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and Transmittance Image Analysis 

Feng Xie,1 Tom Pearson,2,3 Floyd E. Dowell,3 and Naiqian Zhang1 

 ABSTRACT Cereal Chem. 81(5):594–597 

The proportion of vitreous durum kernels in a sample is an important 
grading attribute in assessing the quality of durum wheat. The current 
standard method of determining wheat vitreousness is performed by 
visual inspection, which can be tedious and subjective. The objective of 
this study was to evaluate an automated machine-vision inspection system 
to detect wheat vitreousness using reflectance and transmittance images. 
Two subclasses of durum wheat were investigated in this study: hard and 
vitreous of amber color (HVAC) and not hard and vitreous of amber color 
(NHVAC). A total of 4,907 kernels in the calibration set and 4,407 kernels 
in the validation set were imaged using a Cervitec 1625 grain inspection 
system. Classification models were developed with stepwise discriminant 

analysis and an artificial neural network (ANN). A discriminant model 
correctly classified 94.9% of the HVAC and 91.0% of the NHVAC in the 
calibration set, and 92.4% of the HVAC and 92.7% of the NHVAC in the 
validation set. The classification results using the ANN were not as good 
as with the discriminant methods, but the ANN only used features from 
reflectance images. Among all the kernels, mottled kernels were the most 
difficult to classify. Both reflectance and transmittance images were help-
ful in classification. In conclusion, the Cervitec 1625 automated vision-
based wheat quality inspection system may provide the grain industry 
with a rapid, objective, and accurate method to determine the vitreousness 
of durum wheat. 

 
Vitreousness is an important international grading attribute in 

assessing the quality of durum wheat. Higher vitreousness indi-
cates higher protein content, a harder kernel, coarser granulation, 
higher yield of semolina, superior pasta color, improved cooking 
quality, and opportunity for premium sales pricing (Dowell 2000). 
Vitreous kernels are glassy and translucent, while nonvitreous ker-
nels are chalky and opaque. Some minor defects such as bleached, 
cracked, or checked hard vitreous kernels are considered vitreous. 
In contrast, sprouted kernels, foreign materials, scabby kernels, 
etc., are considered nonvitreous. 

The current standard method of evaluating vitreousness of durum 
wheat in the United States is by manually inspecting a 15-g sample 
that is free of shrunken and broken kernels (USDA 1997). Because 
it is a subjective method, inspectors may disagree on classification. 
Therefore, an objective, automated, reproducible, and rapid method 
for determining durum wheat vitreousness is needed. Such a grading 
method should greatly reduce grain inspectors’ subjectivity and labor, 
and benefit wheat producers, processors, and handlers. 

Researchers have investigated various methods for evaluating 
durum wheat vitreousness. A perfect match with inspector classi-
fications of obviously vitreous or nonvitreous durum wheat using 
near-infrared spectroscopy (NIRS) was reported by Dowell (2000). 
Classification rates of 91.1–97.1% were reported when studying 
dark, hard, vitreous, and nonvitreous hard red spring wheat using 
NIRS (Wang et al 2002). A Perten 4100 single-kernel charac-
terization system was applied to detect wheat vitreousness (Sissons 
et al 2000; Nielsen et al 2003). This method was faster than the 
NIRS method, but classification capability was limited. Sissons et 
al (2000) reported ≈25–35% error of prediction with SKCS. 

Machine vision techniques have been used to determine grain 
quality and classify grain cultivars based on color and geometry 
features (Zayas et al 1996; Ruan et al 1998; Luo et al 1999; Maj-
umdar and Jayas 2002a,b). Image analysis has also been applied to 
study wheat vitreousness (Symons et al 2003; Wang et al 2003). 

Wang et al (2003) developed an artificial neural network (ANN) 
model using reflectance images captured by a real-time image-based 
grain-inspection machine (Foss GrainCheck-310). Classification 
rates of vitreous and nonvitreous subclasses were 85–90% (Wang 
et al 2003). Symons et al (2003) found significant agreement 
between inspector-determined and machine-determined percen-
tages of hard vitreous kernels in samples. Transmittance images 
of individual kernels were imaged with a monochrome camera. 

It was hypothesized that using both reflectance and transmittance 
images would improve classification rate of vitreousness. The ob-
jective of this study was to evaluate an automated machine vision 
inspection system for detecting wheat vitreousness using both reflec-
tance and transmittance images captured by a new grain inspec-
tion system. 

MATERIALS AND METHODS 

Sample Preparation 
The Grain Inspection, Packers, and Stockyards Administration 

(GIPSA) of the United States Department of Agriculture collected 
samples for this study. Durum wheat samples were classified into 
two subclasses: hard and vitreous of amber color (HVAC) and not 
hard and vitreous of amber color (NHVAC). For this study, the 
HVAC subclass was further separated into three categories and 
NHVAC into six categories (Table I). Samples were visually 
reinspected by the Board of Appeals and Review (BAR) to check 
correct segregation. Samples in each category were divided into 
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TABLE I  
Summary of Sample Categories and Sizes Used in This Study 

Subclass and Category Calibration Validation Reproducibility

HVACa    
Clean  695 507 80 
Bleached  507 507 40 
Cracked 507 507 40 

NHVACb    
Clean  507 507 . . . 
Bleached  468 429 . . . 
Mottled 741 468 40 
Sprouted 507 468 . . . 
Foreign materials  468 507 . . . 
All other categories 507 507 . . . 

Total 4,907 4,407 200 

a Hard and vitreous of amber color durum wheat. 
b Not hard and vitreous of amber color durum wheat. 

e-Xtra*
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two sets of 1,000 kernels each: a calibration set and a validation 
set. The calibration set was used to develop classification models, 
and the validation set was used to test the models. 

Image Data Collection 
An automated vision-based wheat quality inspection system 

(Cervitec 1625 Grain Inspector, Foss Tecator, Hoganas, Sweden) 
was used to collect images. The machine is capable of contin-
uously collecting either reflectance or transmittance images of 1,000 
single kernels in <2 min. To collect reflectance and transmittance 
images of the same kernel, the feeder hopper on the wheel was 
removed so that kernels would stay on the wheel until removed 
by hand. Images were transferred to a PC and saved after capture. 
For reflectance image collection, white light was used as a light 
source and color reflectance images were collected. For trans-
mittance images, red light was used as a light source because very 
little blue and green light would transmit through the kernel due 
to scattering. Figure 1 shows examples of reflectance and trans-
mittance images. Each image was ≈110 pixels long by 50 pixels 
tall for a total of ≈5,500 pixels per image. The kernels filled 
≈80% of the image area for a total of ≈4,400 pixels. Reflectance 
and transmittance images of 4,907 calibration samples were collec-
ted. To test model performance, 4,407 validation samples were 
measured by following the same procedure (Table I). To test 
model classification reproducibility, 80 clean-HVAC kernels, 40 
bleached-HVAC kernels, 40 cracked-HVAC kernels, and 40 mottled-
NHVAC kernels were randomly selected from the calibration sample 
set and used as testing samples. Samples were imaged by the 
Cervitec 1625 system following the same procedure. The test was 
repeated six times. Samples were visually reinspected by five 
FGIS BAR inspectors after mechanical analysis.  

Image Feature Extraction and Classification Procedure 
Cumulative histograms of pixel intensities were computed for 

each color component of the reflectance image and for the red 
component of the transmittance image only. Two histograms for 
each image were computed: one consisted of raw counts of kernel 
pixels with an intensity between a specified range; and the second 
histogram consisted of the percentage of total kernel pixels with 
an intensity between a specified range. Five intensity values were 
used for each histogram bin, starting at zero all the way up to 255, 
for a total of 51 histogram bins for each image. The kernel 
portion of each reflectance image was segmented from the back-
ground by simple thresholding using software supplied by Foss. 
Transmittance images were segmented after the image was trans-
ferred from the Cervitec 1625 to the PC. Before thresholding, the 
transmittance image was first minimum filtered using a 3×3 pixel 
window (Jain 1989). If a pixel in the minimum filtered image had 
an intensity value >20, it was considered to belong to a kernel. 

Histogram features of both reflectance and transmittance images 
from the same kernel were saved together after extraction. Both 
raw histograms and percentage histograms were used. Each histo-
gram contained 51 bin values and the entire 51 element vector of 
each histogram were used as potential discriminating features. 
Stepwise discriminant analysis (SAS Institute, Cary, NC) was 
applied to select important feature variables for classification models 
and determine the best variable combination for classification. 
The variable significance to enter or leave the model was 0.01. 
Discriminant models were developed using the best variable com-
bination and then applied to validation samples and samples used 
for the reproducibility test. 

An artificial neural network (Matlab, The MathWorks, Novi, 
MI) was also used to classify kernels as HVAC or NHVAC. Only 
reflectance images were used to build ANN models. Features 
from the red, green, and blue (RGB) color space images were 
used, as well as features from hue, saturation, and intensity (HSI) 
color space images. A total of 12 features from the two image 
color spaces were extracted. These features included the means of 

blue, green, and red pixel intensities of each RGB image; the 
means of the saturation and intensity of all kernel pixels in each 
HSI image; means of the cos(Hue) and sin(Hue) pixel distri-
butions; and histogram bin values from the red pixel intensity 
distribution, saturation distribution, hue distribution, intensity distri-
bution, and normalized distribution of the intensity component of 
the HSI image. Values of the input nodes were projected into an 
input vector that contained these 12 extracted features from each 
image. The ANN models were developed using 150 epochs in the 
first run and using the number of epochs suggested by Matlab in 
the second run. The number of hidden neurons and layers was 10 
and 1, respectively, for all models. ANN models were applied to 
validation samples, and results were compared with those of the 
other models.  

The most effective model was selected based on the classi-
fication accuracy rates of each subclass. Classification rate for a 
subclass is equal to the number of kernels correctly classified as 
this subclass divided by the total number of kernels of this subclass 
in a sample. 

RESULTS AND DISCUSSION 

Two models were developed using the reflectance and trans-
mittance images. The two-subclasses model classified kernels as 
either HVAC or NHVAC. The all-categories model grouped kernels 
into nine HVAC and NHVAC categories. For both models, the 
classification accuracy was simply the percentage of kernels cor-
rectly classified as HVAC or NHVAC. To calculate the classi-
fication accuracy for the all-categories model, all the kernels of 
each category correctly classified as HVAC or NHVAC were 
added up, then divided by the total number of HVAC or NHVAC 
kernels. When 10 features were selected by stepwise discriminant 
analysis for these two models, the all-categories model could 
correctly determine 94.1% of all HVAC and 85.6% of all NHVAC, 
while the two-subclasses model could correctly identify 89.4% of 
all HVAC and 82.4% of all NHVAC. These results show that the 
all-categories model was more accurate than the two-subclasses 
model in predicting wheat vitreousness. Most likely, the all-
categories model is more accurate than the two-subclasses model 
because it takes into account the variance of each category, while 
the two-subclasses model lumps the variances of all categories 
together. Separating the variances allows the classifier to have 
more local, well-defined, centroids in the feature space for classi-
fying the kernels. 

The all-categories model was optimized using the SAS program. 
Both pooled and nonpooled covariance matrices were used to 
compute the discriminant functions. The most effective model 
was nonpooled matrices and equal prior probabilities of any 
subclass with 17 features selected. Feature variables were selected 
from both reflectance or transmittance images, including 11 
intensity values of red, blue, or green reflectance images; two 
intensity values of transmittance images; and four histogram binary 
values of transmittance images. Classification rates for HVAC and 
NHVAC were 94.9 and 91.0%, respectively, for the calibration set 
and 92.4 and 92.7%, respectively, for the validation set (Table II). 
The best model developed by Wang et al (2003) was a two-classes 
model of weighted sample sizes. It classified 87.6% HVAC and 

  

Fig. 1. A, Example of reflectance images. B, Example of transmittance 
images. 
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91.6% NHVAC kernels correctly. Thus, the all-categories model 
developed in this study is likely more accurate in determining wheat 
vitreousness than the two-classes model (Wang et al 2003). 

Figure 2 shows classification rates for each category predicted 
by the all-categories model. The all-categories model correctly 
classified 97% clean-HVAC while only 88% bleached-HVAC 
were determined correctly. Bleached-NHVAC had the second 
lowest classification accuracy among all other categories, showing 
that bleached kernels were hard to segregate. Mottled-NHVAC 
had the lowest classification accuracy among all the other categories. 
Wang et al (2003) also met the same problem. These kernels are 
characterized as having mottled or chalky spots randomly located 
inside the kernels. Even though use of transmittance image in-
creased classification accuracy, results showed that mottled kernels 
were the most difficult category to determine by the all-categories 

model. Collecting reflectance or transmittance images from the 
opposite side of the kernel only increased accuracy 1–2% (data 
not shown). Feature variables used in the all-categories model 
were selected from either reflectance or transmittance images, which 
indicates that the use of both reflectance and transmittance images 
were helpful for classifications. 

The all-categories model classification reproducibility was tested 
(Table III). The testing sample set consisted of 80% HVAC and 
20% NHVAC. The all-categories model predicted HVAC and 
NHVAC percentages in the sample set. The all-categories model 
model had an average of 79.8% HVAC with a standard deviation 
of 1.0%. The FGIS BAR inspectors had an average of 74.7% 
HVAC with a standard deviation of 3.5%. These results show that 
the Cervitec 1625 system could predict wheat vitreousness more 
accurately and precisely than visual inspection. 

 

Fig. 2. Classification rates for all HVAC and NHVAC categories predicted by the all-categories discriminant model. 

TABLE II 
Classification Rates (%) of Discriminant and ANN Models for HVAC and NHVAC in Calibration and Validation Sample Sets 

 Calibration Validation 

Description HVAC NHVAC Average HVAC NHVAC Average 

Discriminant models       
All-categoriesa 94.9 91.0 92.9 92.4 92.7 92.6 
Reflectance images only 92.0 79.0 85.5 89.2 82.5 85.8 
Transmittance images only 89.2 85.4 87.3 87.0 90.5 88.7 

ANN models       
ANN150 all-categoriesb 92.6 92.8 92.7 85.1 90.6 87.9 
ANN82 all categoriesc 92.3 92.0 92.1 83.6 89.6 86.6 
ANN150 two-subclassesd 94.7 95.0 94.9 86.0 91.5 88.8 
ANN73 two-subclassese 96.0 94.1 95.1 88.7 92.7 90.7 

a Using both reflectance and transmittance images. 
b Using 150 epochs. 
c Using 82 epochs. 
d Using 150 epochs. 
e Using 73 epochs. 

TABLE III  
HVAC and NHVAC (%) in the Composition Sample Predicted by Cervitec 1625 System and FGIS BAR Inspectors 

 Cervitec 1625 Inspectors 

Test Numbera HVAC NHVAC HVAC NHVAC 

1 80 20 70.6 29.4 
2 78 22 75.3 24.7 
3 80.5 19.5 71.6 28.4 
4 80 20 78.4 21.6 
5 79.5 20.5 77.6 22.4 
6 81 19 . . . . . . 
Average 79.8 20.2 74.7 25.3 
SD 1 1 3.5 3.5 
Max 81 22 78.4 29.4 
Min 78 19 70.6 21.6 

a Samples measured using the Cervitec 1625 system six times (tests 1–6) and visually inspected by five inspectors (tests 1–5). 
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Classification rate for each category in each run is presented in 
Table IV. Averaged classification rate for clean-HVAC, bleached-
HVAC, cracked-HVAC, and mottled-NHVAC was 98.1, 87.5, 85.0, 
and 70.8%, respectively. Clean-HVAC had a higher rate than that 
in the validation set, which was 97.0% (Fig. 2). Clean-HVAC had 
the smallest standard deviation (1.5%) of all the categories, show-
ing that clean-HVAC was the easiest category to segregate. The 
standard deviation for bleached-HVAC was the highest (4.7%), 
showing that bleached-HVAC was hard to determine for the all-
categories model. Mottled-NHVAC had the lowest classification rate 
and the second highest standard deviation (3.4%), confirming that 
mottled-NHVAC was difficult to classify. This might be due to 
random positioning of mottled spots inside the kernels. 

Models using either reflectance or transmittance images alone 
were developed to classify all categories (Table II). Classification 
rates for HVAC and NHVAC of these two models did not produce 
results as good as those obtained from the all-categories model 
using both imaging modes. For the validation set samples, the 
reflectance model could classify 89.2% of all HVAC kernels and 
82.5% of all NHVAC kernels correctly. The transmittance model 
could determine 87.0% of all HVAC and 90.5% of all NHVAC 
correctly. The reflectance model had higher classification accuracy 
for HVAC, while the transmittance model had higher classification 
accuracy for NHVAC, indicating that reflectance images were 
more favorable for HVAC determination, while transmittance images 
were more helpful for NHVAC classification. Results confirmed 
that model accuracy was improved by use of both reflectance and 
transmittance images. 

Features extracted from reflectance images were entered into 
the Matlab ANN software, which suggested using 73 epochs 
instead of 150 epochs when training the two-subclasses ANN 
model. It recommended using 82 epochs instead of 150 epochs 
when training the all-categories ANN model. All these models 
were applied to the validation set samples (Table II). The two-
subclasses ANN model using 73 epochs was the most accurate 
ANN model. It correctly classified 88.7% of all HVAC kernels 
and 92.7% of all NHVAC kernels in the validation set. This model 
had higher classification accuracy than the all-categories discri-
minant model when training the models using calibration samples. 
But results were not as good as those of the all-categories 
discriminant model after application to the validation set, which 
was 92.4 and 92.7% for HVAC and NHVAC, respectively. It is 
important to note that only reflectance images were used during 
ANN training because ANN cannot handle the transmittance 
images output from the Cervitec 1625 system, which may be the 
reason for lower classification accuracies compared with the all-
categories discriminant model that used features from both trans-
mittance and reflectance models.  

Features from both reflectance and transmittance images were 
input into another ANN software program, the Neuroshell Classi-
fier (Ward Systems Groups, Frederich, MD), to build a two-
subclasses ANN model. Results using this software were similar 
to those from discriminant analysis. Therefore, use of ANN or 
discriminant analysis should not make a large difference on 
model performance. 

CONCLUSIONS 

A discriminant model trained and tested on a validation set 
classified 92.4% of HVAC kernels and 92.7% of NHVAC kernels 
correctly. Standard deviation for predicting HVAC and NHVAC 
percentage in a composition sample was 1%, whereas the SD of 
trained inspectors was 3.5%. Mottled-NHVAC and bleached-HVAC 
kernels were difficult to classify. Developing this model required 
17 histogram features from both reflectance and transmittance 
images. Results showed that an automated, vision-based, wheat 
quality inspection system, such as the Cervitac 1625, has potential 
as a rapid, objective, and accurate method for determining wheat 
vitreousness that could be more accurate than visual inspection. 
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TABLE IV 
Classification Accuracy (%) for Four Categories in the Composition Sample 

Test Number Clean-HVAC Bleached-HVAC Cracked-HVAC Mottled-NHVAC 

1 98.8 92.5 85.0 75.0 
2 98.8 85.0 80.0 72.5 
3 98.8 90.0 87.5 72.5 
4 95.0 92.5 82.5 65.0 
5 98.8 82.5 87.5 70.0 
6 98.8 82.5 87.5 70.0 
Average 98.1 87.5 85.0 70.8 
SD 1.5 4.7 3.2 3.4 


