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Single Wheat Kernel Color Classification
by Using Near-Infrared Reflectance Spectra
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ABSTRACT Cereal Chem. 76(1):30-33

An optical radiation measurement system, which measured reflectance
spectra, log (1/R), from 400 to 2,000 nm, was used to quantify single
wheat kernel color. Six classes of wheat samples were used for this study,
including red wheat that appears white and white wheat that appears red.
Partial least squares regression and multiple linear regression were used
to develop classification models with three wavelength regions, 500–750,
500–1,700, and 750–1,900 nm, and three data pretreatments, log (1/R),

first derivative, and second derivative. For partial least squares models,
the highest classification accuracy was 98.5% with the wavelength region
of 500–1,700 nm. The log (1/R) and the first derivative yielded higher class-
ification accuracy than the second derivative. For multiple linear regres-
sion models, the highest classification accuracy was 98.1% obtained from
log (1/R) spectra from the visible and near-infrared wavelength regions.

The color of wheat kernels, which varies from light yellow to
red brown, is influenced by the presence of red pigmentation in
the seed coat and by growing conditions. In a true-breeding culti-
var color does not vary and, thus, wheats can be consistently
classified as red or white (Evars and Bechtel 1988). These two
basic colors are commonly considered in the classification of wheat
for grading purposes. Red wheat and white wheat have different
milling, baking, and taste properties and different visual charac-
teristics (Paulsen and Heyne 1981, DePauw and McCaig 1988,
Bason et al 1995, Dowell 1997). In the world markets, a premium
may be paid for a particular color class on the basis of nutritional
and end-use values (Bason et al 1995, Ronalds and Blakeney
1995). The red seed coat in hexaploid wheat is controlled by three
separate genetic loci (R-A1, R-B1, and R-D1), and thus color can
vary among red cultivars (Metzger and Sibaugh 1970, Freed et al
1976, Anonymous 1995). Baker (1981) indicated that various com-
binations of red genes impart different shades of red to the geno-
types. Flintham (1993) reported that the degree of red pigmenta-
tion increased with the number of red genes (one to three). Thus,
the number of genes can make some light red cultivars and single
red gene wheats difficult to distinguish from white wheat. In ad-
dition to genetics, rain damage, which can “bleach” red wheat, soil
conditions, disease, and insect damage frequently cause variations
within each color class and affect the visual appearance of the ker-
nel. Therefore, red and white wheats are not always visually distin-
guishable. Currently, personnel of the U.S. Department of Agricul-
ture’s Grain Inspection, Packers, and Stockyards Administration
(GIPSA) visually examine wheat samples to determine kernel color.
Each inspector may use slightly different criteria to distinguish red
wheats from white wheats. This subjective method can result in
unreliable classification when the threshold between red and white
is not distinct. When misclassified, wheats from different color classes
may get mixed, resulting in lots of lower quality and value than the
pure lots.

Several methods to measure wheat color have been studied.
Kernels can be soaked in a solution of sodium hydroxide (NaOH)

to assist inspectors in determining color class. Genetically red
kernels tend to turn red after soaking, whereas genetically white
kernels tend to turn light cream in color (Quartley and Wellington
1962, Kimber 1971, DePauw and McCaig 1988, Dowell 1997).
Chen et al (1972) converted perceived color of wheat to a point in
a three-dimensional color space by using a colorimeter. Other meth-
ods quantify kernel color by measuring reflectance at many dif-
ferent wavelengths (Massie and Norris 1965; Hawk et al 1970;
McCaig et al 1992, 1993; Ronalds and Blakeney 1995; Delwiche
and Massie 1996). Typically, these researchers measured the color
of bulk samples and did not include kernels that were not obvi-
ously red or white. Quantifying the color of individual kernels is
necessary to determine whether a bulk sample has a mixture of red
and white wheat classes. Thus, some means of measuring single
kernel color, including kernels that are not clearly red or white, is
needed. The objectives of this research were to: 1) identify genet-
ically red and white wheat varieties on the basis of spectral char-
acteristics, and 2) determine the wavelengths that contribute to
wheat color classification.

MATERIALS AND METHODS

Six U.S. market classes of wheat, hard red spring, hard red
winter, soft red winter, hard white wheat, soft white wheat, and
durum, were supplied by USDA GIPSA (Kansas City, MO). Each
class was represented by six or seven cultivars. Twenty-five ker-
nels were randomly selected from each cultivar for a total of 150
or 175 kernels per class. In addition, 200 kernels were selected from
wheats determined to be difficult-to-classify as red or white by
USDA GIPSA. Most durum wheat in the United States is ge-
netically white. Red durum wheat is grown to a very limited ex-
tent for feed purpose only. Therefore, only white durum wheats
were used in this research. Samples originated from the 1993–
1995 crop years and are described by Wang et al (in press). All
samples were stored at ambient temperature in air-tight containers.

Single wheat kernel reflectance spectra from 400 to 2,000 nm at
2-nm intervals were collected with an optical radiation measure-
ment system, which was described by Wang et al (in press). How-
ever, only wavelengths within the 500-1,900 nm range were used
because poor sensor sensitivity and low energy levels resulted in
excessive noise outside this range. Thus, the wavelength regions
500–750, 500–1,700, and 750–1,900 nm were used to determine
single wheat kernel color class. Data were analyzed by partial least
squares (PLS) regression (Galactic Industries, Salem, NH) and
multiple linear regression (MLR) (SAS Institute, Cary, NC). Two-
class classification models were developed to determine genet-
ically red and white wheat kernels. The wheat samples were first
separated into calibration and testing sets. The calibration set con-
tained 450 randomly selected kernels with an equal number of red
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and white wheats. The testing set contained 675 kernels including
350 red kernels and 325 white kernels. Red and white kernels were
assigned constant values of 1.0 and 2.0, respectively. A kernel was
considered to be correctly categorized if the predicted value lay on
the same side of the midpoint of assigned values. Analyses were
conducted on the absorbance spectra, log (1/R), and on the first
and second derivatives of the absorbance spectra (Wang et al, in
press). For PLS, the model performance is reported as the mul-
tiple coefficient of determination (r2) and standard error of cross
validation (SECV) of each calibration. The number of factors used
for PLS models is the minimum required to give the maximum r2

value. For MLR, the STEPWISE method and the RSQUARE
method were used. The STEPWISE method was used to reduce
independent variables (wavelengths). After the STEPWISE process,
the RSQUARE method was used to find a model consisting of
independent variables that predict color classification with the
highest r2 value.

RESULTS AND DISCUSSION

Color Classification by PLS
Calibration equation statistics of PLS models and calibration

accuracies of the calibration sample set are summarized in Table I.
Among the wavelength regions, the 500–1,700 nm region tended to
give the best results. In this wavelength region, r2 values ranged
from 0.83 to 0.85 for three different data pretreatments. Also, the
SECV ranged from 0.19 to 0.21 for three different data pretreat-
ments. The average classification accuracy of the calibration sample
set in this region was the highest: 99.8, 98.9, and 98.4% for the
log (1/R), first derivative, and second derivatives, respectively.
The testing sample set gave similar results. These results indicate
that the wavelength region for wheat color classification should
not be limited to the visible region (400–700 nm), which is sup-
ported by the plots of the weight of PLS factors for log (1/R) (Fig. 1).
The first and second factors had a strong feature band at ≈500 nm,
which indicates that the wavelength region at ≈500 nm is the most
important for wheat kernel color classification. For the second
factor, the greatest weights occurred at 1,360, 1,660, and 1,860 nm.
For the third factor, a strong feature band occurred at 700–1,350 nm
and the greatest weights occurred at 1,460 and 1,930 nm. Those bands
and wavelengths with high weight indicate that some wavelength
regions in the near-infrared (NIR) region can be used for wheat
kernel color classification. However, the lowest r2 values, the

lowest classification accuracy, and the highest SECV generally
occurred with models developed with only the NIR region (750–
1,900 nm).

Among the data pretreatments, the r2 value for log (1/R) (r2 =
0.82) and the first derivative (r2 = 0.82) was significantly higher
(P < 0.05) than that of the second derivative (r2 = 0.69) in the
wavelength regions of 500–750 nm. Similar results were seen in
the 500–1,700 nm region. Also, as the level of pretreatment, from
log (1/R) to the second derivative, became more complex, the number
of PLS factors necessary to maintain values for r2 and SECV, com-
pared with those of less complex pretreatments, increased. Also,
more PLS factors were needed for the longer wavelength region (500–
1,700 nm) and the NIR region (750–1,900 nm) than for the visible
region (500–750 nm). More factors are likely needed because addi-
tional wavelengths are included in the longer-wavelength models.

The performances of PLS classification models on the testing
sample set are also summarized in Table I. The testing samples
include both obvious and difficult-to-classify kernels. The highest
classification accuracy (98.5%) was obtained from the first deriva-
tive in the wavelength region of 500–1,700 nm. Most misclassi-
fied kernels belonged to the difficult-to-classify category. This re-
sult compares favorably with the result achieved by Delwiche and

TABLE I
Calibration Equation Statistics and Testing Results of Partial Least Squares Models for Single Wheat Kernel Color Classification

Calibration Equation Statisticsa Testing Resultsb

Pretreatment Region (nm) Factorsc r2 Accuracy (%) SECVd n1 n2 Accuracy (%) SEPe

log(1/R)
500–750 3 0.82af 98.2 0.212 475 (3)g 200 (13) 97.6 0.30
500–1,700 8 0.85b 99.8 0.191 475 (2) 200 (9) 98.4 0.29
750–1,900 13 0.78c 96.0 0.237 475 (9) 200 (12) 96.9 0.34

First derivative
500–750 4 0.82a 98.4 0.214 475 (3) 200 (8) 98.4 0.31
500–1,700 7 0.85b 98.9 0.196 475 (2) 200 (8) 98.5 0.30
750–1,900 13 0.78c 96.0 0.237 475 (18) 200 (11) 95.7 0.33

Second derivative
500–750 11 0.69a 93.1 0.278 475 (18) 200 (23) 93.9 0.30
500–1,700 16 0.83b 98.4 0.210 475 (11) 200 (9) 97.0 0.30
750–1,900 16 0.79c 96.7 0.229 475 (17) 200 (10) 96.0 0.31

a For the calibration sample set, red wheat (n = 225) includes hard red spring, hard red winter, and soft red winter; white wheat (n = 225) includes hard white,
soft white, and  durum.

b For the testing sample set, n1 = number of obviously red and white kernels, 225, and 250, respectively; n2 = number of difficult-to-classify kernels, 125 and
75 for red and white, respectively.

c Number of partial least squares factors.
d Standard error of cross validation.
e Standard error of prediction.
f Values within a column followed by different letters are significantly different at P < 0.10.
g Parentheses show number of kernels misclassified.

Fig. 1. Important wavelength regions for single wheat kernel color classi-
fication as shown by the weight of the first three partial least squares factors.
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Massie (1996), who correctly classified ≈98% of the obvious red
and white kernels using a seven-factor PLS model over the visible
region of 500–750 nm.

The first derivative performed better on the testing samples in
the visible region. For example, with log (1/R), the classification
accuracy was 97.6%; when the first derivative was used, the
classification accuracy increased to 98.4%. In each data pretreat-
ment, the highest classification accuracy occurred in the wave-
length region of 500–1,700 nm. The classification accuracy was
lowest in the wavelength region of 750–1,900 nm, and the second
derivative also yielded the lowest classification accuracy among
different data pretreatments. However, even with the second der-
ivative, a classification accuracy of 97% was achieved in the 500–
1,700 nm wavelength region.

Although difficult-to-classify kernels are difficult to differen-
tiate visually, wheat kernel color is controlled by three red genes,
and the intrinsic properties related to red genes should be similar
for each wheat color class. Also, the reflectance spectrum in the
visible region represents mostly the surface properties of a measured
object, while the reflectance spectrum in the NIR region repre-
sents both surface and internal properties of a measured object. It
can be assumed that the spectral curve of each color class should
be similar in shape and that the effect of visible color variation for
each color class should be reduced in the NIR region. Therefore,

the accuracy of classifying difficult-to-classify kernels should be
improved by using both the visible and NIR regions. Table I sup-
ports the observation that, generally, more kernels were correctly
classified when NIR wavelengths were included.

Color Classification by MLR
Calibration equation statistics of six-term MLR models and clas-

sification accuracies of the calibration sample set are summarized in
Table II. The wavelengths used in each MLR equation were those
that produced the highest r2 and lowest SECV values for the calibra-

TABLE II
Calibration Equation Statistics and Testing Results of Six-Term Multiple Linear Regression Models for  Single Wheat Kernel Color Classification

Calibration Equation Statisticsa Testing Resultsb

Treatments Wavelengths, nm (coefficients) r2
Accuracy

(%) SECVc n1 n2
Accuracy

(%) SEP d

Log(1/R) 490 (3.257), 552 (−10.23), 918 (44.05), 0.86ae 99.6 0.191 475 (2)f 200 (11) 98.1 0.30
1,050 (−54.78), 1,212 (19.90),
1,422 (−3.008), (2.834)

First derivative 710 (402.80), 740 (321.60), 772 (341.73), 0.83b 98.7 0.209 475 (10) 200 (12) 96.7 0.31
952 (−432.80), 1,082 (−387.26),
1,112 (−368.18), (2.669)

Second derivative 756 (−9599.9), 784 (−23949), 810 (−22596), 0.80c 97.6 0.228 475 (11) 200 (21) 95.3 0.31
836 (−16508), 862 (−6650.3),
1,396 (−983.37), (2.768)

a For the calibration sample set, red wheat (n = 225) includes hard red spring, hard red winter, and soft red winter; white wheat (n = 225) includes hard white,
soft white, and durum.

b For the testing sample set, n1 = number of obviously red and white kernels, 225 and 250, respectively; n2 = number of difficult-to-classify kernels, 125 and 75
for red and white, respectively.

c Standard error of cross validation.
d Standard error of prediction.
e Values within a column followed by different letters are significantly different at P < 0.10.
f Parentheses show number of kernels misclassified.

Fig. 3. Log (1/R) (top panel), first derivative (middle panel), and second
derivative (bottom panel) absorption curves of tannin.

Fig. 2. Important wavelength regions for single wheat kernel color classi-
fication as shown by the coefficient of determination (r2) of single-term
regression.
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tion sample set. The wavelengths in MLR equations covered both the
visible and NIR regions. The important wavelength regions and wave-
lengths for single wheat kernel color classification with high r2 values
are shown in Fig. 2. The wavelength region at ≈500 nm had the
highest correlation with wheat kernel color. Correlation coefficients
at 1,460 and 1,930 nm also indicate a difference between red and
white wheats. While a complete interpretation of why these wave-
lengths were selected may not be possible, some insights can be drawn
by considering published experiments of NIR absorbers. Additionally,
the characteristic absorbance patterns of chemical compounds can be
studied by preparing spectra of pure compounds.

According to previous research (Miyamoto and Everson 1958,
Pomeranz 1988), phlobaphene, a type of condensed tannin, was iden-
tified as the red pigment in the wheat seed coat. To find the wave-
lengths related to red pigment, the absorbance spectrum of tannin
powder (C76H52O46; MW 1,701.21) (Eastman Kodak, Rochester,
NY) was measured from 400 to 2,000 nm. The spectral curves of
tannin with log (1/R), the first derivative, and the second derivative
are shown in Fig. 3. Some wavelengths of the tannin with a strong
absorption had a high correlation with wheat kernel color class. For
log (1/R), wavelengths of 446, 452, and 668 nm had a strong
correlation with wheat color class and yielded r2 values from 0.29 to
0.63 (data not shown) when single wavelengths were used in the
single-term linear regression models. Other wavelengths such as
1,000, 1,130, 1,174, 1,390, 1,460, and 1,926 nm also were corre-
lated with wheat color (r2 > 0.1). For the first derivative, the absorp-
tion band of the tannin at ≈678 nm had a strong correlation with
wheat color (r2 = 0.76) when single-term linear regression was
used. For the second derivative, the wavelengths at 644, 726, 836,
and 1,396 nm were correlated with wheat color (r2 > 0.2). If the
wavelengths used in MLR equations were compared with the
wavelengths of the tannin with a strong absorption, some wavelengths
in MLR equations were related to the strong absorption wavelengths
or bands of the tannin.

Color classification wavelengths reported by Delwiche and Massie
(1996) (576 and 804 nm) and Ronalds and Blakeney (1995) (490,
525–600, 680–730, 758, 836, and 970 nm) are similar to some re-
ported in this research. However, previous researchers did not include
durum in the white wheat class nor wavelengths >1,100 nm.

If some wavelengths used in MLR equations are not related to the
major constituents of wheat such as protein, moisture, oil, starch,
and cellulose, then these wavelengths may represent an interaction
between these major constituents or other constituents contributing
to color classification. For log (1/R), the wavelengths 1,050, 1,212, and
1,422 nm (Table II) do not directly correspond to any of the broadly
defined food constituents (protein, starch, oil, water, and cellulose),
and therefore those wavelengths may contribute to color classifi-
cation (Murray and Williams 1990, Shenk et al 1992). For the first
derivative, the 952, 1,082, and 1,112 nm wavelengths also do not
directly correspond to any of the defined food constituents.

The performance of MLR models on the testing sample set is also
summarized in Table II. The highest classification accuracy of
98.1% was obtained from log (1/R). Among data pretreatments, cali-
bration equations with the second derivative yielded the lowest clas-
sification accuracy. For color classification, log (1/R) is recommended.

In summary, for PLS models, the highest testing set classifica-
tion accuracy was 98.5% obtained from the first derivative in the
wavelength region of 500–1,700 nm. Most of the misclassified
kernels belonged to the difficult-to-classify kernel set. This result
indicates that very high percentages of correct classification were
achieved with obvious red and white kernels. The classification
accuracy was the lowest when the wavelength region of 750–
1,900 nm was used, and the second derivative yielded the lowest
classification accuracy at each data pretreatment. However, even
with the second derivative, the classification accuracy of 97% was

achieved in the wavelength region of 500–1,700 nm. For MLR
models, the best model with a testing set classification accuracy of
98.1% was obtained from log (1/R) in the wavelength region
covered by both the visible and the NIR regions.
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