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Gums and proteins are valuable ingredients with a wide spectrum of applications. Surface properties
(surface tension, interfacial tension, emulsion activity index “EAI”, and emulsion stability index “ESI")
of 4% whey protein concentrate (WPC) in a combination with t-carrageenan (0.05%, 0.1%, and 0.5%) or
gum arabic (0.5%, 1%, and 5%) were investigated. The results showed that the addition of 1-carrageenan
to 4% WPC significantly decreased interfacial tension, and improved the EAI, and ESI, but addition of gum
arabic to 4% WPC significantly increased the interfacial tension, EAI, and ESI. In addition, a fuzzy-based
clustering model was used to predict the surface properties. The fuzzy model achieved accuracies of
(94%, 97%, 98%, and 94%) for predicting (EAI, ESI, surface tension, and interfacial tension), respectively.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The food industry and academia have expressed an interest in
gum-protein mixtures because of their contributions to stability
and functionality. The interaction between proteins and polysac-
charides in many food systems are responsible for structural,
mechanical, and physicochemical properties of emulsions, foams,
and gels (Igoe, 1982). The gum-protein interaction may play a
more significant role in the food system compared to the single
contribution of the individual polymer (Dickinson, 1997). Proteins
improve the surface properties of food systems by forming a pro-
tective steric barrier around oil droplets, whereas gums improve
the steric stabilizing properties through forming a thick secondary
layer on the outside of protein (Dickinson, 1998). Thus, a funda-
mental understanding of behavior, mechanism and interaction be-
tween gums and proteins in beverage systems, are limited.
Probably the most effective interaction between hydrocolloids
and wheat protein is ionic. Electrostatic effects of the polysaccha-
rides not explain all the interactions. The configuration of the mol-
ecules and the availability of charged groups also may be
important. The carboxylate groups on the acidic heteropolysaccha-
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rides (e.g. xanthan) are mainly associated with o- amino, e-amino
group of the protein. The actual strength of interactions is related
to the number and distribution of these sites as well as the overall
charge of the protein. The hydrogen bonding also may play impor-
tant role the hydrophilic and hydrophobic interactions may occur
between the hydrocolloids and proteins. Thus, a fundamental
understanding of behavior, mechanism and interaction between
gums and proteins in beverage systems, are limited.

Soluble whey proteins can be used in beverage production as an
alternative for casein and soy proteins (Kinsella, 1984; Dallgleish
1996; Singh and Ye, 2000). Whey protein concentrate (WPC) is
used in the processing of different food products such as: in bakery,
confectionery, beverages and in formulated meats due to the gel-
ling, foaming and emulsifying properties (Blecker et al., 1997).
The dairy industry has done little to promote the use of whey pro-
tein concentrate in beverages. Without research to promote the
effectiveness of whey protein in beverages, the dairy industry will
lose out.

The hydrocolloids (gums) have the ability to control both the
rheology and texture throughout the stabilization of emulsions,
suspensions, foams and starch gelatinization ( Rosell et al., 2001).
Whey protein-polysaccharide interactions should be well-known
in order to formulate ingredients in a more accurate way. 1-Carra-
geenan (sulfated hydrocolloid) and gum arabic “amphiphilic
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polysaccharides” (formed from galactose, rhamnose, arabinopyro-
nose, glucouronic acid, and 4-methyl glucouronic acid) are carbo-
hydrates of relatively high molecular weight when compare with
simple sugar. Gum arabic is the most commonly used biopolymer
emulsifier in beverage production (Tan, 1998). The two types of
macromolecules are both important in controlling the rheology
and the stability of the food system. Interactions of these biopoly-
mers with proteins in the food system determine structure-prop-
erty relationships in foods. The decrease in surface tension by
proteins and amphiphilic macromolecules is usually caused by
the surface active entity of the macromolecules, adsorption and
unfolding of the macromolecule at the interface, and the adsorbed
segments rearrangement at the fluid interface (Dickinson, 2003).

Fuzzy logic and fuzzy inference system (FIS) is an effective tech-
nique for the identification and modeling of complex nonlinear
systems. Fuzzy logic is particularly attractive due to its ability to
solve problems in the absence of accurate mathematical models.
The prediction of surface properties of whey protein concentrate
(WPC) in a combination with 1-carrageenan or gum arabic is con-
sidered as a complex system, so using the conventional technology
to model these properties results in significant discrepancies be-
tween simulation results and experimental data. Thus, this com-
plex nonlinear system fits within the realm of fuzzy logic
technique.

The use of fuzzy logic-based techniques has been recently get-
ting more importance in the field of food engineering. Davidson
et al. (1999) developed a fuzzy control system for continuous,
cross-flow peanut roasting. A combination feedforward-feedback
scheme was implemented in application software developed by
this research group for fuzzy rule-based control. The control sys-
tem was tested on a pilot-scale roaster and it successfully main-
tained roasted peanut color within an acceptable range. Mohebbi
et al. (2008) introduced a genetic fuzzy rule base system (GFRS)
for modeling of viscosity in enzyme-modified cheese (EMC) is de-
scribed based on experimental data. It is concluded that construc-
tion of an optimized fuzzy model for the evaluation of viscosity in
EMC is a reliable procedure. Perrot et al. (1999) conducted a study
on the estimation of food product quality using fuzzy sets through
two specific examples: (i) prediction of the luminance of biscuits
during a baking process and (ii) prediction of wet-milling quality
of maize during a drying process. Two fuzzy approaches were val-
idated: a black-box approach and a knowledge-based approach to
modeling. The results were good and coherent in both cases and
the models ere robust. Samhouri et al. (2007) found that the neu-
ro-fuzzy modeling technique (i.e. ANFIS) can be used to achieve
very satisfactory prediction accuracy (about 98%) in a model color
mayonnaise system. Also, very satisfactory prediction accuracy
(about 96%) was achieved by applying neuro-fuzzy modeling tech-
nique (i.e. ANFIS) in predicting the emulsion stability and viscosity
of a gum-protein emulsifier in a model mayonnaise system (Abu
Ghoush et al., 2008).

The main motivation behind this work is that promote the
effectiveness of using whey protein concentrate in combinations
with t1-carrageenan and gum arabic in beverages production.
Therefore, the main aims of this study were: (1) evaluate the effect
of gums (1-carrageenan and gum arabic) and proteins (whey pro-
tein), in combination, on the surface, and emulsions properties of
a fluid food system and (2) model, identify, and predict the surface
properties of whey protein—gum interactions using a fuzzy cluster-
ing model. The fuzzy prediction models for the surface properties
of whey protein in biphasic system with 1-carrageenan and gum
arabic solutions will open the opportunity for untapped beverage
market. The benefits will reach the producers, consumers, proces-
sors, communities and agriculture. Also, fuzzy modeling will give
the opportunity for the manufacturers to know the optimum con-
ditions for formulating high quality stable products.

2. Materials and methods

Whey protein isolate (WPC) was obtained from Davisco
Foods International (BIPRO, Le Sueur, MN). 1-Carrageenan (IC)
and gum arabic (GA) were obtained from TIC Gums Inc., Belcamp,
MD, USA.

2.1. Emulsions preparation and evaluation

2.1.1. Preparation of emulsions

1-Carrageenan (0.05, 0.1) or gum arabic (0.5%, 1%, and 5%) were
prepared in buffer by stirring the dispersions vigorously for 30 min
at room temperature, while heating at 50 °C until the solution be-
came clear. Whey protein concentrate (4%)/1-carrageenan and gum
arabic were made based on the process patented by Chen et al.
(1989).

2.1.2. Emulsions evaluations

Emulsion activity index (EAI), and emulsion stability index (ESI)
for all the above combinations were determined by using a turbi-
dimetric method developed by Pearce and Kinsella (1978). The sur-
face and interfacial tensions were determined by a fisher surface
tensiometer (model 21). The force acting on the ring was measured
as it was moved upward for an air-solution dispersion interface,
and as it was moved downward for an oil-solution interface. The
equilibrium time for steady state surface tension measurements
was 30 min. All tests were carried out in triplicate.

2.2. Statistical analysis

A two-way factorial classification in complete randomized de-
sign (CRD) was used to design the experiments of this work. Data
were analyzed using statistical analysis software (version 8.2,
SAS Institute Inc., Cary, NC). Three batches of solutions were pro-
duced for each treatment. Analysis of variance (ANOVA) and means
separations were calculated by the general linear model procedure
(Proc GLM). Comparisons among treatments were analyzed using
Fisher least significant difference (LSD), and treatment means were
considered significant at P < 0.05.

2.3. Fuzzy-based clustering model

Clustering of numerical data forms the basis of many classifica-
tion and system modeling algorithms. The purpose of clustering is
to identify natural groupings of data from a large data set to
produce a concise representation of a system’s behavior (Jang
and Gulley, 2000). A cluster is a set of objects that are more similar
to each other than to objects from other clusters. Various clustering
algorithms have been developed recently. These include: fuzzy C-
means algorithm (Bezdek, 1974), mountain clustering algorithms
(Yager and Filev, 1994), and a more computationally efficient
version of mountain clustering algorithm or subtractive clustering
(Chiu, 1994).

Fuzzy subtractive clustering is a fast, one-pass algorithm for
estimating the number of clusters and the cluster centers in a set
of data (Chiu, 1994). Subtractive clustering is based on a measure
of the density of data points in the feature space ( Jang et al.,
1997). The idea is to find regions in the feature space with the high
densities of data points. The point with the highest number of
neighbors is selected as center for a cluster. The data points within
a pre-specified fuzzy radius are then removed (subtracted), and the
algorithm looks for a new point with the highest number of neigh-
bors. This continues until all the data points are examined.

The subtractive clustering algorithm starts by considering a col-
lection of K data points specified by m-dimensional vectors uy,
k=1,2,..., K. Without loss of generality, the data points are as-
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sumed normalized. Since each data point is a candidate for a clus-
ter center, a density measure at data point uy, is defined as

I k—um) ’
Zexp( 2 (1)

Hence, a data point will have a high density value if it has many
neighboring data points. Only the fuzzy neighborhood within the
radius r,, contributes to the density measure.

After calculating the density measure for each data point, the
point with the highest density is selected as the first cluster center.

Let u¢; be the point selected and D¢, its density measure. Next,
the density measure for each data point uy is revised by the
formula

Dy, = Dy — D¢y exp (- |ukuﬂ”> (2)

(rs/2)°

Therefore, the data points near the first cluster center u, will
have significantly reduced density measures, thereby making the
points unlikely to be selected as the next cluster center. The con-
stant r,, defines a neighborhood to be reduced in density measure.
It is normally larger than r, to prevent closely spaced cluster cen-
ters, typically r, = 1.57,.

After the density measure for each point is revised, the next
cluster center u; is selected and the density measures are revised
again. The process is repeated until a sufficient number of clusters
are generated (Jantzen, 1998). When applying subtractive cluster-
ing to a set input/output data, each of the cluster centers repre-
sents a rule. To generate rules, the cluster centers are used as the
centers for the premise sets in a singleton type of rule base.

An important advantage of using a subtractive method to find
rules is that the resultant rules are more tailored to the input data
than they are in a fuzzy inference system generated without clus-
tering. This reduces the problem of combinatorial explosion of
rules when the input data has a high dimension (the dreaded curse
of dimensionality) (Jang and Gulley, 2000).
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3. Results and discussion

3.1. Surface tension and interfacial tension of whey protein
concentrate — gum solutions

The surface tension of 4% WPC was not significantly changed
with addition of 1-carrageenan or gum arabic, except in case of
0.5% gum arabic (increased by 3.5%) (Fig. 1). That means there
was no effect of the gums addition on the surface tension of the
protein water phase. The effect of the polysaccharide in increasing
the rate of surface tension by the protein is consistent with sub-
stantial net attractive interaction between GA and WPC. As shown
in Fig. 2, the interfacial tension of 4% WPC decreased by addition of
0.05% and 0.1% t1-carrageenan by 34.1% and 41.6%, respectively.
Whereas, the interfacial tension of 4% WPC decreased by addition
of 0.5% gum arabic by 41.6% and increased by addition of 1% or
5% gum arabic by 15%. The increase or the decrease in the interfa-
cial tension within each polysaccharide-protein combination was
due to the effect of the net attractive interaction and the degree
of the adsorption and unfolding at the interface. The decrease in
surface tension by proteins and amphiphilic hydrocolloids is usu-
ally caused the surface active entity to diffuse from the bulk phase
to the subsurface layer. This step is followed by the adsorption and
unfolding of the macromolecule at the interface and finally the ad-
sorbed segments rearrange at the fluid interface. In addition to
lowering the interfacial tension, amphiphilic macromolecules can
form continuous viscoelastic films at the interface via non-covalent
intermolecular interactions (Dickinson, 2003; Singh et al., 2003).

3.2. Emulsion activity index (EAI) and emulsion stability Index (ESI)
whey protein concentrate — gum solutions

Lower concentration of i-carrageenan had significant increase
EAI of 4% WPC than the higher concentration. Whereas, addition
of 0.05% and 0.1% 1-carrageenan increased the EAI of 4% WPC by
228.2% and 59.2%, respectively. Addition of 0.5% and 1% gum arabic

a a o WPC

= WPC-0.05% IC
= WPC-0.1% IC
~ WPC-0.5% GA
s WPC-1% GA
» WPC-5% GA

Fig. 1. Comparison between 1-carrageenan (IC) and gum arabic (GA) on surface tension of 4% whey protein concentrate (WPC). Bars with the same letters are not significantly

different at P<0.5.
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Fig. 2. Comparison between t-carrageenan (IC) and gum arabic (GA) on the interfacial tension of 4% whey protein concentrate (WPC). Bars with the same letters are not

significantly different at P < 0.5.
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Fig. 3. Comparison between t-carrageenan (IC) and gum arabic (GA) on the emulsion activity index “EAI” of 4% whey protein concentrate (WPC). Bars with the same letters

are not significantly different at P < 0.5.
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Fig. 4. Comparison between t-carrageenan (IC) and gum arabic (GA) on the emulsion stability index “ESI” of 4% whey protein concentrate (WPC). Bars with the same letters

are not significantly different at P < 0.5.

significantly increased the EAI of 4% WPC by 60%. Whereas, addi-
tion of 5% gum arabic increased the EAI of 4% WPC by 114.3% as
illustrated in Fig. 3.

The ESI of 4% WPC was significantly increased by addition of
0.05% and 0.1% 1-carrageenan by 125.9% and 1654.8%, respectively.
Whereas, ESI of 4% WPC was significantly decreased by addition of
0.5%, 1%, and 5% gum arabic by 118.8%, 102.7%, and 92.3%, respec-
tively, as illustrated in Fig. 4. Interactions between the two poly-
mers could be segregative or associative. For instance, for gum
arabic at low concentrations solutions, the system is stable and
proteins and polysaccharides are co-soluble. Upon increasing con-
centration, the system becomes unstable depending of the type of
interaction. In this case, biopolymer mixtures tend to segregate
(Grinberg and Tolstoguzov, 1997; Tolstoguzov, 1991). This trend
is usually attributed to repulsive interactions between polymer
segments. Segregation leads to a reduction of the local concentra-
tion of one of the polymer near the second one due to a decrease of
conformational entropy of macromolecules at an interface. In case
of 1-carrageenan, associative may be observed due to interaction
between the two biopolymers. At high concentrations solutions,
the system becomes stable. The polysaccharide molecules may ad-
sorb onto protein and even bridging between several protein mol-
ecules. The gums additions increase the stability of emulsions by
the formation of a polysaccharides network that prevents the fat
globules from coalescence. This could be due to the formation of
a matrix within fluid phase especially in the presence of protein
that can form a second protective layer surround the fat globules
(Prakash et al., 1990).

3.3. Fuzzy clustering-based prediction of surface properties of whey
protein

3.3.1. Clustering data preparation

Generating a subtractive clustering-based fuzzy inference sys-
tem (FIS) requires dividing the training data into two matrices:
(a) an input matrix which contains all the input values to be used
in training the fuzzy system. This input matrix should contain val-

ues for solution type and solution proportion %. Actually, 30 data
points of these inputs were selected as given in Table 1. These
points were then gathered into one matrix called “input matrix”
and (b) an output matrix which contains all the output values to

Table 1
Training data matrix used to build the fuzzy model of surface properties using
subtractive clustering

Solution Solution EAI ESI Surface Interfacial
type proportion (%) tension tension
(a) Inputs (b) Outputs

10 0 160.74 31 51 1.9
10 0 1602 313 50 1.9
10 0 160.2  31.7 485 1.8
10 0 160.2 313 48 1.8
10 0 160.77 314 485 1.8
10 0.05 5222 699 47.7 13
10 0.05 531.8 69.8 57 1
10 0.05 536.6 70.8 533 1.4
10 0.05 5102 712 4938 13
10 0.05 5342 733 49.7 1.2
10 0.1 2352 535 523 1.1
10 0.1 262.1 549 475 14
10 0.1 261.6 548 479 13
10 0.1 2553 569 474 1
10 0.1 240.5 560 47.9 1
20 0.5 2509 67.7 52.8 1.2
20 0.5 2523 681 536 1
20 0.5 229 66.6 49.6 1
20 0.5 2296 722 50 1.1
20 0.5 238 65.8 50 1.2
20 1 189.5 65.8 502 2.2
20 1 186.8 664 509 2
20 1 203.1 629 49.8 2.2
20 1 209.7 625 50 2.1
20 1 196 60.9 50.1 2.1
20 5 157.1 589 50 2
20 5 151.5 586 50 2.1
20 5 156.1 59.8 50 24
20 5 1486 60.6 49.6 2.4
20 5 1269 714 402 2
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be used in training the fuzzy system. This output matrix should
contain values for EAI, ESI, surface tension, and interfacial tension.
Thirty output data points, corresponding to the selected input
points, are given in Table 1, and gathered into one matrix called
“output matrix”. The remaining 6 input/output data points, which
are different from the training data, were used for validation pur-
pose as given in Table 2 (validation table).

3.3.2. Generating fuzzy inference system for surface properties

The subtractive clustering algorithm estimates the cluster cen-
ters in a set of data. It assumes each data point is a potential cluster
center and calculates a measure of the likelihood that each data
point would define the cluster center, based on the density of sur-
rounding data points. The algorithm:

e Selects the data point with the highest potential to be the first
cluster center.

e Removes all data points in the vicinity of the first cluster center
(as determined by radii), in order to determine the next cluster
and its center location.

e Iterates on this process until all of the data is within radii of a
cluster center.

The radii variable is a vector of entries between 0 and 1 that
specifies a cluster center’s range of influence in each of the data

Table 2

dimensions, assuming the data falls within a unit hyperbox. Small
radii values generally result in finding a few large clusters. Good
values for radii are usually between 0.2 and 0.5. In this paper, a va-
lue of 0.8 for all the radii was chosen. This resulted in same accu-
racy and speed with less numbers of membership functions.

A special Matlab function, built-in the Fuzzy logic toolbox, was
used to generate the FIS. This function extracts a set of rules that
model the data behavior. This rule extraction method first uses
the subtractive clustering centers and clusters to determine the
number of rules and antecedent membership functions and then
uses linear least squares estimation to determine each rule’s conse-
quent equations. This Matlab function returned an FIS structure
that contains a set of fuzzy rules to cover the feature space.

The least squares method of this function works on the conse-
quent part of FIS, especially on the generated fuzzy rules. This func-
tion minimizes the number of inference rules, but it uses large
numbers of membership functions. This complicates the fuzzifica-
tion process only, but it simplifies the inference and defuzzification
process, which has more impact on the computational time. The
fuzzy inference system, generated depending on the subtractive
clustering, has a Sugeno-type inference, with a weighted-average
defuzzification method. Eight bell-shaped membership functions
(MF) for all inputs were used, some of them are coincident, were
shown for each the two inputs (solution type and solution propor-
tion %) in Fig. 5.

Validation table of the predicting fuzzy clustering-based model for surface properties of whey protein

Solution  Solution EAI  EAI EAI ESI  ESI ESI Surface Surface Surface Interfacial  Interfacial Interfacial
type proportion  act. prediction error act. prediction error tension tension tension tension tension tension error
(%) (%) (%) act. prediction error (%) act. prediction (%)

10 0 162 160 123 31 313 0.97 49 49.2 0.41 1.9 1.84 3.16
10 0.05 491 527 733 70 71 1.42 50 51.5 3 1.2 1.24 3.33
10 0.1 233 251 7.72 509 552 8.44 50 48.6 2.8 1 1.16 16
20 0.5 230 240 434 72 68.1 5.41 50 51.2 24 1.1 1.1 0
20 1 198 197 0.50 63 63.7 1.11 50 50.2 0.4 2.2 2.12 3.63
20 5 129 148 14.7 62 61.9 0.16 50 48 4 2 2.18 9
Average percent error 6 3 2 6
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Fig. 5. Final MF of inputs for the surface properties prediction model using subtractive clustering-based algorithm.
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Only 8 rules were found by the optimization algorithm to be
necessary to generate a high efficient FIS that predicts the surface
properties without any loss of accuracy, and with much less
computational time. The final FIS structure is shown in Fig. 6.
The final fuzzy models for predicting the surface properties of
whey protein are given as surface plots of the outputs (i.e. EAI,
ESI, surface tension, and interfacial tension) against the inputs
(i.e. solution type and solution proportion %) as illustrated in
Figs. 7-10, respectively.

3.3.3. Models validation

The fuzzy prediction models for surface properties of whey pro-
tein were validated by selecting a certain number of data points (6
points), different and independent from the other 30 points used

for fuzzy model training. The test data points (i.e. 6 points) were
selected randomly from the original experimental data points
and removed from the total data points to leave the rest of the ori-
ginal data (i.e. 24 points) for training purposes. Upon completion of
the training process on the training data, each validation data point
(i.e. solution type and solution proportion %), given in Table 2, was
fed into the system, and then the predicted surface properties (i.e.
EAI, ESI, surface tension, and interfacial tension) were compared to
the actual values of these properties. The average absolute percent
error in each validation point was calculated by dividing the abso-
lute difference between the actual and predicted values by the ac-
tual value, and then these ratios are taken as percentage values to
find the average percent error in the prediction process. The aver-
age percent errors in the modeling of surface properties are given

f(u)
EAI (8)
subfuz
SolutionType (8) f(u)
(sugeno) ESI(8)
f(u)
8 rules
Suface Tension (8)

Solution Proportion (%) (8)

f(u)

Interfacial Tension (8)

System subfuz: 2 inputs, 4 outputs, 8 rules

Fig. 6. Fuzzy inference system FIS for surface properties prediction using subtractive clustering-based optimization algorithm.

0 vv“‘v*"
‘f"
-D.Sq‘--l '
: ] M i
wi
A5
-2+
25§

14
1 2 S D\m‘oﬂ."‘fp

Fig. 7. A fuzzy model of EAI as function of inputs.
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in Table 2, and are as follows: 6% for EAI, 3% for ESI, 2% for surface
tension, and 6% for interfacial tension.

The prediction accuracies achieved in this work are considered
satisfactory when compared to previous work in this field. A clas-
sification of wheat by visible and near-infrared reflectance from
single kernel was introduced by (Delwiche and Massie, 1996).
Their classification model accuracy ranged from 65% for SRW
wheat to 92% for SWH.Welch et al. (2003) presented a genetic neu-
ral network model of flowering time control in Arabidopsis thali-
ana. Their results included tracking a novel, temperature-
dependent exchange in transition order exhibited by two mutants
whose duplication is not possible by usual crop simulation meth-
ods. An artificial neural network prediction of amino acid levels
in feed ingredients was introduced by Roush and Cravener
(1997). Two types of neural networks and linear regression were
evaluated for predicting amino acid levels in corn, wheat, soy bean
meal, meat, bone meal, and fish meal. Samhouri et al. (2007) found
that the neuro-fuzzy modeling technique (i.e. ANFIS) can be used
to achieve very satisfactory prediction accuracy (about 98%) in a
model color mayonnaise system. Also, very satisfactory prediction
accuracy (about 96%) was achieved by applying neuro-fuzzy mod-
eling technique (i.e. ANFIS) in predicting the emulsion stability and
viscosity of a gum-protein emulsifier in a model mayonnaise sys-
tem (Abu Ghoush et al., 2008).

4. Conclusions

In this paper, surface properties (surface tension, interfacial ten-
sion, emulsion activity index (EAI), and emulsion stability index
(ESI)) of whey protein (WPC) in a combination with 1-carrageenan
or gum arabic, were investigated. In addition, a subtractive cluster-
ing-based fuzzy models for predicting the surface properties of
whey protein, was constructed. The following conclusions can be
drawn from the above analysis:

(1) There was no significant effect of the gums addition on the
surface tension of the 4% WPC water phase. While, the inter-
facial tension of 4% WPC decreased by addition of different
concentration of 1-carrageenan. Also, the interfacial tension
of 4% WPC decreased by addition of low concentration
(0.5%) gum arabic and increased at high concentrations (1%
or 5%) gum arabic. This trend is usually attributed to interac-
tions between polymer segments. These interactions could
be segregative or associative.

(2) 1-Carrageenan addition at lower concentration increased

the EAI of 4% WPC than at higher concentration. Whereas,

gum arabic addition significantly increased the EAI of 4%

WPC at different concentrations. At the same time, the ESI

of 4% WPC was significantly increased by increasing

1-carrageenan addition. Whereas, ESI of 4% WPC was signif-
icantly decreased by addition of gum arabic at various
concentrations.

Fuzzy subtractive clustering-based models achieved an aver-

age prediction error of whey protein surface properties of

4%. The prediction accuracies are considered satisfactory

when compared to previous work, and the fuzzy model

was capable of modeling the surface properties efficiently.

The present study shows that fuzzy clustering is a technique

that can be used efficiently to predict the food properties.

The capability of the fuzzy predictions models for the surface

properties permitted identification and quantification of EAI,

ESI, surface tension, and interfacial tension to be studies in
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w
~—

all types of emulsions (e.g. milk products, beverages). Com-
puter vision shows promise for online prediction of surface
properties in biphasic system.
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