causing insect hemolymph to
contact the SKCS rotor or crescent more abruptly, leading to
larger gradients in the conductance signals. However, more
study would be needed to confirm whether the differencesin
detection accuracies between wheat classes and insect
species are indeed significant. Analysis of variance of the
means of kernelsinfested with insects at each maturity level
and sound kernels found that wheat class, kernel MC, and
insect species did not cause any of the means for maximum
gradient or voltage range to be significantly different at the
95% confidence interval. Means of tempered sound kernels
with high MCs were not significantly different than means of
sound kernels that were pulled from the incubation jars. Only
insect maturity caused significantly different means. In all
cases, kernels infested with insects beyond the small larval
stage had significantly different means than sound kernels at
the 95% confidence interval. Kernels infested with small
larvae did not have significantly different means than sound
kernels at the 95% confidence interval.

The low of afalse positive rate with this method indicates
that for 300 kernel samples, only 3% would have one false
positive kernel and only 0.04% would have two false
positives kernels (assuming a Poisson distribution of false
positive errors). Thus, if one kernel in a300 kernel sampleis
classified as insect infested, one can be 97% confident that it
isin fact due to a kernel infested with alive insect.

CLASSIFICATION OF DEAD OR EMERGED INSECT
INFESTATIONS FROM FORCE SIGNAL FEATURES

Similar features were selected to detect insect infestations
using force signals in HRW and SRW. The discrimination
features chosen are listed below:

APPLIED ENGINEERING IN AGRICULTURE
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Figure 3. Scatter plot of maximum downward gradient and range of vol agesin conductance signalsfrom all kernels.

e HRW: maximum upward slope in first 40 data points, in-
tegration of the first 20 points, and 10th point of the box-
car averaged signal.

e SRW: maximum upward slopein first 40 data points, and
10 point of the box-car averaged signal
All these features are associated with the energy required

to first crack the wheat kernel. Thisenergy islessfor infested

kernels than uninfested kernels. Inclusion of parameters that
are normally computed by the SKCS (i.e. kernel weight,
hardness, moisture, diameter), were not found to improve
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classification results. Unpublished results indicate that if the
diameter and weight measurements were more precise, then
they would be very helpful for classification of infested
kernels. For both SRW and HRW wheat, discriminant
functions with non-pooled covariance matrices gave better
classification accuracies than functions using pooled covari-
ance matrices.

The overall classification accuracies for HRW were 41%
for large larvae, 46% for pupae, 67% for emerged infesta-
tions, and 99.4% for the sound kernels pulled from the rearing
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jars. Overall classification accuracies for SRW were 78% for
large larvae, 83% for pupae, 78% for emerged infestations,
and 99.9% for sound kernels pulled from the rearing jars.
Figure 5 shows the insect-infested kernel detection rates for
both HRW and SRW wheat classes, each insect, and all
maturity levels. As can be seen from figure 5, dead and
emerged insect detection rates are higher for SRW than HRW
and detection rates were higher for rice weevil than lesser
grain borer. Insect maturity does not appear to affect insect
detection rates in SRW as much as they do in HRW. This
finding might be due to more gradual breakage of the kernel
in SRW, which might also explain the overall higher
detection rates for SRW. Moisture content of sound kernels
did not appear to affect false positive error rates when MC
was below 14%. However, false positive errors increased for
kernel MCs above 14%. Of the tempered kernels elevated to
high MC, there were no false positive errors for the 14% MC
kernels but false positive errors for 16% MC kernels
increased to 36% for SRW and 4% for HRW. False positive
errors for the 18% and 20% MC kernels were 36% and 76%
for SRW, respectively; and 20% and 60% for HRW,
respectively. Fortunately, these errors should not be a
problem for properly stored grain where the MC is generally
below 13.5% (Christensen and Sauer, 1982).

All results reported are based on prior probabilities
(probability of infestation in a random sample) of 5% for
insect infestation and 95% for sound kernels. Figures 6 and
7 display response operating curves to show the effect of
different prior probabilities on classification results. False
negative error rates for both SRW and HRW rise very rapidly
for insect prior probabilities below 5%, with little improve-
ment in false positive error rates. Raising the prior probabili-
ties of insect infestation from 5% to 10% does greatly
improve recognition of insect damage in HRW but also
greatly increases false positive errors.

The SRW discriminant function can be used for cases
where wheat classes are mixed. The false positive error rate
for HRW classified by the SRW calibration was 0.1%. The
detection rate of infested HRW kernels when using the SRW
calibration is reduced, however. Overall classification accu-

racies for HRW when using the SRW discriminant function
were 20% for large larvae, 36% for pupae, and 57% for
emerged infestations. If the HRW algorithm is used for SRW,
the false positive error rate would be greater than 5%, as
many uninfested SRW kernels have similar force signals as
infested HRW kernels.

Low false positive error rates are required to estimate
insect infestations in wheat. The USDA limit of 32 infested
kernels in a 100-g sample (approximately 3000 kernels)
corresponds to an infestation rate of dightly over 1%, or three
kernelswithin a 300-kernel sample. In order to have a chance
at estimating infestation levels, the false positive detection
rates need to be much lower than the incidence rate for the
defect to be detected. Otherwise, inspection of very large
samples would be required. Using the devel oped algorithms,
fase podtive error rates for the 12,900 SRW and
14,400 HRW kernels, which were not included in the
discriminant analysis training, were 0.17% for SRW and
0.51% for HRW. The average number of false positive
kernels for all 300 HRW kernel samples setswas 1.5 kernels
with a standard deviation of 1.69 kernels. From this data, it
can be expected that 95% of all 300-kernel sets would have
less than or equal to five sound kernels classified as insect
infested and 99% of all 300-kernel sets should have lessthan
or equal to seven false positive kernels. For SRW, 95% of all
300-kernel sets should have less than or equal to two false
positive kernels and 99% should have less than or equal to
three false positive kernels. This result indicates that
detection of insect infested samples at or below 32 infested
kernels per 100 g is possible with a 300-kernel sample for
SRW but alarger sample would give better confidence in the
result, and a larger sample would be necessary for HRW.
Analysis of variance found that there were no significant
differences, at the 95% confidence level, in mean error rates
for different varieties, year of harvest, MC, or hardness of
these kernels.

Classification results obtained from the SKCS data
compare favorably with x-ray imaging and near-infrared
spectroscopy methods used to detect internal insects. Human
examination of x-ray films is a more accurate method of
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Figure 6. Classification response operating curve for soft red winter
wheat (SRW).

detecting infested kernels at all maturity levels but can have
fase-positive errors of 1.0% or higher (Haff, 2001).
Computer algorithms to automatically scan x-ray images
have similar recognition rates as the SKCS for insect-in-
fested kernels but have higher false-positive rates, about
7.4% (Haff, 2001). Near-infrared spectroscopy methods also
suffer from false positive errors and, additionally, kernel
orientation problems (Ghaedian and Wehling, 1997). Both
X-ray imaging and near-infrared spectroscopy methods have
the advantage that they are non-destructive. However, the
false poditive error rates using these other technologies would
require the use of very large sample sizes for detection of low
incidence levels of insect-infested kernels.

CONCLUSION

The method developed for detecting wheat kernels with
internal insects appears to be very accurate for kernels
infested with live insects at the large larvae or pupal stages.
Detection accuracy for live infestations averaged 88% for
large larvae and pupa stages with the false positive error rate
at 0.01%. This method should be useful for detecting live
infestations in commercial samples where the rate of
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Figure 7. Classification response operating curve for hard red winter
wheat (HRW).
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infestation is as low as 1 kernel in 300, or 10 kernelsin a
100-g sample. The method for detecting dead insect
infestations is moderately accurate for kernels infested with
dead or emerged insects. |mplementation of the method does
not require any hardware changes to the SKCS, just
additional software to process the conductance and force
signals. While insect detection rates of the method are not as
high as inspection of x-ray films with a magnifying glass, it
israpid and comparable to, or better than, existing automatic
detection methods and does not suffer from high false-posi-
tive results. This finding holds true for inspection of wheat
under all reasonable MC.
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