Single Wheat Kernel Color Classification by Using Near-Infrared Reflectance Spectra

D. Wang,1 F. E. Dowell,1,2 and R. E. Lacey3

ABSTRACT

An optical radiation measurement system, which measured reflectance spectra, log (1/R), from 400 to 2,000 nm, was used to quantify single wheat kernel color. Six classes of wheat samples were used for this study, including red wheat that appears white and white wheat that appears red. Partial least squares regression and multiple linear regression were used to develop classification models with three wavelength regions, 500–750, 500–1,700, and 750–1,900 nm, and three data pretreatments, log (1/R), first derivative, and second derivative. For partial least squares models, the highest classification accuracy was 98.5% with the wavelength region of 500–1,700 nm. The log (1/R) and the first derivative yielded higher classification accuracy than the second derivative. For multiple linear regression models, the highest classification accuracy was 98.1% obtained from log (1/R) spectra from the visible and near-infrared wavelength regions.

The color of wheat kernels, which varies from light yellow to red brown, is influenced by the presence of red pigmentation in the seed coat and by growing conditions. In a true-breeding cultivar color does not vary and, thus, wheats can be consistently classified as red or white (Evars and Bechtel 1988). These two basic colors are commonly considered in the classification of wheat for grading purposes. Red wheat and white wheat have different milling, baking, and taste properties and different visual characteristics (Paulsen and Heyne 1981, DePauw and McCaig 1988, Bason et al. 1995, Dowell 1997). In the world markets, a premium may be paid for a particular color class on the basis of nutritional and end-use values (Bason et al. 1995, Ronalds and Blakeney 1995). The red seed coat in hexaploid wheat is controlled by three separate genetic loci (R-A1, R-B1, and R-D1), and thus color can vary among red cultivars (Metzger and Sibaga 1970, Freed et al. 1976, Anonymous 1995). Baker (1981) indicated that various combinations of red genes impart different shades of red to the genotypes. Flintham (1993) reported that the degree of red pigmentation increased with the number of red genes (one to three). Thus, the number of genes can make some light red cultivars and single red gene wheats difficult to distinguish from white wheat. In addition to genetics, rain damage, which can "bleach" red wheat, soil conditions, disease, and insect damage frequently cause variations within each color class and affect the visual appearance of the kernel. Therefore, red and white wheats are not always visually distinguishable. Currently, personnel of the U.S. Department of Agriculture’s Grain Inspection, Packers, and Stockyards Administration (GIPSA) visually examine wheat samples to determine kernel color. Each inspector may use slightly different criteria to distinguish red wheats from white wheats. This subjective method can result in unreliable classification when the threshold between red and white is not distinct. When misclassified, wheats from different color classes may get mixed, resulting in lots of lower quality and value than the pure lots.

Several methods to measure wheat color have been studied. Kernels can be soaked in a solution of sodium hydroxide (NaOH) to assist inspectors in determining color class. Genetically red kernels tend to turn red after soaking, whereas genetically white kernels tend to turn light cream in color (Quartley and Wellington 1962, Kimber 1971, DePauw and McCaig 1988, Dowell 1997). Chen et al. (1972) converted perceived color of wheat to a point in a three-dimensional color space by using a colorimeter. Other methods quantify kernel color by measuring reflectance at many different wavelengths (Massie and Norris 1965; Hawk et al. 1970; McCaig et al. 1992, 1993; Ronalds and Blakeney 1995; Delwiche and Massie 1996). Typically, these researchers measured the color of bulk samples and did not include kernels that were not obviously red or white. Quantifying the color of individual kernels is necessary to determine whether a bulk sample has a mixture of red and white wheat classes. Thus, some means of measuring single kernel color, including kernels that are not clearly red or white, is needed. The objectives of this research were to: 1) identify genetically red and white wheat varieties on the basis of spectral characteristics, and 2) determine the wavelengths that contribute to wheat color classification.

MATERIALS AND METHODS

Six U.S. market classes of wheat, hard red spring, hard red winter, soft red winter, hard white wheat, soft white wheat, and durum, were supplied by USDA GIPSA (Kansas City, MO). Each class was represented by six or seven cultivars. Twenty-five kernels were randomly selected from each cultivar for a total of 150 or 175 kernels per class. In addition, 200 kernels were selected from wheats determined to be difficult-to-classify as red or white by USDA GIPSA. Most durum wheat in the United States is genetically white. Red durum wheat is grown to a very limited extent for feed purpose only. Therefore, only white durum wheats were used in this research. Samples originated from the 1993–1995 crop years and are described by Wang et al. (in press). All samples were stored at ambient temperature in air-tight containers.

Single wheat kernel reflectance spectra from 400 to 2,000 nm at 2-nm intervals were collected with an optical radiation measurement system, which was described by Wang et al. (in press). However, only wavelengths within the 500–1,900 nm range were used because poor sensor sensitivity and low energy levels resulted in excessive noise outside this range. Thus, the wavelength regions 500–750, 500–1,700, and 750–1,900 nm were used to determine single wheat kernel color class. Data were analyzed by partial least squares (PLS) regression (Galactic Industries, Salem, NH) and multiple linear regression (MLR) (SAS Institute, Cary, NC). Two-class classification models were developed to determine genetically red and white wheat kernels. The wheat samples were first separated into calibration and testing sets. The calibration set contained 450 randomly selected kernels with an equal number of red

1 Grain Marketing and Production Research Center, ARS, USDA, Manhattan, KS 66502. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that also may be suitable.
2 Corresponding author. Phone: 785/776-2753. Fax: 785/776-2792. E-mail: fdowell@usgrml.ku.edu
3 Agricultural Engineering Department, Texas A&M University, College Station, TX 77843-2117.

Publication no. C-1999-0105-01R. This article is in the public domain and not copyrightable. It may be freely reprinted with customary crediting of the source. American Association of Cereal Chemists, Inc., 1999.
and white wheats. The testing set contained 675 kernels including 350 red kernels and 325 white kernels. Red and white kernels were assigned constant values of 1.0 and 2.0, respectively. A kernel was considered to be correctly categorized if the predicted value lay on the same side of the midpoint of assigned values. Analyses were conducted on the absorbance spectra, log (1/R), and on the first and second derivatives of the absorbance spectra (Wang et al, *in press*). For PLS, the model performance is reported as the multiple coefficient of determination (r^2) and standard error of cross validation (SECV) of each calibration. The number of factors used for PLS models is the minimum required to give the maximum r^2 value. For MLR, the STEPWISE method and the RSQUARE method were used. The STEPWISE method was used to reduce independent variables (wavelengths). After the STEPWISE process, the RSQUARE method was used to find a model consisting of independent variables that predict color classification with the highest r^2 value.

RESULTS AND DISCUSSION

Color Classification by PLS

Calibration equation statistics of PLS models and calibration accuracies of the calibration sample set are summarized in Table I. Among the wavelength regions, the 500–1,700 nm region tended to give the best results. In this wavelength region, r^2 values ranged from 0.83 to 0.85 for three different data pretreatments. Also, the SECV ranged from 0.19 to 0.21 for three different data pretreatments. The average classification accuracy of the calibration sample set in this region was the highest: 99.8, 98.9, and 98.4% for the log (1/R), first derivative, and second derivatives, respectively. The testing sample set gave similar results. These results indicate that the wavelength region for wheat color classification should not be limited to the visible region (400–700 nm), which is supported by the plots of the weight of PLS factors for log (1/R) (Fig. 1). The first and second factors had a strong feature band at $≈$500 nm, which indicates that the wavelength region at $≈$500 nm is the most important for wheat kernel color classification. For the second factor, the greatest weights occurred at 1,360, 1,660, and 1,860 nm. For the third factor, a strong feature band occurred at 700–1,350 nm and the greatest weights occurred at 1,460 and 1,930 nm. Those bands and wavelengths with high weight indicate that some wavelength regions in the near-infrared (NIR) region can be used for wheat kernel color classification. However, the lowest r^2 values, the lowest classification accuracy, and the highest SECV generally occurred with models developed with only the NIR region (750–1,900 nm).

Among the data pretreatments, the r^2 value for log (1/R) ($r^2 = 0.82$) and the first derivative ($r^2 = 0.82$) was significantly higher ($P < 0.05$) than that of the second derivative ($r^2 = 0.69$) in the wavelength regions of 500–750 nm. Similar results were seen in the 500–1,700 nm region. Also, as the level of pretreatment, from log (1/R) to the second derivative, became more complex, the number of PLS factors necessary to maintain values for r^2 and SECV, compared with those of less complex pretreatments, increased. Also, more PLS factors were needed for the longer wavelength region (500–1,700 nm) and the NIR region (750–1,900 nm) than for the visible region (500–750 nm). More factors are likely needed because additional wavelengths are included in the longer-wavelength models.

The performances of PLS classification models on the testing sample set are also summarized in Table I. The testing samples include both obvious and difficult-to-classify kernels. The highest classification accuracy (98.5%) was obtained from the first derivative in the wavelength region of 500–1,700 nm. Most misclassified kernels belonged to the difficult-to-classify category. This result compares favorably with the result achieved by Delwiche and

![Fig. 1. Important wavelength regions for single wheat kernel color classification as shown by the weight of the first three partial least squares factors.](image-url)

TABLE I

Calibration Equation Statistics and Testing Results of Partial Least Squares Models for Single Wheat Kernel Color Classification

<table>
<thead>
<tr>
<th>Pretreatment Region (nm)</th>
<th>Factors</th>
<th>r^2</th>
<th>Accuracy (%)</th>
<th>SECV</th>
<th>Testing Results</th>
<th>n1</th>
<th>n2</th>
<th>Accuracy (%)</th>
<th>SEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(1/R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500–750</td>
<td>3</td>
<td>0.82a</td>
<td>98.2</td>
<td>0.212</td>
<td>475 (3)</td>
<td>200 (13)</td>
<td>97.6</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>500–1,700</td>
<td>8</td>
<td>0.85b</td>
<td>99.8</td>
<td>0.191</td>
<td>475 (2)</td>
<td>200 (9)</td>
<td>98.4</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>750–1,900</td>
<td>13</td>
<td>0.78c</td>
<td>96.0</td>
<td>0.237</td>
<td>475 (9)</td>
<td>200 (12)</td>
<td>96.9</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>First derivative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500–750</td>
<td>4</td>
<td>0.82a</td>
<td>98.4</td>
<td>0.214</td>
<td>475 (3)</td>
<td>200 (8)</td>
<td>98.4</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>500–1,700</td>
<td>7</td>
<td>0.85b</td>
<td>98.9</td>
<td>0.196</td>
<td>475 (2)</td>
<td>200 (8)</td>
<td>98.5</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>750–1,900</td>
<td>13</td>
<td>0.78c</td>
<td>96.0</td>
<td>0.237</td>
<td>475 (18)</td>
<td>200 (11)</td>
<td>95.7</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Second derivative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500–750</td>
<td>11</td>
<td>0.69a</td>
<td>93.1</td>
<td>0.278</td>
<td>475 (18)</td>
<td>200 (23)</td>
<td>93.9</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>500–1,700</td>
<td>16</td>
<td>0.83b</td>
<td>98.4</td>
<td>0.210</td>
<td>475 (11)</td>
<td>200 (9)</td>
<td>97.0</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>750–1,900</td>
<td>16</td>
<td>0.70c</td>
<td>96.7</td>
<td>0.229</td>
<td>475 (17)</td>
<td>200 (10)</td>
<td>96.0</td>
<td>0.31</td>
<td></td>
</tr>
</tbody>
</table>

* For the calibration sample set, red wheat ($n = 225$) includes hard red spring, hard red winter, and soft red winter; white wheat ($n = 225$) includes hard white, soft white, and durum.

* Parentheses within a column followed by different letters are significantly different at $P < 0.10$.
Massie (1996), who correctly classified ≈98% of the obvious red and white kernels using a seven-factor PLS model over the visible region of 500–750 nm.

The first derivative performed better on the testing samples in the visible region. For example, with log(1/R), the classification accuracy was 97.6%; when the first derivative was used, the classification accuracy increased to 98.4%. In each data pretreatment, the highest classification accuracy occurred in the wavelength region of 500–1,700 nm. The classification accuracy was lowest in the wavelength region of 750–1,900 nm, and the second derivative also yielded the lowest classification accuracy among different data pretreatments. However, even with the second derivative, a classification accuracy of 97% was achieved in the 500–1,700 nm wavelength region.

Although difficult-to-classify kernels are difficult to differentiate visually, wheat kernel color is controlled by three red genes, and the intrinsic properties related to red genes should be similar for each wheat color class. Also, the reflectance spectrum in the visible region represents mostly the surface properties of a measured object, while the reflectance spectrum in the NIR region represents both surface and internal properties of a measured object. It can be assumed that the spectral curve of each color class should be similar in shape and that the effect of visible color variation for each color class should be reduced in the NIR region. Therefore, the accuracy of classifying difficult-to-classify kernels should be improved by using both the visible and NIR regions. Table I supports the observation that, generally, more kernels were correctly classified when NIR wavelengths were included.

Color Classification by MLR

Calibration equation statistics of six-term MLR models and classification accuracies of the calibration sample set are summarized in Table II. The wavelengths used in each MLR equation were those that produced the highest r^2 and lowest SECV values for the calibration sample set, red wheat (n = 225) includes hard red spring, hard red winter, and soft red winter; white wheat (n = 225) includes hard white, soft white, and durum.

Fig. 2. Important wavelength regions for single wheat kernel color classification as shown by the coefficient of determination (r^2) of single-term regression.

Fig. 3. Log (1/R) (top panel), first derivative (middle panel), and second derivative (bottom panel) absorption curves of tannin.

Table II

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Wavelengths, nm (coefficients)</th>
<th>r^2</th>
<th>Accuracy (%)</th>
<th>SECV</th>
<th>n1</th>
<th>n2</th>
<th>Accuracy (%)</th>
<th>SEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(1/R)</td>
<td>490 (3.257), 552 (−10.23), 918 (44.05), 1,050 (−54.78), 1,212 (19.90), 1,422 (−3.008), (2.834)</td>
<td>0.86a</td>
<td>99.6</td>
<td>0.191</td>
<td>475</td>
<td>200 (11)</td>
<td>98.1</td>
<td>0.30</td>
</tr>
<tr>
<td>First derivative</td>
<td>710 (402.80), 740 (321.60), 772 (341.73), 952 (−432.80), 1,082 (−387.26), 1,112 (−368.18), (2.669)</td>
<td>0.83b</td>
<td>98.7</td>
<td>0.209</td>
<td>475</td>
<td>100 (12)</td>
<td>96.7</td>
<td>0.31</td>
</tr>
<tr>
<td>Second derivative</td>
<td>756 (−9599.9), 784 (−2239.49), 810 (−22596), 836 (−16508), 862 (−6650.3), 1,396 (−983.37), (2.768)</td>
<td>0.80c</td>
<td>97.6</td>
<td>0.228</td>
<td>475</td>
<td>11 (21)</td>
<td>95.3</td>
<td>0.31</td>
</tr>
</tbody>
</table>

a For the calibration sample set, red wheat (n = 225) includes hard red spring, hard red winter, and soft red winter; white wheat (n = 225) includes hard white, soft white, and durum.

b For the testing sample set, n1 = number of obviously red and white kernels, 225 and 250, respectively; n2 = number of difficult-to-classify kernels, 125 and 75 for red and white, respectively.

c Standard error of cross validation.

d Standard error of prediction.

e Values within a column followed by different letters are significantly different at $P < 0.10$.

f Parentheses show number of kernels misclassified.
sification accuracy. For color classification, log \((1/R)\) values with the second derivative yielded the lowest classification accuracy of 97% was achieved with obvious red and white kernels. This result achieved in the wavelength region of 500–1,700 nm. For MLR models, the best model with a testing set classification accuracy of 98.1% was obtained from log \((1/R)\) in the wavelength region covered by both the visible and the NIR regions.

LITERATURE CITED

[Received May 19, 1998. Accepted September 24, 1998.]