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ABSTRACT
As popularity in whole grain near-infrared (NIR) analyzers has increased
in the past ten years, so too has an interest in using this technology at the
level of a single kernel of grain. This additional information can contribute
to the revamping of U.S. grain standards so that more emphasis is placed on

end-use gquality. Research on the optical properties of single kernels of
wheat has been underway in USDA laboratories at Beltsville, Maryland and
Manhattan, Kansas. At Beltsville, single kernel research has consisted of

wheat hardness, classification, and protein content by NIR transmittance,
protein content and classification by NIR reflectance (1100-2500 nm), protein
content of bulk samples by mathematical combination of single kernel protein
predictions, and identification of scab-damaged kernels by hyperspectral image
analysis. At Manhattan, single kernel NIR research has included refinement of
the reflectance procedure to identify difficult-to-classify red and white
kernels, prediction of protein content, detection of internal insect larvae
infestation, detection of wheat scab, detectiéon of wvitreous kernels, and
detection of heat damage, with all performed at near real-time conditions of
the single kernel wheat characterization system (SKCS). These studies are
discussed in <context of their ramifications to official grading and
classification, and to quality assessment through knowledge of kernel-to-
kernel wvariability of intrinsic properties.

SPEAKER PAPER

Introduction
Single kernel analysis of wheat gained interest in the 1980s with the
desire for improving official classification procedures. At the time, the

measurement of wheat hardness on a single kernel (SK) basis was considered
useful for assignment of wheat class, and especially for detecting mixtures
consisting of more than one contrasting hardness class. Ensuing from this
need, the single kernel characterization system (SKCS) was developed by USDA-
ARS engineers in Manhattan, Kansas (Martin et al. 1993), and 1later
commercialized by Perten Instruments. The SKCS provides information on the
hardness, moisture content, weight, and size of each kernel from a sample of
300 kernels. Because the hardness measurement is based on the force of crush,
the method is destructive. Although some research on the use of near-infrared
(NIR) spectroscopy for single seed analysis had been conducted on corn and
soybeans (Finney and Norris 1978, Lamb and Hurburgh 1991, Orman and Schumann
1992), many of the advances of SK NIR research have occurred since the
development of the SKCS. This is particularly true for wheat. With increased
availability of diode array NIR spectrometers that are capable of collecting a
spectrum in less than 1 second, researchers have seen the potential of
coupling an NIR probe to the front end of the SKCS and operating this tandem
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device at a rate of 1 to 2 kernels per second. Coincident with this event has
been a general increased interest in rapid nondestructive single seed analysis
for use as a screening device for intrinsic properties analysis of breeders'
lines and a means to spot check identity preserved lots. In the following
sections, we offer descriptions of SK NIR wheat research performed in the past
8 years. However, before these are offered, more detail is provided on the
need for SK properties assessment and potential use of NIR in such assessment.

Why Single Kernel Analysis?

Classification and Grading - U.S5. wheat is divided into six unique classes:
hard red winter (HRW), hard red spring (HRS), soft red winter (SRW), hard
white wheat (HWW), soft white wheat (SWW), and durum. For a lot to be

classified into one of these six, at least 90% of the seed (from a dockage-
free work sample that has been repetitively divided down to a 15 g portion)
must be of one class. Otherwise, the lot 1is classified as mixed, or
infrequently, wunclassed. In either case, the 1lot's wvalue is usually
discounted. Further, wheat is graded into six levels: U.S. No. 1 (highest
value) to U.S. No. 5, and U.S. Sample grade (lowest value). Each grade
carries maximum allowable percentages of damaged kernels, foreign material,
and shrunken and broken kernels (Table I}). Grade is also based on the
percentage of wheat from "contrasting classes." An example of two contrasting
classes is hard white wheat and hard red winter wheat. Current USDA-GIPSA
procedures for classification and grading a grain 1lot involve the manual
(visual) inspection of a 15 g portion derived, through splitting, from
systematic sampling of the grain lot itself. A typical inspection requires 10
to 15 minutes. Many of the categories that define damaged kernels and wheat
from contrasting classes (as shown in Fig. 1) are amenable to NIR analysis.

Table I. Abridged List of Grade Requirements for U.S. Wheat"

Maximum Limits in Percent by Weight

A B C D E F

Grade Damaged Foreign  Shrunken Defects Contrasting  Total Wheat

Kemels  Material or Broken (= A+B+C) Classes of Other

Kernels Classes

U.S. No. 1 2.0 0.4 3.0 3.0 1.0 3.0
U.S. No. 2 4.0 0.7 5.0 5.0 2.0 5.0
U.S. No. 3 7.0 1.3 8.0 8.0 3.0 10.0
U.S. No. 4 10.0 3.0 12.0 12.0 10.0 10.0
U.S. No. 5 15.0 5.0 20.0 20.0 10.0 10.0
Sample Exceeds Limits for U.S. No. 5

® Source: USDA/GIPSA/FGIS Grain Inspection Handbook: Book II: Wheat (6/1/97).

Identification of infected kernels - Kernels that are moldy not only
contribute to the downgrading of wheat but also, if present in high enough
number, may cause the concentration of an accompanying mycotoxin within the



flour or ground grain to exceed recommended or mandated food safety limits.
For example, the U.S. Food and Drug Administration (FDA) has established
advisory levels for the concentration of deoxynivalenol (DON) of 1 ppm for
finished wheat products for human consumption, 5 ppm for grain products
destined for non-ruminant animals, and 10 ppm for grain products destined for
ruminant animals and poultry. Conventional analytical procedures such as
enzyme-linked immunosorbent assay (ELISA) tests are used for mycotoxin
analysis. NIR instrumentation is generally not sensitive in the range of
parts per million; however, mold-damaged kernels are typically much higher (by
a factor of 100 or more) in concentration of the mycotoxin. Thus the NIR
signal-to-noise from the mycotoxin in an infected kernel may be sufficiently
strong for detection. Likewise, the mold itself may be detectable by NIR.
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Figure 1. Features that determine the grade of U.S. wheat.

Quality properties and their degree of variation - Knowledge of the properties
from individual kernels is potentially useful to processors because it
provides a gauge of the consistency of the raw product. Kernel-to-kernel
properties variation is caused at all stages of the growth and post harvest
handling, that is, from the individual head to the blending operations at the
country elevator and beyond. While variation in kernel hardness is commonly
known to have an effect on milling properties, much less is known about
whether variation in the intrinsic properties (e.g., protein, starch) has an
effect on the processing characteristics or the quality of the final product.

Sorting - At the commercial level in the United States, single seed sorting
based on visible light is currently used in the peanut and rice industries for
removing moldy, damaged, and discolored seeds. Although probably not needed
in commercial wheat processing, SK wheat sorting has application in plant
breeding programs. Nondestructive SK analysis of the trait wupon which
selection is being made has the potential for hastening the development of new
lines. For example, Silvela (1989) demonstrated that selection based on
single kernel analysis was more efficient than conventional (whole plant)
analysis when breeding for high oil corn. 1In the past few years a commercial
instrument known as the Seed Meister (Brimrose Co., Baltimore, MD) has been
marketed for the sorting (up to six bins) of corn, soybeans, peanuts, and



seeds of similar size, according to their levels of oil, protein, moisture,
and starch contents.

Advances in Hardware Technology

Until slightly more than 10 years ago, NIR instruments could be grouped
into two categories, filter-based and scanning monochromators. In the first
category, between 5 and 25 narrow band-pass filters were commonly used in an
instrument, with the selection of the pass band for each filter dependent on
the analyte (e.g., protein, moisture, o0il) of interest. Later modifications
of the filter design such as tilting the filter several degrees with respect
to the optical axis permitted the collection of radiation at wavelengths
shifted from the pass band. In the second category, moving gratings, moving
prisms, or their combination were used to disperse radiation into a continuum
across the NIR region, whereupon the reflected or transmitted energy was
sensed at uniform wavelength increments by a stationary detector. With either
category, collection time for a spectrum was typically 30 to 60 seconds. With
the advent of diode array detectors, acoustical-optical tunable filters,
liquid crystal tunable filters, and Fourier transform NIR spectrometers, the
time needed to collect a spectrum has dropped substantially (albeit at the
expense of increased noise). Diode array data collection times of 0.5 to 1
second yield spectra from individual wheat kernels that are suitable for the
macro constituents such as protein and moisture contents (Psotka et al. 2000),
color (Dowell 1998), and internal insect detection (Dowell et al. 1998).

Advances in Software

Coincident with the increase in performance of the personal computer, NIR
calibration equations have increased in capability (and complexity). Scle
reliance on multiple linear regression analysis has given way to principal
component regression, partial least squares analysis, locally weighted
regression, and artificial neural networks. Although wusually applied to
transmittance or reflectance spectra of intact or ground bulk samples, each
technique is also applicable to SK analysis.

Recent Single Kernel NIR Studies

Hardness

Delwiche (1993) examined the relationship between wheat hardness and NIR
transmittance (850-1050 nm) of single wheat kernels. Working with the same
set of reference standards as used in defining the NIR reflectance hardness
scale (RACC 2000) (from which the SKCS hardness scale is based), Delwiche
determined that SK NIR transmittance was sensitive to wheat hardness to the
extent of the correlation between hardness and vitreousness. Soft wheat,

which tended to show greater variation in vitreousness from kernel to kernel,
also showed greater variation in hardness as predicted by NIR transmittance.
It was thought that transmittance readings were not directly sensitive to the
low-molecular weight proteins that, in action with the starch granule surface
determine hardness.

Protein Content

Using the SK transmittance procedure, Delwiche (1995) developed PLS
equations for protein content (N x 5.7) of single wheat kernels. Whole kernel
combustion was used as the reference method. With separate calibrations
developed for each of the six U.S. market wheat classes, the standard error of
performance (SEP) ranged from 0.4 to 0.9% protein on test sets that possessed



standard deviations of reference protein ranging from 1.3 to 2.4%. A drawback
of this procedure was the care needed in hand alignment of the kernel placed
within a neoprene aperture. careful alignment was needed to minimize stray
light (caused by an imperfect light seal) from reaching the detector.
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Figure 2 Single kernel reflectance assembly for a bench top analytical spectrometer.

Single kernel reflectance was later considered as an alternative to SK
transmittance for protein content measurement (Delwiche 1998). Kernel
alignment in a reflectance measurement (Fig. 2) was not as critical as in a
transmittance measurement, making SK reflectance more suitable for automation.
More than 300 commercial wheat samples, representing five U.S. classes (durum
excluded) were used to develop protein content models, based on reflectance
(1100-1400 nm). Model performance (shown for HWW in Fig. 3), with SEP ranging
from 0.46 to 0.72% protein (depending on wheat class), was similar to
corresponding SK transmittance models. One surprising result was that it was
possible to develop calibrations that involved all five wheat classes
simultaneously, without 1loss in model accuracy. Based on a test set of 10
kernels from each of 168 independent samples from the five classes, the SEP
was 0.54% protein. The time needed for scanning a kernel (about 20 seconds),



while reasonable for analytical work, was considered toc long to be practical
for use in commerce. Psotka et al. (2000) recently demonstrated the ability
of a diode array spectrometer to measure SK protein content at scan rates of
approximately 1 kernel per second.
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Figure 3. Example of model performance for single kernel NIR reflectance protein content.

Delwiche and Hruschka (2000) wused the single kernel spectra from
Delwiche's (1998) study to demonstrate the ability to develop models for
prediction of the average protein content of a bulk sample, using weighted
averages of single kernel spectra. By examining the sources of error, they
found that the average of 100 single kernel protein measurements provided
comparable performance to a conventional bulk sample NIR instrument.

Classification

Since the early 1990's, several researchers have examined the potential
of visible or NIR SK spectroscopy for wheat classification, with particular
interest in distinguishing red and white wheat. NIR research on red vs. white
has been underway in Australia (Ronalds and Blakeney 1995), Canada (McCaig et
al. 1993), and the United States (described below).

In the United States, red wheat and white wheat represent contrasting
classes and therefore are subject to the rules of grading mentioned above. On
a test set of 1590 SK spectra that represented 192 red wheat samples and 126
white wheat samples drawn from a market survey of U.S5. wheat from one year's
harvest, Delwiche and Massie (1996) demonstrated that SK reflectance in the
550 to 800 nm region could achieve classification accuracies in excess of 96
percent. Although longer wavelength regions were examined, the indicated
region was most successful, attesting to the sensitivity of this region to the
pigmentation of the seed.



From the genetic standpoint, white wheat occurs when all three of the
alleles responsible for seed coat color are recessive. The red condition
occurs in the presence of at least one dominant R allele, and intensifies with
the presence of additional dominant R alleles. Visual identification of color
is hampered by kernel disease, weathering, and excessive rain. For difficult
to classify kernels, soaking in 5% (w/v) solution of NaCH and blotting kernels
dry before visual or NIR analysis improves classification success (Dowell
1997). With soaking, Dowell was able to lower the misclassification rate for
difficult to classify kernels to 2%, based on the reflectance (400-700 nm) of
hand-oriented kernels. When the same spectrometer was used in a semi-
automated mode of kernel placement (four seconds per randomly oriented
kernel), the misclassification rates were still very low (<1%) but the
complexity of the NIR models increased, as more PLS factors were used (Dowell
1998). Additional work at Dowell's laboratory on red vs. white classification
was performed by Wang et al. (199%a,b,c). By developing separate two- to
four-class PLS-based models for the number of dominant R alleles, Wang et al.
(1999a) determined that classification was most difficult when attempting to
distinguish 1R and 2R genotypes. Kernel size wvariation also adversely
affected model accuracy, though with first or second derivative spectral
pretreatment, the model's sensitivity to the size effect was reduced (Wang et
al. 1999c).

Mold

Dowell et al. (1999) used a SK probe to measure concentrations of DON and
ergosterol (an indicator of fungal invasion) within individual wheat kernels.
GIPSA's Board of Appeals and Review first categorized the kernels as being

scab-damaged or sound. Sound kernels were further divided into two groups:
those with no visible scab and those with slight scab, whose levels were not
sufficiently high to meet GIPSA's criterion for scab damage. Referenced to

HPLC-determined concentrations of DON, the NIR PLS models identified more
kernels with DON than did visual inspection. The standard error of 40 ppm for
the PLS model of DON was well below the average DON concentration (105 ppm) by
reference analysis of the scab-damaged kernels. This suggests that the NIR
probe is more sensitive to scab detection than visual inspection.

Recently, Delwiche and Kim (2000) reported on the detection of scab-
damaged wheat kernels by machine vision. A custom-made hyperspectral (425-860
nm at 3.7-nm intervals) imaging system gathered images of non-touching kernels
from three HRS wheat varieties ('Grandin', ‘'Gunner', and 'Oxen'). Thirty-two
normal and 32 scab-damaged kernels were selected to represent each variety.
From a search of wavelengths that could be used to differentiate the two
classes (normal vs. scab), a linear discriminant function was constructed from

the best R(wavelengthl)/R(wavelength2), based on the assumption of a
multivariate normal distribution for each class and the pooling of the
covariance matrix across the two classes. For a function developed using all

three varieties, the ratio R(568 nm)/R(715 nm) produced a misclassification
error (determined by cross validation) that averaged between 2 and 17%,
depending on wheat variety. Figure 4 shows the ratio image of the most well
behaved variety (Grandin), for which only 1 of 64 kernels was misclassified.
When modeling was limited to one variety at a time, the misclassification
error (averaging O to 12.5%, depending on variety) was less. Figure 5 shows
the best ratio, R(605 nm)/R(733 nm), that was associated with a one-variety
model for Grandin, for which perfect classification was attained. The variety
(Gunner) that was most difficult to categorize by visual analysis was also the
one with the highest misclassification error. With expansion to the testing



of more varieties, a two-to-four wavelength machine vision system appears
be a feasible alternative to manual inspection.

Figure 4. Image formed as the ratio of reflectance images at two wavelengths, R(h1) / R(A2). Starting at top of
image, rows alternate between sound and scab-damaged kernels. 2, = 568 nm, A; =715 nm.
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Figure 5. Ratio of reflectance images at two wavelengths, R(A;) / R(Az). Horizontal line represents the boundary
between sound (normal) and scab-damaged kernels.
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Internal Insects

Post-harvest grain losses caused by pests and poor storage practices
total more then $1 billion per year in the U.S. Grain 1is inspected for the
presence of insect damage and adult insects, but insect larvae inside kernels
are not visually detectable. If wheat containing hidden insects is stored,
the larvae will emerge as adults and further degrade the quality of the wheat.
If the wheat is milled with hidden insects, then they will contribute to
insect fragments in flour. Dowell et al. (1998) used an automated single
kernel NIR system to detect the presence of hidden insects in wheat. They
showed that larger larval growth stages {3rd and 4th instars) of angoumois
grain moth, lesser grain borer, and rice weevil could be detected with 95%
confidence. Figure 6 shows the ability of the NIR system to detect hidden
insects and predict the larval size.
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Figure 6 Size of larvae within a wheat kemel: NIR-predicted vs. actual size.

Vitreous Kernels

The vitreousness of durum wheat is used by the wheat industry as an
indicator of milling and cooking quality. The current visual method of
determining vitreousness 1is subjective and classification results between
inspectors and countries vary widely. Thus, the use of near-infrared (NIR)
spectroscopy to objectively classify vitreous and non-vitreous single kernels
was investigated by Dowell (2000). Results showed that classification of
obviously vitreous or non-vitreous kernels by the NIR procedure agreed almost
perfectly with inspector classifications. However, when difficult-to-classify
vitreous and non-vitreous kernels were included in the analysis, the NIR
procedure agreed with inspectors on only 75% of kernels. While the
classification of difficult kernels by NIR spectroscopy did not match well
with inspector classifications, this NIR procedure gquantifies vitreousness and
thus may provide an objective <classification means that could reduce
inspector-to-inspector wvariability. Classifications appear to be due, at
least in part, to scattering effects and to starch and protein differences
between vitreous and non-vitreous kernels.



Future Work .

single kernel NIR research continues at the USDA Manhattan and Beltsville
laboratories. Grade-determining factors, such as heat damage (Wang et al.
2001), hold promise for their adaptability to NIR measurement. Recent work in
Manhattan has demonstrated the applicability of SK NIR to the detection of

fumonisin in corn (Dowell et al. 2001). Infected kernels having greater than
100 ppm fumonisin or healthy kernels with less than 10 ppm fumonisin are most
easily distinguished. At Beltsville, work continues on scab damage detection

by segmentation of individual kernels in hyperspectral images.
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