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A genetically and environmentally diverse collection of maize (Zea 
maize L.) samples was evaluated for physical properties and grit yield to 
help develop a standard set of criteria to identify grain best suited for dry-
milling. Application of principal component analysis (PCA) reduced a set 
of approximately 500 samples collected from six states to 154 maize 
hybrids. Selected maize hybrids were placed into seven groups according 
to their dry-milled grit yields. Regression analysis explained only 50% of 
the variability in dry-milling grit yield. Patterns of differences in the 
physical properties for the seven grit yield groups implied that the seven 
yield groups could be placed into two or three groups. Using two pattern 

recognition techniques for improving classification accuracy, quadratic 
discriminant analysis and the classification and regression tree (CART) 
model, dry-milled grit yield groups were predicted. The estimated correct 
classification rates were 69–80% when the samples were divided into 
three yield groups and 81–90% when samples were divided into two yield 
groups. The results indicated the comparable success of both techniques 
and the superiority of the decision tree algorithm to quadratic discrim-
inant analysis by offering higher accuracy and clearer classification rules 
in differentiating among dry-milled grit yield groups. 

 
Corn dry-milling separates maize kernels into three main com-

ponents (endosperm, germ, and pericarp), producing numerous 
product streams for use in food, animal feeds, and industrial prod-
ucts (Duensing et al 2003). Corn grits, meals, and flour are the 
primary products obtained from the endosperm. Of these, higher 
recovery of larger grits is desirable for dry-millers because of the 
greater economic value. Dry-milled products are different in proxi-
mate composition and physical properties (Duensing et al 2003). 
Previous research indicates that dry-milling yield determinants in-
clude maize genetics, bulk and kernel density, hardness, breakage 
susceptibility, protein content, drying temperature, weather, post-
harvest conditions, and other influencing factors (Kirleis and Stro-
shine 1990; Wu and Bergquist 1991; Peplinski et al 1992; Duensing 
et al 2003). 

Maize producers and corn dry-millers often use unofficial grades 
and tests to predict maize hybrid end-use processing performance 
because maize hybrids ranked with higher official grade do not 
always guarantee better suitability for the customers’ use (Paulsen 
et al 2003). This means that in certain cases the intended end-use 
performance of maize determines the traits and tests that are 
important for the evaluation of maize quality. The early segre-
gation of maize using quality-associated properties will increase 
its economic value. Little standardization exists among such un-
official physical kernel tests, analytical techniques, and “reference” 
processing methods. For example, the strength of various relation-
ships (correlations) between hardness measurements and end-use 
processing performance reported in scientific literature varies tre-
mendously (Paulsen and Hill 1985; Peplinski et al 1992; Pan 1996; 
Shandera et al 1997). The grain samples used to establish these 

relationships are critical. Samples from diverse genetic and environ-
mental backgrounds will help establish which practical hardness 
tests are most useful and provide a foundation for establishing the 
fundamental physicochemical basis for those grain hardness traits 
important in predicting end-use performance. 

Pattern recognition techniques have been recognized as useful 
tools for interpretation and classification of complex data with 
many variables. Two recognition techniques, discriminant analysis 
and decision tree algorithm, were employed in this study. Dis-
criminant analysis requires two basic assumptions: a multivariate 
normal distribution and equal variance of data in every variable 
(Johnson 1998), whereas the decision tree is not based on a statis-
tical procedure but formulates a searching process to find the solu-
tion (Witten and Frank 2000). Decision tree algorithm is often 
used in a variety of classification problems and can visualize classi-
fication rules perspicuously by splitting the given data set into 
branches. The tree continues to grow until it is terminated by pre-
determined stopping rules (Witten and Frank 2000). 

A need exists for improved determination of maize physical 
properties associated with processing performance and easy-to-
use predictive laboratory measures. The two objectives of this 
study were to establish a sample set of diverse genetic and environ-
mental backgrounds, and to develop dry-milling classification and 
prediction models using pattern recognition techniques based on 
selected maize kernel physical properties. This will enable classi-
fication of predefined dry-milled grit yield groups and rapid predic-
tion of unknown samples into predefined grit yield groups. By 
focusing on more relevant physical properties, the resulting classi-
fication rule and approach for differentiating maize samples for 
dry-milling would assist producers and processors by identifying 
maize lots most appropriate for shipping or dry-milling unit oper-
ations at any given point in the grain marketing system. 

MATERIALS AND METHODS 

Sample Selection 
Over 500 maize hybrids with a broad genetic background of 

known pedigrees were planted at different locations in Illinois, 
Indiana, Iowa, Kansas, Kentucky, Missouri, and Nebraska in 2003. 
Harvested maize hybrids were tested using several rapid physical 
and spectral property measurements. A group of 114 samples was 
then identified from these hybrids using a multivariate statistical 
technique described in Lee et al (2005). In this procedure, the 
spectral data of maize samples were mathematically converted into 
principal component scores using near-infrared software. The first 
four principal components accounted for ≈95% of variability in 

1 Office of the Texas State Chemist, Texas Agricultural Experiment Station,
College Station, TX 77841-3160. 

2 Corresponding author. Phone: 979-845-1121. Fax: 979-845-1389. E-mail: tjh@
otsc.tamu.edu  

3 USDA-ARS, Grain Marketing and Production Research Center, Manhattan, KS
66502. Names are necessary to report factually on available data; however, the
USDA does not guarantee the standard of a product, nor does the use of the name
by the USDA imply any approval of the product to the exclusion of others that
may also be suitable. 

4 Department of Food Science and Technology, University of Nebraska-Lincoln, 
Lincoln, NE 68583-0919. A contribution of the University of Nebraska Agricul-
tural Research Division, supported in part by funds provided through the Hatch
Act. Mention of a trade name, proprietary product, or company name is for pre-
sentation clarity and does not imply endorsement by the authors or the University
of Nebraska. 

5 Department of Agronomy, Kansas State University, Manhattan, KS 66506. 

doi:10.1094 / CCHEM-84-2-0152 
© 2007 AACC International, Inc. 



Vol. 84, No. 2, 2007 153 

the original data. Therefore, four principal component scores were 
subsequently used in cluster analysis to group maize samples into 
several different groups consisting of spectrally analogous maize 
hybrids. Ward’s minimum variance method appeared to perform 
better than other algorithms with respect to grouping maize hybrids 
naturally, resulting in nine total clusters. The samples for the first 
year of the study were randomly and proportionally selected from 
each cluster. The selected 114 maize hybrids were subjected to a 
laboratory dry-milling process. To retain the genetic and environ-
mental diversity, while reducing the number of samples, principal 
component analysis (PCA) and cluster analysis were performed to 
further reduce the 114 maize hybrids for planting in 2004, resulting 
in 40 maize hybrids that were planted in Illinois, Indiana, Kansas, 
and Nebraska. The planted locations, states, and the number of 
hybrids in the regions during 2003 and 2004 are displayed on the 
map in Fig. 1. 

Physical Properties 
Maize hybrids harvested in 2003 and 2004 were evaluated for 

test weight (USDA 1990); time (sec) required to grind kernels 

measured by the Stenvert Hardness Tester (SHT) (Glenmills model 
V with a 2-mm screen) run at 3,600 rpm (Pomeranz et al 1985); 
specific density in a helium compression pycnometer (model 930, 
Beckman Instruments, Fullerton, CA) (Pomeranz et al 1984); 100 
kernel weight using sound whole kernels free from defects (Dorsey-
Redding et al 1990); and abrasiveness using the Tangential Abra-
sive Dehulling Device (TADD) (Venables Machine Works Ltd., 
Saskatoon, SK, Canada) (Wehling et al 1996). Near-infrared trans-
mittance (NIT) (Grainspec, Multispec Ltd., Wheldrake, NY) was 
calibrated by the manufacturer and the Grain Quality Laboratory 
at Iowa State University against chemical methods and used to 
determine density, moisture, protein, starch, and oil content. Kernel 
size distribution was determined by a strand size shaker (Seedburo 
Equipment, Chicago, IL) and expressed as the percentage of 
samples/initial amount of sample over a grain dockage sieve with 
6.75-mm diameter round holes. NIT spectroscopic data in a log 
[1/T] were collected using Infratec 1229 (Foss North America) 
with a 30-mm path sample holder. Ten individual scans were aver-
aged for the sample spectrum. The range of collected spectra was 
850–1,048 nm in 2-nm increments. Collected spectra data were 
converted into principal component scores using WINSI II software 
(v. 1.0, Foss NIRSystems, Infrasoft International, Silver Spring, MD).  

Dry-Milling 
All maize samples were cleaned with the MCI Kicker dockage 

tester (Mid-Continent Industries, Newton, KS) before dry-milling. 
The moisture content of a 1,000-g sample was determined with 
near-infrared transmittance (NIT) (Grainspec). Samples were shaken 
vigorously in a plastic jar, initially tempered to 16% moisture by 
the addition of water, then set aside for 30 min. After the first 
tempering, additional water was added to bring the sample mois-
ture to 18%, followed by a 15-min rest period. The second tem-
pered sample was milled using Allis experimental roll stands with 
a long-flow procedure that yielded snack grits with <1% fat in the 
grit extraction (Reddy 1996). Roll gaps, roll corrugations, roll dif-
ferentials, and test sifter sieves in the dry-milling flow are illus-
trated in Fig. 2. The milling stages used in this study consist of 1 
break (1BK), 2 break (2BK), 3 break (3BK), germ, 1 sizing (1SIZ), 
chunk, and 2 sizing (2 SIZ). The products produced from this dry-
milling procedure are #1 grits (–10+14 Mesh), #2 grits (–14+26 

 

Fig. 2. Experimental maize dry-milling flow. Roll gaps, roll corrugations, roll differentials, test sifter sieves, and final milled products are illustrated.  

 

Fig. 1. Locations across several states where genetically diverse maize
hybrids were planted during 2003 and 2004. Numbers in parentheses
indicate planting year. Number of different hybrids selected for dry-
milling during the two years denoted after the planting year.  
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Mesh and –14+36 Mesh), meal (–36+56 Mesh), cones (–50+70 
Mesh), flour (–70 Mesh), and feeds (hulls, tipcap, and germ). A 
total dry-milled grit yield was calculated as the percentage of the 
sum of #1 and #2 grits/100 g of total products. The reproducibility 
standard deviation of this milling method was approximately <1% 
between individual results. Each maize hybrid was then assigned to 
one of seven predefined groups according to the calculated total 
dry-milled grit yield: <46, 46–50, 50–54, 54–58, 58–62, 62–66, 
and >66%. The seven grit yield groups were defined after creating 
a histogram of grit yields (in 1% increments) and frequency. The 
range of 54–56% total grit yield was in the center of the grit yield 
distribution. The seven defined yield groups at 42–70% allowed 
for a relatively sufficient and balanced number of observations 
among these yield groups, presumably providing more accurate 
and dependable information on the pattern distribution of the grit 
yield groups relative to grain physical properties. 

Discriminant Analysis 
Discriminant analysis was conducted to classify maize samples 

into a sample set of two grit yield groups and another of three grit 
yield groups. Linear discriminant analysis assumes the normal 
distribution of measurements and the equal variance and covari-
ance matrices for groups to be separated (Johnson 1998). However, 
the application of quadratic discriminant analysis does not require 
the assumption of an identical covariance for each grit yield 
group. In this study, sample sizes of different dry-milled grit yield 
groups varied considerably, implying the unequal dispersion of 
measurements of the group. In addition, Bartlett’s modification of 
the likelihood ratio test suggested using nonpooling covariance 
matrices. Therefore, a quadratic discriminant analysis was utilized 
for classification and prediction purposes. For the appropriate selec-
tion of the physical properties as input variables, univariate statis-
tics of discriminant analysis were determined (SAS Institute, Cary, 
NC). After determining the most relevant sets of the variables, 
discriminant analysis model derived from a total of 154 samples 
was estimated using a jackknifed cross-validation method. There-
after, 154 samples were separated randomly into a training data 
set (106 observations) and a test data set (48 observations). The 
training data set was used to build a classification model, whereas 
the test data set was used to estimate the predictive ability of the 
model. This model’s classification ability was also evaluated 
using a jackknifed cross-validation method. 

Decision Tree Algorithm 
A decision tree algorithm was applied to classify and predict 

either two or three dry-milled grit yield groups based on measured 
physical properties. The best binary split was searched using the 
classification and regression tree (CART) method (Breiman et al 
1984) which is available in SAS Enterprise Miner software. A 
cross-validation method was used to build the tree model that best 
fits the observed data. First, a decision tree model for grit yield 

groups was developed using the cross-validation method with all 
the samples. After classification of the entire data set, the data set 
was partitioned into a training data (consisting of 70% of the 
samples) and a test data set (consisting of the remaining samples) 
as in discriminant analysis. The training data was used to generate 
a tree model whose predictive ability was evaluated with the test 
data. In the search for a split point, the Gini index (or Gini 
impurity) was used as the splitting criterion (Breiman et al 1984). 
The Gini index is defined as 
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where pj is the relative frequency of the group j in the whole 
dataset D. If all data at the node can be classified into one group, 
the Gini index is computed as zero. The data at each node (mother 
node) is split into two split nodes (child nodes) in which the data 
become more homogeneous. A goodness of split criterion was 
evaluated at the node using Gini indices. The split point is selec-
ted to maximize the decrease in deviance of Δi(s,t) of a split s at 
node t. If the split s sends a data point to the left child node with a 
proportion PL and to the right child node with a proportion PR, the 
decrease in impurity of the split s is computed as 
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where i(t) is a measure of a Gini index of the split s at the parent 
node t. This procedure is repeated for a new child node to grow 
the tree. When the tree level meets one of the predetermined stop-
ping rules, such as a maximum tree level depth and a minimum 
number of data in child nodes, the node becomes a terminal node. 
Created classification trees were pruned by finding and elimina-
ting weak links after building the larger tree models. Tree pruning 
prevents the decision tree model from overfitting the training 
data, which usually does not help fit other independent data. Dif-
ferent combinations of the tree splitting criteria were tested to find 
the best decision tree model that includes the most relevant phys-
ical properties at split points. Although all measured physical prop-
erties were initially used as input variables to create a decision 
tree model, only two or three of them were used in the final deci-
sion tree models. The detailed decision tree algorithm methodology 
used in this study was described in Breiman et al (1984) and 
Witten and Frank (2000). The results from decision tree analysis 
were compared with those from discriminant analysis relative to 
each technique’s ability to determine correct classifications. 

Statistical Analysis 
All statistical analyses were conducted using SAS software. 

Mixed model analysis using the Proc MIXED procedure was per-
formed to evaluate all variance components for each estimated 
physical property and to characterize the seven grit yield groups 
within a location and between locations. Total grit yield group, 

TABLE I
Significance of Random and Fixed Effects by Physical Properties 

 Random Effectsa Fixed Effects 

Physical Properties Year Year-by-Location Group (G) Location (L) G × L 

Protein content <0.001 0.003 0.004 0.372 0.648 
Test weight 0.999 0.999 <0.001 0.155 0.232 
NIT density <0.001 <0.001 <0.001 0.849 0.246 
Pycnometer density <0.001 <0.001 <0.001 0.187 0.738 
Time to grind in SHTb <0.001 <0.001 <0.001 0.959 0.002 
TADDc <0.001 <0.001 <0.001 0.414 0.103 
100 Kernel weight <0.001 <0.001 0.843 0.485 0.999 
Kernel size distribution 0.011 <0.001 0.611 0.993 0.986 
a Likelihood ratio test used to evaluate variance of random effects. 
b Stenvert Hardness Tester (SHT). 

c Tangential Abrasive Dehulling Device (TADD). 
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location, and their interaction were considered as fixed effects, 
while year and year-by-location were regarded as random effects 
by which the environment influences on the physical properties 
were incorporated into the mixed model. The mean difference of 
the seven grit yield groups was examined using least significant 
differences (LSD) at α = 0.05. A likelihood ratio test was used to 
test the variance of the random effects. Correlation coefficients 
were determined between physical properties and total grit yields. 
Stepwise regression analysis was performed to find significant 
independent variables for the total grit yield using the Stepwise 
selection method implemented in the Proc REG procedure (α = 
0.05). Multiple linear regression analysis was conducted with the 
selected independent variables to predict the total grit yield. 

RESULTS AND DISCUSSION 

Random and Fixed Effects 
The results from a likelihood ratio test for random effects, year 

and year-by-location, for the physical properties is presented in 
Table I. The effects of year and the year-by-location interaction 
were significant for all physical properties except test weight. 
Seasonal variation in grain end-use performance and its expres-
sion by location is common and has been documented in previous 
studies (Dombrink-Kurtzman and Bietz 1993; Shandera et al 1997). 

P-values for the fixed effects grit yield group, location, and 
group-by-location interaction are presented for each physical 
property in Table I. The significant group-by-location interaction 
effect observed for time to grind (P = 0.002) indicates that the 
amount of energy used to grind grain of a particular maize hybrid 
varied between production areas. The group effect was significant 
(P < 0.001) for all physical property measurements except 100 

kernel weight and kernel size distribution. The significant relation-
ship between protein content, test weight, NIT density, pycnometer 
density, time to grind, TADD, and the seven groupings based on 
4% grit yield increments (<46, 46–50, etc.) supports the decision 
to use these intervals. The absence of a significant location effect 
indicates a consistent relationship among the seven grit yield 
groups and physical kernel measurements. 

Physical Properties 
The seven grit yield groups showed differences (P < 0.05) in 

estimated physical properties that have been considered as factors 
directly or indirectly associated with maize dry-milling quality 
(Fig. 3A–H). Pattern differences among the grit yield groups in 
relation to physical properties indicate that multivariate techniques 
will likely improve data description and prediction as compared 
with regression analysis (Baker et al 1999).  

Protein content. Protein content increased with an increase in 
the grit yield, but the difference in protein contents was not large 
among the seven grit yield groups (Fig. 3A). Samples in the 54–
58% grit yield group had significantly higher protein contents than 
in the other yield groups (P < 0.05), followed by a decrease in 
protein content for the 58–62% grit yield group. Previous research 
documents a relationship between protein and maize kernel hard-
ness, a determinant in dry-milled product yield (Shandera et al 
1997). The results in this study reveal that the geographically and 
genotypically diverse sample set obtained for this study does not 
conform closely to prior research results utilizing fewer hybrids and 
growing locations. 

Test weight. A significant increase (P < 0.05) in test weight was 
observed as the grit yield increased (Fig. 3B). However, the in-
crease in test weight was not very large between the 50–54% and 

 

Fig. 3. Physical properties of 154 maize hybrids and significant differences among seven classified dry-milled grit yield groups. A, Protein (%); B, Test 
weight (kg/hL); C, NIT density (g/cm3); D, Pycnometer density (g/cm3). Means with the same letter are not significantly different at α = 0.05.  
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58–62% yield groups, or between the 62–66% and >66% yield 
groups. Test weight (bulk density) is an important quality prop-
erty used to determine maize grades and selling price (Duensing 
et al 2003). In previous studies, lower test weights resulted in lower 
prime and total grit yields during dry-milling processes (Paulsen 
and Hill 1985; Dorsey-Redding et al 1991; Peplinski et al 1992), 
which is consistent with our findings. The grit yield was second-
best correlated with test weight (P < 0.01, r = 0.423) (Table II). 

Kernel density. Maize kernel density was estimated by a helium 
compression pycnometer and NIT spectroscopy calibrated using 
the values measured with a nitrogen pycnometer (Micromeretics, 
WayCross, GA). Patterns of differences in kernel density among 
the grit yield groups appeared to be similar irrespective of the 
estimating methods (Fig. 3C, D). Kernel density greatly increased 
up to the 54–58% yield group, but decreased for the 58–62% yield 
group. The 50–54% and the 54–58% yield groups had significantly 
higher kernel densities than those of other yield groups.  

Similar findings were reported in previous studies where maize 
kernel density showed a positive correlation with other hardness-
associated properties that are important intrinsic traits closely asso-
ciated with percentage of vitreous endosperm (Kirleis and Stroshine 
1990; Wu and Berquist 1991; Shandera et al 1997). A higher ratio 
of vitreous to floury endosperm is preferred by dry-millers because 
it produces a higher percentage of large flaking grits with signi-
ficant economic value.  

Consequently, kernel density alone and with other hardness-asso-
ciated properties showed the best predictive ability for dry-milled 
product yields and are frequently considered useful screening prop-
erties for evaluation of dry-milling quality (Kirleis and Stroshine 
1990; Wu and Bergquist 1991). 

Time to grind in SHT. An increase in grit yield was accompanied 
by an increase in time to grind in SHT (Fig. 3E). Time to grind for 
maize in the 46–50% grit yield group was not extremely different 
from that of the 50–54% yield group. However, a significant differ-
ence (P < 0.05) existed among other grit yield groups. Figure 3E 
implies that time to grind might be a variable with good discrim-
inating power in differentiating the dry-milled grit yield groups. 
Time to grind is positively correlated with total grit yield (P < 
0.01, r = 0.672) (Table II) and maize endosperm texture (Pomer-
anz et al 1985; Watson 2003), and negatively correlated with kernel 
moisture content (Pomeranz et al 1986). According to findings in 
previous studies (Pomeranz et al 1985; Kirleis and Stroshine 
1990), longer time to grind is positively correlated with smaller 
total volume (lower column height) and higher ratio of coarse to 
fine particles collected in SHT receptacles This indicates a harder 
endosperm texture and a larger dry-milled grit yield. 

Tangential Abrasive Dehulling Device (TADD). TADD index 
increased as the grit yield increased for the 54–58% yield group, 
and then decreased for the 58–62% yield group (P < 0.05) (Fig. 
3F). A lack of statistical difference between the 50–54% yield 
group and the 54–58% yield group was observed, indicating that 
this physical test of kernel hardness was only capable of discrim-
inating between two or three grit yield groups. TADD index is a 
fast and reproducible hardness test but it is rather sensitive to 
moisture content (Lawton and Faubion 1989) and kernel surface 
area (Shandera et al 1997).  

Kernel moisture content was maintained at 13 ± 1%. Higher 
TADD index is generally correlated to higher protein content, 
higher test weight and kernel density, and lower percent floaters 
(Shandera et al 1997). 

 

Fig. 3. (continued) Physical properties of 154 maize hybrids and significant differences among seven classified dry-milled grit yield groups. E, Time to 
grind in Stenvert Hardness Tester (SHT); F, Tangential Abrasive Dehulling Device (TADD, %); G, 100 kernel weight (g); H, Kernel size distribution 
(%).  Means with the same letter are not significantly different at α = 0.05.  
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100 Kernel weight and kernel size distribution. There was no 
significant difference in 100 kernel weight among the seven yield 
groups (Fig. 3G). Pomeranz et al (1985) reported a correlation 
between kernel weight and maize kernel hardness-associated prop-
erties such as near-infrared reflectance (NIR) at 1680 nm and 
SHT measurements at constant protein and ash contents, which 
implies an influence of kernel weight on dry-milling quality. The 
difference in kernel size distribution among the seven grit yield 
groups was apparent in Fig. 3H but not statistically significant (P 
< 0.05). The germ-endosperm ratio, oil content, hardness-associ-
ated NIT absorbance, and test weight can vary with kernel size, 
influencing maize endosperm texture and dry-milled products 
(Robutti 1995; Shandera et al 1997). 

These results suggest a nonlinear relationship between physical 
properties and grit yield groups, and a similarity among closely 
located grit yield groups. Such observations may enable the orig-
inal seven dry-milled grit yield groups to be reduced to a set of 
two yield groups (<58 and ≥58%) or a set of three yield groups 
(<50, 50–58, and ≥58%). Of these physical properties, time to 
grind in SHT, TADD index, NIT density, and test weight appeared 
to be important independent variables in differentiating two or 
three grit yield groups, as they had more conspicuously different 
patterns among the groups than the other variables. Improving 
model classification ability was attempted by using different com-
binations of these physical properties as input variables in pattern 
recognition techniques. 

Regression Analysis 
Stepwise regression analysis showed that significant independent 

variables in the selected model for the prediction of dry-milled 
grit yield were test weight, protein content, pycnometer density, 
time to grind in SHT, and kernel size distribution. Although such 
independent variables were most relevant to predicting dry-milled 
grit yield, the multinomial linear regression analysis indicated that 
52.0% of the grit yield variability was explained by this regression 
model (P < 0.05, R2 = 0.52) 

 

 

Adding other physical property variables did not improve the 
predictability of the model. In addition, the parsimonious variables 
in the model would not help breeders, producers, and processors 
to efficiently differentiate maize suitable for the end-use perform-
ance. This seems to support the need to explore other simple and 
easy-to-use techniques to identify maize hybrids best suited for 
dry-milling performance. The two pattern recognition techniques 
discussed in this study, if proven accurate, would be efficient and 
provide better results in classifying dry-milled grit yield by 
incorporating information from each measured physical property 
in predicting dry-milled grit yield. Implementing this approach 
could provide millers with simple and rapid methods to determine 

maize lots with superior dry-milling qualities without using an 
identity-preservation procurement system, and without additional 
costs. 

Discriminant Analysis 
A quadratic discriminant analysis is a general extension of a 

linear discriminant analysis that assumes the same variance-covari-
ance matrix of different classes (Johnson 1998). The individual 
variance-covariance matrix of each class is used as a classification 
criterion in a quadratic discriminant analysis. Among several 
alternative classification rules used to discriminate among classes, 
the Bayes rule was used to compute the posterior probability to 
assign an observation x to a single class (G). According to this 
rule, given prior probabilities pi and pj, the observation x belongs 
to class Gi if 

 

 

where P(x/Gi)·and P(x/Gj) are the probability densities. A quad-
ratic discriminant assigns the observation x to class Gi when the 
discriminant score Di(x), a measure of the generalized squared dis-
tance between x and class G, is minimized (Rao 1973; Johnson 
1998) 

 
 

where μi is the mean of class i, and Σi is the population variance-
covariance matrix of class Gi. The posterior probability for each 
of the possible classifications is then obtained using the computed 
discriminant score Di(x). An observation x is assigned to the class 
with the largest posterior probability. In a linear discriminant 
analysis, the notation Σi of the different population covariance 
matrix is replaced with Σ due to the same variance-covariance 
matrix assumption 

 
 

With all the physical properties tested in this study, the uni-
variate and multivariate statistics for discriminant analysis of the 
models obtained for samples divided into either two or three grit 
yield groups were estimated to find the most relevant physical 
properties (Table III). Univariate statistics were estimated to test 
the equal means of the physical property for the grit yield groups, 
while multivariate statistics were used to investigate the main and 
interaction effect of the grit yield groups on all physical prop-
erties. Except for kernel size distribution, most of the physical 
property variables were statistically significant in sets divided into 
three grit yield groups by univariate statistics. As discussed pre-
viously regarding relationships between the physical properties and 
the grit yield groups, the most significant variables (P < 0.001) in 
univariate statistics for the three grit yield groups were time to 
grind in SHT (F = 44.48) followed by NIT density (F = 19.56), 
TADD (F = 15.40), and test weight (F = 11.52) in decreasing 

TABLE II
Partial Correlation Coefficients of Maize Physical Properties at Constant Moisture Contenta 

 Test 
Weight 

NIT 
Density 

Pycnometer 
Density 

Time to Grind 
in SHTb 

100 Kernel 
Weight 

Kernel Size 
Distribution 

 
TADDc 

Total Grit 
Yield 

Protein content –0.147 0.376** 0.181* 0.054 –0.422** –0.204* 0.439** 0.205* 
Test weight  0.561** 0.432** 0.417** 0.478** 0.098 0.212* 0.423** 
NIT density   0.613** 0.291** –0.035 –0.178* 0.634** 0.331** 
Pycnometer density    –0.040 0.058 –0.066 0.610** –0.025 
Time to grind in SHT     0.333** 0.062 –0.164* 0.672** 
100 Kernel weight      0.469** –0.200* 0.215* 
Kernel size distribution       –0.165* –0.035 
TADD        –0.050 

a *, ** Significant at 0.05 and 0.01 level.  
b Stenvert Hardness Tester (SHT). 
c Tangential Abrasive Dehulling Device (TADD). 
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order of significance. Again, this result implies that time to grind 
in SHT might substantially contribute to the discriminating and 
predictive ability of the model. Univariate statistics of a quadratic 
discriminant model for two grit yield groups gave a slightly 
different result: five variables, including time to grind in SHT (F 
= 78.33), TADD (F = 12.16), 100 kernel weight (F = 11.16), test 
weight (F = 10.27), and pycnometer density (F = 6.09) were more 
relevant than the other variables. Time to grind in SHT had a 
much higher F-value than the other variables in the two grit yield 
groups, as well as the time to grind F-value for the three grit yield 
groups. NIT density in the model for the three grit yield groups 
appeared to be substituted with another true density measurement, 
pycnometer density, in the model for two yield groups. Pycno-
meter density, however, was not used as an input variable in the 
discriminant analysis because the F-value of pycnometer density 
was relatively lower than those of other selected variables. Two 
multivariate statistics in both classification models were significant 
(P < 0.001), demonstrating a difference among the grit yield groups 
in a set of physical properties. F-values of multivariate statistics 
in the model of two grit yield groups were greater than those for 
the three grit yield groups. 

After investigating the contribution of physical property vari-
ables to the classification model based on the univariate and multi-
variate statistical results, time to grind, NIT density, TADD, and 
test weight were selected for the classification of three grit yield 
groups. Time to grind, TADD, 100 kernel weight, and test weight 
were selected for the classification of two grit yield groups. Less 
relevant physical property variables from the discriminant analysis 
point of view were eliminated in developing the model. The 
selected four variables in both classification models resulted in 
better separation among either the two or three grit yield groups. 
In preliminary trials, correct classification rates of discriminant 
models created by using the selected physical property variables 
were higher than those for models built by all measured physical 
property variables (Table IV). Furthermore, combinations of selec-
ted variables based on the results from a stepwise regression 
analysis did not show higher correct classification rates for two or 
three grit yield groups than those from the univariate statistics 
(Table IV). Correct classification rates were almost equal between 
grit yield groups with a sufficient number of measurements, regard-
less of the number of variables used for those models, indicating 
the importance of the number of observation in establishing the 
model. In grit yield groups with a small number of measurements, 
the models developed with eight variables had more accurate class-
ification and predictive abilities than those with five variables from 
the stepwise regression analysis, leading to slightly better overall 
model accuracy. 

A quadratic discriminant analysis for three grit yield groups 
also derived two canonical variables, the quadratic combination of 
the original variables. The two canonical variables were very signi-
ficant (P < 0.001), indicating a significant contribution of these 
variables to the discrimination among three yield groups. The first 
function accounted for 72% of the variation in grit yield groups. 
Canonical correlation, the measure of the association between the 
function and dry-milled grit yields, had a rather low correlation (r 
= 0.44) between the second canonical discriminant function and 
three grit yield groups.  

This suggests that better discrimination between grit yield 
groups might be obtained when the posterior probability criterion 
and the discriminant score are used. Scattered plots created by 
canonical discriminant scores did not show good discriminating 
power among the grit yield groups (data not shown).  

TABLE IV
Correct Classification Rates of Two or Three Dry-Milled Grit Yield Groups Estimated Using Discriminant Analysis  

with All Eight Variables and Selected Five Variables by Stepwise Regression Analysis 

Actual  8 Variables 5 Variablesa 

Group All Samples (%) Training Set (%) Test Set (%) All Samples (%) Training Set (%) Test Set (%) 

Three yield groups       
<50 53.6 36.8 55.6 64.3 47.4 33.3 
50–58 72.6 74.1 76.9 66.7 74.1 80.7 
≥58 69.0 72.4 69.2 59.5 31.0 61.5 
Total 68.2 67.0 71.0 64.3 67.0 67.0 

Two yield groups       
<58 89.3 89.6 91.3 91.1 89.6 91.4 
≥58 66.7 72.4 61.5 59.5 65.5 53.9 
Total 83.1 84.9 83.2 82.5 83.0 81.1 

a Selected five variables: time to grind in Stenvert Hardness Tester (SHT); test weight; protein content; pycnometer density; kernel size distribution. 

TABLE V 
Correct Classification Rates for Three Dry-Milled Grit Yield Groups Estimated  

Using Discriminant Analysis with Time to Grind, NIT Density, TADD, and Test Weight Variables 

Actual  Predicted Group (all samples) Predicted Group (training set) Predicted Group (test set) 

Group <50 50–58 ≥58 Total (% correct) <50 50–58 ≥58 Total (% correct) <50 50–58 ≥58 Total (% correct)

<50 15 11 2 28 (53.6) 11 7 1 19 (57.9) 4 5 0 9 (44.5) 
50–58 10 69 5 84 (82.1) 5 49 4 58 (84.5) 2 21 3 26 (80.8) 
≥58 1 12 29 42 (69.1) 1 7 21 29 (72.4) 1 4 8 13 (61.5) 
Total 26 92 36 154 (73.4) 17 63 26 106 (76.4) 7 30 11 48 (69.0) 

TABLE III 
Univariate and Multivariate Statistics of Discriminant Analysis  

for Two and Three Dry-Milled Grit Yield Groupsa 

 Two Dry-Milled 
Grit Yield Group 

Three Dry-Milled 
Grit Yield Group 

Univariate   
Protein content 0.03 5.40** 
Test weight  10.27** 11.52*** 
NIT density  0.23 19.56*** 
Pycnometer density  6.09* 8.18*** 
Time to grind in SHTb 78.33*** 44.48*** 
TADDc 12.16*** 15.40*** 
100 Kernel weight 11.16** 5.60** 
Kernel size distribution  0.00 2.15 

Multivariate    
Wilks’ lamda  13.01*** 8.98*** 
Pillai’s trace 13.01*** 8.68*** 

a *, **, ***, Significant at 0.05, 0.01, and 0.001 level. 
b Stenvert Hardness Tester (SHT). 

c Tangential Abrasive Dehulling Device.  
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The samples belonging to each grit yield group were not dis-
tinctively separated, implying that selected independent variables 
were not best for a differentiation between grit yield groups. 

With the samples divided into three grit yield groups, two quad-
ratic discriminant models built with all the samples and a training 
data set exhibited similar classification abilities (Table V). Good 
classification ability was observed for the 50–58% yield group in 
both models, while samples belonging to <50% and ≥58% yield 
groups were often improperly classified, which appears to be 
associated with number of observations available in each group 
for model development. Sufficient numbers of observations may 
further improve the performance of those models. The overall esti-
mated predictive ability of the classification model created by the 
training data set was 69.0% for test data set. The best predictive 
ability was obtained for 50–58% yield group samples, which were 
correctly placed for 21 of 26 samples (80.8% correct classification 
rate). Generalized Mahalanobis squared distances between grit 
yield groups are shown in Table VI. The 50–58% yield group had 
a greater distance value against the <50% group than against the 
≥58% group. This may imply a more feasible combination of the 
50–58% group with the <50% group rather than with the ≥58% 
group if dry-milled grit yields needed to be categorized into two 
yield groups. As noticed, the matrices of dry-milled yield groups 
are not symmetric. This is caused by different distance weighing 
between each pair of groups due to the unequal variance and 
covariance matrices of yield groups. 

Two grit yield groups improved the correct classification rates 
by more than 10% (Table VII). Correct classification rates using 
the quadratic discriminant model for the <58% yield group were 
close to 94%, as estimated using a jackknifed cross-validation 

method. The improvement in classification and predictive abilities 
of the models observed with the <58% group might be due to the 
larger number of measurements compared with models for three 
grit yield groups. However, the ≥58% yield group showed the same 
classification and predictive ability in all data sets. With a test 
data set, 33 of 35 samples were correctly placed for the <58% 
yield group, yet the ≥58% yield group samples were highly mis-
classified, resulting in a 85.3% overall correct classification rate. 
These observations suggest that the large difference among sample 
sizes of grit yield groups largely contributes to the variation among 
the correct classification rates. 

Decision Tree Algorithm 
A decision tree algorithm generates clear rules from the 

training data to classify and predict the data into different groups 
or categories, while simultaneously identifying the important 
variables. Each selected variable is assigned to a split point at 
each node. This study applied a decision tree algorithm for 
classifying and predicting maize samples into either two or three 
grit yield groups. With the use of all samples to develop a decision 
tree, data was partitioned into different ratios of training data to 
test data to select and determine the optimal partition of data into 
two sets. Partitioning data into a 70% observation training data set 
and a 30% observation test data set appeared to be optimal 
because this ratio provided a slightly better accuracy and a 
simpler sub-tree than other data set ratios. Among sampling 
methods used in data partitioning, a stratified sample method was 
employed because this method could sustain the ratio of the dry-
milled grit yield groups in both the training data set and the test 
data set, improving the model’s classification accuracy. The 

TABLE VI
Generalized Mahalanobis Squared Distance Between Dry-Milled Grit Yield Groups  

 All Samples Training Set 

 <50 50–58  <50 50–58  

Actual Group <58a ≥58 <58a ≥58 

Three yield groups       
<50 2.54 2.69 6.82 2.75 3.15 6.40 
50–58 4.97 0.76 4.77 5.27 0.49 4.48 
≥58 15.32 5.23 3.29 15.85 5.37 3.02 

Two yield groups  
<58 12.16 16.40 12.18 15.94 
≥58 17.42 14.82 17.88 14.47 

a Set in two dry-milled grit yield groups (<58% vs. ≥58%). 

TABLE VII  
Correct Classification Rates of Two Dry-Milled Grit Yield Groups Estimated Using Discriminant Analysis  

with Time to Grind, TADD, 100 Kernel Weight, and Test Weight Variables 

 Predicted Group (all samples) Predicted Group (training set) Predicted Group (test set) 

Actual Group <58 ≥58 Total (% correct) <58 ≥58 Total (% correct) <58 ≥58 Total (% correct) 

<58 105 7 112 (93.8) 72 5 77 (93.5) 33 2 35 (94.3) 
≥58 13 29 42 (69.1) 8 21 29 (72.4) 5 8 13 (61.5) 
Total 118 36 154 (87.0) 80 26 106 (87.7) 38 10 48 (85.3) 

TABLE VIII 
Correct Classification Rates of Three Dry-Milled Grit Yield Groups Estimated  

Using Decision Tree Algorithm with TADD, Time to Grind, and NIT Density Variables 

 Predicted Group (all samples) Predicted Group (training set) Predicted Group (test set) 

Actual 
Group 

 
<50 

 
50–58 

 
≥58 

Total  
(% correct) 

 
<50 

 
50–58 

 
≥58 

Total 
(% correct) 

 
<50 

 
50–58 

 
≥58 

Total 
(% correct) 

<50 16 11 1 28 (57.1) 11 7 1 19 (57.9) 5 4 0 9 (55.6) 
50–58 5 74 5 84 (88.1) 3 53 2 58 (91.4) 2 21 3 26 (80.8) 
≥58 3 11 28 42 (66.7) 1 7 21 29 (72.4) 2 4 7 13 (53.8) 
Total 24 96 34 154 (76.6) 15 67 24 106 (80.2) 9 29 10 48 (68.8) 
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observations on the physical property variables were kept in an 
original form before building a decision tree model because the 
transformation of eight physical property variables did not 
improve the model’s fit. The decision tree model built using all 
samples was generated after the average correct classification 
rates were obtained through a cross-validation procedure. The 
classification rule best fitted with the test data set was also 
obtained when the data was divided into training and test data 
sets. With the model derived from all samples, tree growth 
stopped for the three grit yield groups at four tree levels, while the 
stopping rules halted growth for two grit yield groups at three tree 
levels (Figs. 4 and 5). 

Only three of the eight physical property variables, including 
time to grind, TADD, and NIT density were used in the decision 
tree built using all the samples to differentiate samples when 
divided into three grit yield groups (Fig. 4). Time to grind was the 
best discriminant variable in the decision tree model. This physi-
cal property has been widely accepted as a parameter associated 
with maize kernel hardness and dry-milling evaluation in previous 
studies (Pomeranz et al 1985; Shandera et al 1997); it also served 
as a good predictor of dry-milled grit yield in this study. Kernel 
density (Kirleis and Stroshine 1990; Wu and Bergquist 1991) and 
TADD (Wehling et al 1996; Shandera et al 1997) were also 
identified as the better predictors directly related to kernel hardness 
and dry-milling characteristics. In the resulting tree, two homogen-
eous terminal nodes (2 and 4) were labeled as being in the 50–
58% yield group. A decision tree derived from the training and 
the test data sets had a similar tree structure to the decision tree 
using all the samples with the same time to grind threshold value 

at the split point, but the TADD value was 32.88% rather than 
24.93%. With a decision tree model built using all 154 samples, 
76.6% of samples were correctly classified when the samples 
were placed in three grit yield groups (Table VIII). As in 
discriminant analysis, samples belonging to the 50–58% yield 
group were placed with close to 90% accuracy, while the poorest 
classified maize hybrids were in the <50 and ≥58% yield groups. 
Similar results were observed in the classification model derived 
from the training and test data sets. To test the decision tree model 
derived using a training set with “unknown” samples, a new test 
data set was developed which included 30% of the original 154 
samples. Only 69% samples were correctly classified with this 
sample set. Because the model was built with relatively sufficient 
samples pertaining to the 50–58% yield group and the model 
showed high correct classification rates, the “unknown” 50–58% 
yield group samples were usually correctly placed, but samples 
belonging to the other groups were highly misclassified. 
Compared with the accuracy in discriminant analysis, decision 
tree models typically had higher correct classification rates for 
<58% and 50–58% groups in all data sets, but slightly lower 
correct classification rates for the ≥58% group for both the full 
and the test data sets. 

Decision tree models were also developed to classify and predict 
total grit yield when the samples were divided into two grit yield 
groups: <58 and ≥58%. Decision tree models built using all sam-
ples for differentiation into two grit yield groups were built only 
with time to grind and TADD variables, presumably because fewer 
groups were classified (Fig. 5). The first physical property variable 
used to split the original group was time to grind, the same 
variable as the tree model built for differentiating three grit yield 
groups. With a decision tree built using the training and the test 
data sets, the variable and its threshold value at each split point 

TABLE IX
Correct Classification Rates of Two Dry-Milled Grit Yield Groups Estimated  

Using Decision Tree Algorithm with Time to Grind and TADD Variables 

 Predicted Group (all samples) Predicted Group (training set) Predicted Group (test set) 

Actual Group  <58 ≥58 Total (% correct) <58 ≥58 Total (% correct) <58 ≥58 Total (% correct) 

<58 106 6 112 (94.6) 74 3 77 (96.1) 32 3 35 (91.4) 
≥58 14 28 42 (66.7) 8 21 29 (72.4) 6 7 13 (53.9) 
Total 120 34 154 (87.0) 82 24 106 (89.6) 38 10 48 (81.2) 

Fig. 5. Decision tree diagram for classification of 100% maize samples 
into two dry-milled grit yield groups. Diagram as described in Fig. 4. 

 

Fig. 4. Decision tree diagram for classification of 100% maize samples
into three dry-milled grit yield groups. Each node includes the
predefined grit yield groups and their percentages and the numbers at 
different tree levels. Variable used at a split point is located below in the
middle of each node. Threshold values above each node are the point at
which the split of the data occurs. Samples are classified into either left
or right child node from the mother node according to the threshold
values of the variable. 
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was identical to the decision tree shown in Fig. 5. In fact, the 
resulting model was only different in the absence of NIT density 
criterion in the decision tree built by the training and the test data 
sets for three grit yield groups. The reduction in dry-milled grit 
yield groups increased the overall correct classification rates (Table 
IX). With models developed using all the samples or a training 
data set, 94.6 and 96.1% of the <58% yield group samples were 
correctly classified, resulting in 87.0 and 89.6% overall correct 
classification rates, respectively.  

Total correct classification rates were similar between discriminant 
analysis and decision tree models built using all our samples. The 
decision tree model, however, showed a slightly higher correct 
classification rate in the training data set, while the discriminant 
analysis model demonstrated slightly better accuracy in the test 
data set. Despite lack of sufficient sample numbers in certain dry-
milled grit yield groups, the decision tree appeared to be suc-
cessful in classifying and predicting dry-milled grit yield groups 
from both an accuracy and a utility view point. 

CONCLUSIONS 

Low and moderate correlations between maize physical prop-
erties and total grit yields in a regression analysis suggested a 
need to explore alternative rules and procedures that would enable 
breeders, producers, and processors to more confidently predict 
maize dry-milling quality. For maize hybrid samples with genetic 
and environmental diversity measured using only a few physical 
properties, the suggested classification and predictive models 
from discriminant analysis and decision tree algorithm were rela-
tively successful in identifying and predicting predetermined dry-
milled grit yield groups. These findings suggest a need to further 
study application of such classification techniques for dry-milling 
characteristics and possibly other maize production processes, in-
cluding wet-milling and alkaline processing. While decision trees 
are often difficult to explain from an academic perspective, their 
computer-based development is not difficult. In particular, a deci-
sion tree algorithm formulated useful classification rules, although 
classification accuracy was not high enough to use on a commer-
cial scale. From the present study, the decision tree algorithm can 
be regarded as a superior method compared with discriminant 
analysis in terms of improved accuracy, the development of clearer 
classification rules, the use of fewer relevant variables, and a more 
straightforward interpretation of the result while relying solely on 
moderate statistical assumptions. Either discriminant analyses or 
a decision tree algorithm would be sufficient to complement other 
classification or segregation methods and to screen maize hybrids 
suitable for dry-milling. To improve correct classification rates and 
provide more specific classification rules, larger sample sizes and 
further investigation to identify or develop better measurement 
techniques/variables are recommended. 
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