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Abstract. A back propagative neural network (NM) was used to salect
visible spectrum (400 to 700 nm) wavelangths and classify damaged and
undamaged peanut kemels. Results showed kernel classifications were
best, network errors were minimized, and speed of convergence was
greatest when the NN was set up with 20 or more hidden nodes, a
momentum of 0,45 or less, and using about 1,000,000 leaming events,
Reflectance data in the 620 to 700-nm range were most influential in
classifying kemels followed by relative reflectance in the 400 to 480-nm
range. The leaming rate did not affect NN performance, but higher learn-
ing rates converged more quickly. The most accurate classification per-
formance occurred when the NN had 40 hidden nodes and a momentum
of 0.45. These setlings resulted in correct classification of 87.8% of all
kernels. When compared to statistical means of classifying kernels using
data from specific wavelengths or daia from a colorimeter, the NN car-

rectly classified about 5% and 13% more kemels, respectively.
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1 Introduction

Visible reflectance characteristics of many agricultwral com-
modities are used by inspectors to subjectively classify food
products into edible and inedible categories, For example, in
the peanut industry, inspectors visually inspect approxi-
mately 600,000 samples of farmers' stock peanuts (Arachis
hypogaea L.) cach year for damaged peanut kernels in ad-
dition to determining other quality factors. The complete
inspection process includes mechanically cleaning, shelling,
and sizing a 300-g sample of peanuts in preparation for the
visual inspection, During this inspection, the inspector ex-
amines cach peanut greater than 6.4 mm in diameter for
discolorations or insect damage and all peanuts for fungal
damage. Freezing temperatures, excessive heat during
drying, insect damage, and fungal damage are amang the
factors thatadversely affect peanut guality and typically result
in a discoloration on the surface of the peanut kemel. The
inspecrors receive about two days of training before the be-
ginning of each farmers’ stock harvest season and are pro-
vided with color charts 1o aid in the damaged kemnel classi-
fication." Certain damage types, such as the presence of
Aspergillus flavus, or excessive amounts of some damage
types, such as freeze damage, can result in a reduction in the
load value by about 75%.° Some damage sources, such as
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damage due to insects, provide a means for the invasion of
A. flavus that can produce aflatoxin, a suspected carcinogen.
Thus, damaged kernels must be accurately and consistently
identified 1o ensure the seller and buyer receive or pay a fair
price for the peanuts and 1o ensure that peanuts ar risk for
comaining aflatoxin are accurately identified for subsegquem
segregation.

Previous research shows the inaccuracies in the present
grading system, some of which are due to inspector subjec-
tivity. Dowell” estimated that inspector subjectivity contrib-
uted to about 249 of the total error in grading peanuts, Other
research shows errors associated with using visual damage
dsscssments o segregaie edible from inedible peanuts.* How-
ever, this visual assessment is the only method approved by
the Inspection Service for detecting damage, Proper segre-
gaton by visual assessment is important to prévent mixing
aflatoxin-suspect peanuts with good peanuts. When this oc-
curs, subsequent cleanup to reduce aflatoxin o safe levels
can cost about S0% of the value of the peanuts, and cleanup
is becoming increasingly more difficult as consumers demand
reduced tolerance levels. Thus, a means of accurately and
consistently identifying damaged. or inedible, kernels in
grade samples is neaded.

2 Literature Review

Previous research to remove subjectivity from determining
damaged kernels concentrated on measuring spectral and spa-
tial properties of the kernels. Dowell® correctly classified 63%
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of the damaged and 100% of the undamaged kemels using
a black-and-white machine vision svstem. Subsaquent tests
resulied in correct classification of 79% of damaged und
100% of undamaged kemels using a tristimulus colorimeter.
Correct kernel classifications were 93% for damaged and
9% for undamaged when selected wavelengths between 400
and 700 nm from a spectrophotometer were used, However,
since even one A, flaves kernel can contaminate several tons
of peanuts and since undamaged kernels account for about
90% of the lot value, the classification of undamaged and
damaged kernels needs further improvement, Thus, methods
of classifying kernels using the full spectral curve were in-
vestigated, The Kolmogorov-Smirnov (KS) statistical test®
can be used to determine if two curves come from the same
population und was m\exuﬂar-ed bur resulted in very poor
kernel classifications.” The KS test is sensitive to peaks in
the spectral curve, but is not sensitive to where the peaks
occur. Visuul differences between undamaged and damaged
spectral curves can be noted, thus it was hypothesized that
artifical intglligence techniques, such as neural networks, may
aid in kemel classifications.

Neural networks (NNs) are amificial inelligence systems
developed to simulate some of the organizational prllll:lplf:s
found in the human brain.” NNs are panicularly effective
when the data sets are large. expertise does not exist in ana-
Iyzing the data, and the deeision required is binary,* which
15 the case with classifving many agricultural commodities.
Back propagation is the most common NN wype” and was
used for this research,

The variables that affect the error and the training speed
of the NN are the number of learning events, learning rate,
momentum, and number of nodes. The number of leaming
events required to train a NN varies with the problem. Too
few learming events may result in inadequate learning of the
training data while too many learning events may result in
memorization of the training duta and poor performance with
new data. Leaming rate determines how much of the error
to propagate back into the preceding nodes and affects the
speed of convergence of the network. A lower leaming rae
may be slow because of small weighe changes, but is more
accurate, A high learning rate, however, may nol produce
convergence. Momentum determines how much p;r:-.-inug
node weights should be changed in subsequent steps.®
mathematically ugumus description ol a NN is given i_'s-l..
Nelson and [llingworth® and Rigney and Kranzler.'”

No single NN architecture works best for all situations
and no rigid guidelines exist for selecting the optimal NN
configuration or parameters. These parameters depend on the
application and may be determined and optimized experi-
mentally.

MNs are finding commercial application in such areas as
canceling noise in telecommunications, mortgage risk eval-
uation, bomb detection at airpons, process control, and com-
ponent checking.™'' Research is ongeing in the agriculral
sector lo apply NNs 1o quality evaluation, Thai and Shewfelt'®
used NNs to link human sensory judgments to physical mea-
surements of external color for tomatos and peaches. Zhuang
and Engel” showed NNs can replace expert systems in such
applications as herbicide selection or selecting grain mar-
keting alternatives. Thai, Pease, and Tallner'® used NNs to
estimate green tomato maturity from x-ray computed tom-
ography imuges, Whittaker, Park, and MeCauley'® used NNs

to grade beef, Rigney and Kranzler'” used NNs 1o grade pine
tree seedlings, and Brons et al.' used NNs to evaluate poted
plant beauty.

The success of these NN applications warrants research
into the application of NNs to classily undamaged and dam-
aged peanuts using speciral information, Thus, the objective
of this research was to investigate the use of NNs 1o uiilize
all spectral information from 400 1o 700 nm to classify dam-
dged und undamaged peanut kernels and 1o determine which
wavelengths contributed most w correct classificatons.

3 Procedures

31 Data Colection

Speciral curves were obtained from approximately 600 dam-
aged and 200 undamaged Kernels selected from the 1989 and
1990 crop vears. Kemels were assigned a unique identifi-
cation and stored for later reference. Kernel damage was of
the following types: black spots, entirely black, brown, insect
holes, A. flaves, white mold, purple seed coats, vellow dis-
colarations, and freeze damuge. Undamaged categories con-
sisted of visibly good redskin and blanched (skins removed)
Kernels. Undamaged and damaged kermnels were categorized
by visual inspection.

The spectral curves were collected using an X-Rite 968
reflectance spectrophotometer (X-Rite, Inc., Grandwille,
Michigan) that measured the percentage of spectral reflec-
tance from 400 w 700 nm in [0-nm inervals. The speciro-
photoemeter specifications include a O-deg illumination ungle,
a 43-deg viewing angle. and an 8-mm-diam target window.
CIE illuminant C, 2° observer, was used to calibrate the meter.
Damaged kernel areas filled the target window in most cases.
Each side of each kemnel was placed by hand over the Larget
window, Thus, a total of about 1200 spectra from damaged
kermels and 400 spectra from undzmaged kermels were col-
lected, each treated as unigue. If one side of a damaged kernel
appeared undamaged, that spectrum was recorded as an un-
damaged kernel spectrum. The damaged kernel data were
combined into one data sel and compared o the combined
undamaged redskin and blanched data set. Blanched and red-
skin undamaged kernels were combined 1o determine the
effectiveness of separating allundamaged from damaged ker-
nels. The data were stored 1n an ASCI file lor subsequent
analysis,

3.2 Neural Network

& back propagation NN was developed using the NeuroShel]
software package (Ward System Group, Inc.. Frederick.
Maryland). Felative reflectance at 10-nm increments was
used as input to 31 nodes in the input layer. Training pro-
ceeded for 1000000 learning events. NeuroShall allows the
number of nodes, number of layers, learning rate, learning
events, and momentum 1o be vared. The NN was a fully
connected, feed forward, supervised network with a sigmoid
transfer function. The NN output threshold was set to (.50
and the leaming threshold error was set to 0.0001, However,
no network errors were less than 0L035, thus convergence
was considered 1o nccur when the minimum error during the
LO00,000 learning events was reached. Error was computed
as the sum of the error factor for all training data, A kernel
was classified as undamaged if the NN outpur was greater
than 0.50 and damaged otherwise. In the training set, un-
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damaged kernels received a score of | while damaged kemnels
received a score of 0. The NN also output the contribution
factor For cach input node, This contribution factor indicales
which nodes, or wavelengths, are most impontant when clas-
sifying kernels. _

Thai and Shewfelt,'” Rigney and Kranzler,'"” and Boch-
ereau. Bourgine, and Palagos” showed no benefit of using
more than one hidden layer. Thus, only one hidden layer was
used in this study. Nelson and Tlingworth® noted that optimal
NN parameters such as learning rate, number of hidden layer
nodes, and momentum must be determined experimentally.
Thus, a study was designed 10 examine the effects of these
parameters on the aceuracy of classifying undamaged and
damaged peanut kemels. Table | shows the values for each
parameter tested. The NN program randomly selects one-
tenth of the total data sel for the test data set, Forty-four
undamaged and 112 damaged kernel spectra were used for
testing classification error and about 1000 damaged and 400
undamaged spectra were used for training. The accuracy of
the NN when classifving the | 36 kernels in the test data was
comparcd to the classification accuracy of previous tech-
nigues reported by Dowell” These techniques. which used
magnitudes of and line slopes berween three statistically se-
lected wavelengths and colorimeter tristimulus values, were
applied to kemels selected for the NN test data set. The
classification accuracies of the colorimeter and spectropho-
tometer reported here and by Dowell® are different. The same
kernels were used in all three wests reported here, but were
different kernels than those used by Dowell.* Thus, the pro-
cedures, not the kernels, are the same as reported by Dowel]l.*

Comparisons between variables were made by calculating
the least significant difference using SAS'” statistical analysis
software. The three levels of the three variables resulted in
27 possible combinations. When determining the effects of
the three levels of a given variable on the classification ac-
curacy, the results fram the other varinbles were averaged
logether.

4 Results and Discuf‘.sinn

The best classification and smallest network emmor occurrad
when using 40 hidden layer nodes, a learning rate of 0.6, and
A momentum rate of (.45, These parameters resulted in cor-
rect classification of 87 8% of all kernels, a network error of
0.036, and convergence after 269 000 leamning events, When
20 hidden layer nodes were used with the preceding param-
eters, 36% correct classification was achieved.

A statstical comparison of the levels of each varishle
showed network error decressed as the number of nodes in-
creased to 20 and leveled off thereafter, Momentums less
than 0.9 had significantly lower network errors, Leaming rate
did not have a significant effect on kernel classification or
network ermor (Table 21,

Linear and quadratic lines were it to the data to further
study trends in the data. All /% values were less than 0,30,
Thus, any one variable accounted for less than 30% of the
total variation. The B* values increased with quadratic anal-
ysis, but arc all still less than 0.30, The number of nodes
recelved consistent benefit from the guadratic regression ap-
plied to kernel classification and network ermor (Table 3).
This further shows. for undamaged kernels and for netwark
error, Lhat classification and error improve as hidden nodes
increase to 20, then classification did not improve further.
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Table 1 MM variables used to classily undamaged and damagad
peanut kernels. The netword was trained for 1,000,000 leaming
avenis

Mumber of Hiddes Layer Nodes 1 bt +
Lesming Rate 0.1 0.6 04
Momenium a 045 049

Table 2 Comparizon of three levels of three variables of & NN
trained on about 400 undamaged peanut kermels and 1200 damaged
kemels and used to classify 44 good kemels and 112 damaged
kermnels,

Variahl= Undamsaged Damaged Toal Minimun
Avernge Average Avemge Megwerk
Cormenr (%) Comect (&) Crerect (%) Ermor®
Mg, MNodes
1 34,00 ¥l la 7433 Q0561
k-1 44,5 .5 T4a 0.0 Th
20 4L Tab S0.4a R 0.05012h
al Fia l.la i Q05305
0.é 43 3l.la 7.7 QArsEz
ow e Bila T2 9 (P51 T4a
Mot
a 418 50.9a T QOS5
0.43 6. 2a i da T4 (.U51060
ay 365 Bl Tda 005500

'anf;mh variable in columns followed by the mme lomes are not significastly different
ut P08

*Wetwark emor is e diffisence beteeen the expecisd and aciual omputs,

Table 3 Linear and quadratic A° values for each vanable tested in
a NM usad fo classify undamaged and damaged peanut kemels.

Bdinimuen
Mok
Undassged Dasmapel Toml* Erroe®
Varizhie ”? mt B R?
Modes
Leear LR} 0.003 1.002 1T
(rmadrutic 0,042 0.048 {008 0.258
Learning Russ
Limear 0.0 b1 0.001 0,005
Qraadratic n.o3 0,033 0,033 0,006
Momenmm
Lisear 0,008 0.0a3 a.a11 .0%7
(radmasc 0052 0.007 0.037 0,056

*Metwark emor is the difference betwees the expected and actml outputs.,

Thai, Pease, and Tollner' also noted that classification ac-
curacy increased as the number of nodes increased to four,
then accuracy decreased. Nelson and Illingworth® also de-
seribed this quadratic effect of nodes on classification by
noting that too many nodes in the hidden layers make it hard
for the network w generalize. Too few hidden layer nodes
lead to an inability to form adequate intermediate represen-
lations that encode significant features in the data.

A comparison of the resolis from this NN w previous
research where kernels were classified using statistically se-
lected wavelengths and line slopes from data obtained using
a spectrophotometer and using L* a® b* color space values
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Table 4 Damaged and undamaged peanut kernel classification ac-
curacy of: (1) 2 neural netwark that ulilized all wavelenging fram 400
to 00 nem in 10-rm increments; (2) stafistically selecled line slopes
and magnitudes of reflectance at 450, 520, and 670 nm; and (3)
colofimater L™ a” b” valuss,

Table 5 NN contribution factors? for each wavelangth when classi-
tying undamaged and damaged Kemels. Only those tesis where
mora than B5% of fhe kemels were classified coreclly are included.
The larger e contricution factor in a given column, the more the
wavalengih contrivuted to eorrect classification,

Meshed af Undamaged Dremaged Tl
Cleesi ficasian Coeret (%) Cocrect (%) Carrest (%]
17 Meural Neswork! .0 0.6 -8 |
Sarstics

) 3 wavelengthe .0 [ %4 T4

3) Colomimeter (L*2%b*) T S 1.0

‘Metwork pammenesy wese podes=4i, bomming mite =6, momenram={ 43, and Tmined oo
1,000,000 lesming events,

from 1 colorimeter is shown in Table 4. The procedures used
to collect the data from the previous research are reported
by Dowell.” The same kernels were used in the three current
studies so direct comparisons could be made. Table 4 shows
that the NN classified undamaged, damaged, and total kernels
better than the colonmeter method and classified damaged
and tatal kernels better than the three-wavelength metliod,
Total kernel classification of the NN was about 5% better
than the colorimeter method and about 13% beter than the
three-wavelength method. This improvement of NNs over
statistical techniques is similar to those reported by Boch-
ercau, Bourgine, and Palagos,” Whinaker, Park, and
McCauley,'® and Brons et al.'®

A study of the contribution each wavelength made 1o the
kernel classification revealed thar relative reflectance of
wavelengths in the 620 to 700-nm range was most influential
in classifying kernels followed by reflectance in the 400 1w
480-nm range (Table 5). This agrees very well with previous
research® that statistically identified wavelengths at 430 and
690 nm as being most influential.

Future research will focus on separating the undamaged
and damaged categaries into subgroups.ineluding undamaged
blanched, undamaged redskins. purple, black, and brown to
see which categories can be predicted with the most accuracy.
In addition, wavelengths sclected inthis research will be used
1o design a commercial on-line sensor to classify undamaged
and damaged peanut kernels,

5 Summary

Results showed that kernel classification was best, network
error minimized, and speed of convergence greatest when
the NN was set up with 20 or mare nodes and wsed with a
momentum of 0.45 or less. The learning rate did not affect
NN performance but did affect the speed of convergence.
The most accurate kernel classification cccurred when the
NN parameters were set at 40 nodes, a learning rate of (1.6,
and a momentum of 0.45. These parameters resulted in a
minimum network error of 0,036 and 87, 8% of all kernels
carrectly classified. Convergence occurred at 269,000 learn-
ing events for this case. When compared to statistical means
of classifying kernels using data from specific wavelengths
or data from a colorimeter, the NN correctly classified about
3% and 13% more kemels, respectively, than the two other
methods. The wavelengths contributing most to correct ker-
nel classification were in the 400 to 480-nm and 620 1o 700-
nm ranges.

Wavelegth

{zm) 4l 42 [
400 [T A7 i ]
ALD 10.8 10.% i
420 1n.e 120 0.4
430 L7 1.8 3.1
30 k] 1] BE
450 1.3 1.4 .6
) 124 125 o L]
40 1.0 12.1 8.4
480 1.3 113 b )
439 8.1 I i
F00 8.1 ] 17.0
510 23 G4 172
520 9.3 .3 17.5
53 ER 89 181
340 9 &0 14.3
] T4 T 153
360 [ 9] 6.1 169
M 6l 6.3 169
i&0 B [ %] 175
500 56 5.5 s A ]
e .9 18 s
Bl o2 42 i i
620 10.8 ({vied L ]
630 136 137 i )
H40 124 12.5 IrE
650 1.6 116 krd |
] 131 132 3332
& 13.4 13.5 1R
4RD 120 12.1 1n2
G 123 123 361
T 4.8 14.9 m3
Kemels correcaly clasified (%) 8B5S 559 TR

"Mumber ef hidden luyer nodes S 20 leaursing rie = 0,8; momestum = 0,45,
Comtribution factory show ouly relative contributions of woelmgts for 3 given W
Comparisons of Thetion factors b tests of A given wivelength are not valid.
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