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Climate controls vegetation distribution across the globe, and some
vegetation types are more vulnerable to climate change, whereas
others are more resistant. Because resistance and resilience can
influence ecosystem stability and determine how communities and
ecosystems respond to climate change, we need to evaluate the
potential for resistance as we predict future ecosystem function. In
a mixed-grass prairie in the northern Great Plains, we used a large
field experiment to test the effects of elevated CO2, warming, and
summer irrigation on plant community structure and productivity,
linking changes in both to stability in plant community composition
and biomass production. We show that the independent effects of
CO2 and warming on community composition and productivity de-
pend on interannual variation in precipitation and that the effects
of elevated CO2 are not limited to water saving because they differ
from those of irrigation. We also show that this mixed-grass prairie
ecosystem is not only relatively resistant to interannual variation in
precipitation, but also rendered more stable under elevated CO2 con-
ditions. This increase in production stability is the result of altered
community dominance patterns: Community evenness increases as
dominant species decrease in biomass under elevated CO2. In many
grasslands that serve as rangelands, the economic value of the
ecosystem is largely dependent on plant community composition
and the relative abundance of key forage species. Thus, our results
have implications for how we manage native grasslands in the face
of changing climate.

climate change | elevated carbon dioxide | grassland |
community stability | warming

Ecologists have long recognized the importance of climate in
shaping plant communities across spatial and temporal scales

(1). Together, precipitation and temperature characterize the dis-
tribution of terrestrial biomes across the globe. As climate changes,
some biomes will be more vulnerable to temperature increase (2) or
altered precipitation (3), whereas others will be more resistant (4–
6). Ecological stability, the maintenance of community structure and
function despite climatic fluctuation or disturbance (7–9), includes
two components: resistance [lack of change despite perturbation
(9)] and resilience [return to a previous state following a perturba-
tion (10–13)]. Diversity (14) and productivity (11, 15) can both in-
fluence community stability (16) and dampen responses to envi-
ronmental perturbation (5, 9, 17, 18). What remains unclear is how
stability and resistance respond to predicted changes in climate.
Multiple climate change factors simultaneously impact plant

performance, community structure, and productivity (4, 19, 20).
For example, elevated CO2 can improve water use efficiency and
increase plant productivity (21–23), but warming can reduce it,
counteracting the positive water-saving effects of elevated CO2
(24). In addition, plant species and functional groups that differ
in photosynthetic pathway often have contrasting responses to
elevated CO2, warming, and altered precipitation. Furthermore,
the effects of individual climate change factors may be additive

(25, 26), subadditive (4, 24, 27), or antagonistic (27, 28). As a
result, the performance of a given species or functional group
depends on interactions among CO2, temperature, and soil char-
acteristics that influence plant water availability at the commu-
nity level.
Globally, both elevated CO2 and warming are expected to lead

to pronounced changes in vegetation distribution and structure
(25, 29, 30). In North American grasslands, warming is expected
to promote C4 dominance, dampening the ability of these areas
to show large responses to elevated CO2 (25). Because responses to
climate change differ among individual plant species and depend
on community context (31–33), the resultant community dynamics
are difficult to predict. In addition, plant responses to climate
manipulations can shift over time. Our earlier work in a mixed-
grass prairie shows that in the first 3 y of the Prairie Heating and
CO2 Enrichment (PHACE) experiment, both C3 and C4 grass
production benefited from elevated CO2 conditions (34). However,
long-term studies of CO2 enrichment show that plant responses can
diminish over time (22, 35), including the responses of dominant
grass species in our mixed-grass prairie (36). To accurately char-
acterize the trajectory of species responses and predict the inter-
acting impacts of global climate change on plant community
structure and function, long-term experiments are necessary.
Grasslands in the northern Great Plains are experiencing rapid

climate change, with average annual temperatures increasing by
2.6 °C over the last century and winter and spring temperatures
increasing more rapidly than summer temperatures (37). Grasslands
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are extensively grazed, and moisture availability (timing and
amount of rainfall) affects grassland productivity to support
domestic and native herbivores (3, 38). Compared with other
regions, precipitation change is expected to be relatively modest,
but there is a general consensus that even if annual precipitation
change is small, precipitation timing will become increasingly
variable (37) and the number of extreme precipitation events will
also increase (39–41). When coupled with rising temperatures,
water limitation will increase (42), potentially reducing range-
land productivity (43). Because the timing of water availability
regulates grassland productivity and community dynamics (3, 44),
variation in background climate may promote or reduce the re-
sistance of grasslands to climate change. The economic value of the
ecosystem is largely dependent on the plant community and the
relative abundance of key forage grass species (45). Thus, changes
in grassland productivity can have clear economic impacts for
ranching and managing wildlife (46).
To understand how climate change influences plant community

dynamics and stability (namely, resistance to interannual shifts in
precipitation), we quantified the impacts of experimentally imposed
elevated CO2, warming, and summer irrigation on plant community
composition and aboveground biomass production over 8 y in a
northern mixed-grass prairie in southeastern Wyoming. Species that
dominate biomass production are expected to respond to changes in
climate most directly (47), whereas subdominant species may re-
spond to climate change directly and indirectly through their in-
teractions with the dominant species (6, 48, 49). Thus, we quantified
climate change effects on the entire community and on dominant
and subdominant community members separately. We addressed
three questions: (i) Do the effects of climate change on plant
community composition and productivity depend on temperature
and precipitation variation? (ii) Do dominant and subdominant
components of the plant community respond differently to climate
change? and (iii) What is the influence of climate change on
community composition and biomass stability?

Results
Relative to the 30-y mean of 8.3 °C, the PHACE experimental
site experienced a number of relatively warm and dry years
(Table 1). During the same period, there were also a number of
wet years, 2009–2011, receiving 25% or more additional annual
rainfall relative to the 30-y mean. Spring precipitation, in the
form of snow and rain, has a large influence on early season plant
growth in the mixed-grass prairie, and spring precipitation varied
substantially across the 8-y study (Table 1).

PHACE Treatment Effects on Plant Community Composition and
Productivity. The effects of elevated CO2, warming, and summer
irrigation on plant community composition and aboveground
biomass production varied between wet and dry years (Table 2 and
Fig. S1). Total biomass production increased in wet years and

decreased in dry years (34). The effect of elevated CO2 on plant
community composition was significant in the first year of the
experiment (when there was no warming treatment in place) and
during subsequent relatively dry years, whereas the effect of
warming was significant during average and wet years (Table 3).
The interaction between elevated CO2 and warming on composi-
tion was significant only in 2013, suggesting that for the majority of
the study, their effects were additive rather than antagonistic.
Summer irrigation only influenced community composition in
2008 and 2013—years with low spring and summer precipitation—
but not in any other year. Effects of summer irrigation on plant
community composition did not match those from the equivalent
water savings in elevated CO2 plots, confirming that elevated CO2
had some direct influence on plant performance.

Responses of Dominant vs. Subdominant Species to Climate Change.
Across the 8-y experiment, we found 55 plant species in our
plots, but the dominant species Pascopyrum smithii and Boutelua
gracilis together accounted for approximately half of the plot
aboveground biomass (mean 57% ±2.8 SE, range 29–71%).
Their collective biomass decreased across time from 60% in 2005
to 44.5% in 2013. This decrease in dominants’ productivity was
largely driven by changes in elevated CO2 plots (to 29 ± 4% SE
in +CO2 and 41 ± 5% SE in +CO2+T in 2013) and not in plots
under ambient CO2 (to 48 ± 4% SE in ambient and 51 ± 4% SE
in +T plots in 2013). The ratio of dominant to subdominant
biomass decreased under elevated CO2 over the 8-y study period
[analysis of covariance Q:9(ANCOVA) F = 49.7, P < 0.0001; Fig. 1],
largely because the biomass of the two dominant species

Table 1. Site annual temperature and precipitation data from 2006 to 2013

■■■Q:20 30-y mean 2006 2007 2008 2009 2010 2011 2012 2013

Mean annual temperature, °C 8.0 8.55 7.6 7.7 6.3 7.6 6.4 8.8 7.7
Growing season temperature, °C 13.2 13.7 13.3 11.6 12 12.2 11.7 15.1 12.0
Spring precipitation, mm 124 112 127 81 129 200 204 46 69
Total growing season precipitation, mm 178 152 179 147 328 287 286 161 155
Annual precipitation, mm 388 438 405 385 510 379 494 241 461

The total precipitation data include precipitation in the form of rain collected at the PHACE site and snowfall (averaged from the High Plaints Grassland
Research Station meteorological station and the National Oceanic and Atmospheric Administration station at the Cheyenne, WY, Airport). Growing season
temperature is the mean temperature from March through September annually. Spring precipitation was summed from March through May, a critical time
for plant growth in this ecosystem. Growing season precipitation was summed from March through July 20, when the annual biomass harvest occurred. The
30-y mean data were downloaded from the National Oceanic and Atmospheric AdministrationQ:21 Cheyenne Airport meteorological station (www.ncdc.noaa.
gov/IPS/lcd/lcd.html). The precipitation data from 2006 (italicized) are partially supplemented with 160 mm of irrigation added to the annual precipitation
(278 mm) to yield annual precipitation equivalent to 438 mm.

Table 2. Results from two-way permulational ANOVA analyses
of the effects of year, warming, elevated CO2, time, and their
interaction on Bray-Curtis plant community composition from
2005 to 2013

Source df Pseudo-F P(perm)

Year 8 4.9 0.001
Elevated CO2 1 13.9 0.001
Warming 1 12.9 0.001
Block 1 13.7 0.001
Year × CO2 8 0.4 1
Year × warming 8 0.7 0.9
Warming × CO2 1 4.5 0.001
Year x warming × CO2 8 0.5 1
Year 8 3.1 0.001
Irrigation 1 10.6 0.001
Block 1 9.1 0.001
Year × irrigation 8 0.5 1

See Methods for details. Results from the same analysis performed on
irrigated plots are shown separately. Significant effects at α < 0.05 are bold.
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decreased over time, whereas subdominant biomass remained
stable or slightly increased. Summer irrigation increased soil water
content to nearly the same level as in the elevated CO2 treatments
(50) but had no overall effect on the dominant:subdominant
biomass ratio across time (ANCOVA F = 1.2, P = 0.3), suggesting
that the effects of elevated CO2 were not similar to those of irri-
gation. There was a marginally significant positive effect of
warming on the dominant:subdominant biomass (ANCOVA F =
3.2 P = 0.07; Fig. 1).
Across the entire plant community, elevated CO2 and, to a lesser

extent, irrigation significantly influenced community composition
in dry years, and warming significantly influenced community
composition in wet years. However, subdominant plant community
composition responded largely to warming (Table 3). The mar-
ginally significant effect of irrigation on subdominant community
composition in the wet year 2009 could be explained by the late-
summer timing of irrigation relative to the timing of precipitation
(Table 1). Overall shifts in plant community composition across the
8-y study (Table S1) were mostly driven by changes in the biomass
of five species: B. gracilis (a C4 gramonoid); the C3 gramonoids
Hesperostipa comata, P. smithii, and Koeleria macrantha; and the
subshrub Artemisia frigida (40% average dissimilarity between 2005
and 2013), with an increase in A. frigida and K. cristata biomass and
a decrease in the other species. Together, CO2 and warming in-
dependently led to divergence in plant community composition,
with dominant and subdominant components of the plant com-
munity differing in their responses (Table S1). These differential
responses reduced community dominance and promoted commu-
nity evenness and diversity (Fig. S2).

Community Stability Under Climate Change. Compositional and
biomass stability (i.e., productivity) varied among treatments
(F4,7 = 9.4, P < 0.0001 and F4,24 = 3.5, P = 0.03, respectively).
Elevated CO2, especially in combination with warming, influ-
enced annual plant compositional change (i.e., plot turnover;
Fig. 2), maintaining low annual plot turnover for most of the 8-y
CO2 enrichment experiment and conferring compositional sta-
bility across time. Similarly, biomass stability was highest in ir-
rigated and elevated CO2 plots and lowest in ambient and heated
plots (Fig. 3). High stability in elevated CO2 and irrigated plots
indicates that productivity remained unchanged across wet and
dry years, whereas productivity in ambient and warmed plots was
more variable, decreasing in dry years and increasing in wet years
(34). Furthermore, the slopes of the relationship between mean

aboveground biomass and temporal SD across the 8-y study
varied among the PHACE treatments (F4,24 = 3.7, P = 0.03), and
productivity was more sensitive to variation in climate (evidenced
by high SD) under ambient conditions than in plots under ele-
vated CO2 (Fig. 3). Community biomass stability in our study was
unrelated to species richness or diversity, but positively related to
species evenness (F = 6.7, P = 0.02; Fig. S2), illustrating the
importance of the subdominant community in stabilizing plant
productivity across dry years. Together, our results illustrate that
elevated CO2 increases community biomass stability in the face
of interannual shifts in precipitation, overcoming the negative
effects of warming by increasing plant community evenness.

Discussion
Our 8-y study included years with substantial climate variation,
and plant biomass production varied twofold between the wettest

Table 3. Results from a two-way permutational analysis of the main and interactive effects of warming, elevated CO2, and year on
plant community composition, presenting the pseudo F ratio and permuted P values within years 2007–2013

■■■Q:22

Year (precipitation)

2006 (dry)
2007

(average) 2008 (dry) 2009 (wet) 2010 (wet) 2011 (wet) 2012 (dry) 2013 (dry)

F P F P F P F P F P F P F P F P

Whole community
+CO2 2.7 0.005 1.9 0.03 2.4 0.02 1.5 0.15 1.5 0.2 1.4 0.2 2.1 0.03 0.8 0.7
+T 2.4 0.03 1.4 0.2 2.1 0.03 1.7 0.08 1.9 0.05 2.2 0.02 2.5 0.01
+T × CO2 0.5 0.9 0.5 0.9 0.8 0.7 1.1 0.4 1.2 0.3 1.2 0.3 1.9 0.05
Water 1.5 0.2 2 0.03 2.2 0.2 1.3 0.3 1.3 0.2 1.1 0.3 2 0.03

Subdominant community
+CO2 1.2 0.3 0.7 0.7 1.1 0.4 1 0.5 1.1 0.4 0.6 0.8 1.5 0.2 0.3 1
+T 2.3 0.07 1.4 0.2 2.9 0.01 2.7 0.02 1.4 0.2 2.4 0.03 3 0.01
+T × CO2 0.3 0.9 0.3 0.9 0.7 0.7 1 0.5 0.5 0.8 1.1 0.4 2.1 0.04
Water 0.8 0.6 1.2 0.3 2 0.05 1.4 0.2 1 0.5 1.7 0.1 1.8 0.08

+CO2, elevated CO2; +T, warming. In 2006, only the elevated CO2 treatment was in place. The effects of irrigation were evaluated separately because the
irrigation additions were not crossed with the other treatments. Significant treatment effects at the α < 0.05 are bold. Growing season precipitation (relative
to the 30-y site mean) is noted.

Fig. 1. The effects of the PHACE climate-change treatments on the domi-
nant:subdominant biomass response ratio, calculated as the ratio of domi-
nant species P. smitthii and B. gracilis to the subdominant species across
time. Elevated CO2 treatments were initiated in 2006 and warming and
summer irrigation in 2007. +T indicates warmed plots, +W indicates irrigated
plots, +CO2 indicates plots under elevated CO2, and +T+CO2 indicates plots
under both warming and elevated CO2. Biomass is represented as the least-
square means of the ANCOVA model that accounts for baseline differences
in biomass in 2005. Error bars are ±1 SEM (n = 5 per treatment). A shift to
greater abundance of dominant species is indicated by +1, and a shift to
greater abundance of subdominant species is indicated by −1.
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and driest years. However, despite large variation in biomass
across time, plant community production was more stable under
“future ∼ elevated CO2 + warming” climate conditions than
under current climate in our study system. Warming had little
effect on biomass stability, which was low compared with bio-
mass stability under elevated CO2. However, plant communities
experiencing both elevated CO2 and warming did not differ from
plant communities under elevated CO2 alone, and at least in
terms of biomass production, elevated CO2 was a strong stabi-
lizing force. Although summer irrigation did not appear to in-
fluence community compositional stability or the biomass ratio
of dominant to subdominant species, it did stabilize overall
aboveground biomass production across dry years, and its effect
on biomass stability was similar to that of elevated CO2. Our
findings corroborate the importance of water availability in driving
most measures of ecosystemQ:10 function, including plant productivity,
in arid ecosystems (38, 51).
In contrast to the increase in overall productivity under ele-

vated CO2 conditions we observed in the first 3 y of the PHACE
experiment (34), elevated CO2 reduced biomass production of
dominant species, particularly in later years. When extended
over the 8-y duration of the PHACE experiment, we found that
elevated CO2 and warming have differential effects on plant
community composition, productivity, and stability. Although we
saw a consistent difference between “present ∼ ambient” and
“future ∼ elevated CO2 + warming” plant community composi-
tion, the isolated effects of elevated CO2 and warming depended
on precipitation, in agreement with findings from other grassland
studies (30). The effect of elevated CO2 and irrigation on plant
community composition was evident in dry years and the effect
of warming in wet years, but there was no interaction between
elevated CO2 and warming, and their combined effects were
additive rather than antagonistic. The findings we report from
a mixed-grass prairie, however, are not necessarily generalizable
to all other grassland systems, where the effects of elevated CO2,

warming, and irrigation can vary along an aridity gradient and be
contingent on land management (52).
The two most abundant species in the plots, P. smithii and

B. gracilis, decreased in dominance under elevated CO2 plots,
whereas total plot biomass remained relatively unchanged or
increased slightly during the 8-y study, suggesting that subdominant
community biomass increased. Indeed, there is evidence that as
subdominants play an increasingly large role in communities, sta-
bility can increase (47, 53). Because subdominant community
composition did not change under elevated CO2, species already
present in the community were likely increasing their productivity.
In contrast, subdominant biomass production remained unchanged
in warmed plots, but community composition shifted, suggesting
that some subdominant species increased and some decreased
production and that subdominants may differ in their sensitivity to
warmer conditions. Further, shifts in subdominant community
composition in response to warming did not result in overall
change in production, likely because the increase in production of
particular subdominant species was counteracted by the decline in
production of other subdominant species. The differential re-
sponses of dominant and subdominant species to climate change
factors provide some evidence that the subdominant community
responding not only to the climate change treatments directly but
also to the changes in dominant biomass (6, 54).
The dominance hypothesis postulates that dominant species

use the majority of resources and have disproportionally large
community impacts (55). As a result, the responses of these
species to climate change can determine the rate at which other
species can respond (47). However, grassland subdominants
often thrive under unstable ecological or climate conditions,
including across wet and dry years (56), and in the mixed-grass
prairie, can show strong responses to elevated CO2 (36). Indeed,
enhanced subdominant graminoid production under elevated
CO2 stabilized overall biomass production across dry years. To-
gether, the differential effects of elevated CO2 and warming on
co-occurring dominant and subdominant plant species in the
PHACE experiment led to a decrease in dominance and an
increases in evenness, driven by shifts in the subdominant com-
munity. Our results provide an important counterexample to
situations in which global changes increase dominance and re-
duce diversity [e.g., N deposition (57)]. Other studies report

Fig. 2. The effects of the PHACE climate change treatments on annual
community compositional turnover. Plot turnover (i.e., dissimilarity) is the
inverse of the square-root–transformed Bray Curtis similarity index, and
annual turnover was calculated per plot. Elevated CO2 treatments were
initiated in 2006 and warming and summer irrigation in 2007. +T indicates
warmed plots, +W indicates irrigated plots, +CO2 indicates plots under el-
evated CO2, and +T+CO2 indicates plots under both warming and elevated
CO2. Turnover initially decreases, suggesting that plant communities are
relatively stable from year to year, but increases from 2009 to 2013, more so
in the ambient, warmed, and irrigated but not elevated CO2 plots, indicating
that those plots are experiencing more turnover in community composition
from year to year and, thus, are less resistant to changes in climate. Error
bars are ±1 SEM (n = 5 per treatment).

Fig. 3. Temporal biomass stability across the 8-y PHACE experiment. Temporal
stability calculations are provided inMethods. Treatments are indicated on the x
axis, where +T indicates warmed plots, +W indicates irrigated plots, +CO2 indi-
cates plots under elevated CO2, and +T+CO2 indicates plots under both warming
and elevated CO2. The results from a one-way ANOVA, with Tukey’s honestly
significant difference Q:19means separation test (α = 0.05), are presented. Different
letters indicate statistically significant differences at α = 0.05, and all other
comparisons are not statistically significantly different. Error bars are ±1 SEM
(n = 5 per treatment).
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a positive relationship between stability and species richness or
diversity (15, 24, 26), but biomass stability in our study was only
positively associated with species evenness, further illustrating
the importance of the subdominant community in stabilizing
plant productivity across dry years. The relationship between
community evenness and biomass stability was especially strong
in the plots representative of future climate conditions (namely,
plots that received both elevated CO2 and warming treatments).
Globally, grasslands cover up to 1/3 of the terrestrial surface

and provide important ecosystem services, including carbon se-
questration and forage for livestock. Over the past two centuries,
many grasslands across the globe have been transformed by ag-
riculture, grazing, fire, and invasive species. Anthropogenic
influences are expected to intensify to keep pace with a growing
global population that relies heavily on grassland production. In
addition to land use, climate impacts most aspects of grassland
function (51, 58). In rangelands, the economic value of livestock
operations relies on stable production of key forage grass species
(45, 59). Others have noted that the dominant species in our plots,
P. smithii and B. gracilis, as well as the subdominants H. comata,
C. eleocharis, A. frigida, S. coccinea, and K. macrantha, are relatively
drought- and disturbance-tolerant (60–63), and our findings gen-
erally agree. Although the dominance patterns in ambient mixed-
grass prairie plots shifted slightly over the 8-y study, the transition
from P. smithii- and B. gracilis-dominated communities to the
subdominants occurred gradually. Despite the general shift in
dominance in ambient plots, overall plant community biomass and
composition remained relatively stable, but rendered more stable
under elevated CO2. As climate becomes increasingly variable (30,
64), with longer and more pronounced droughts in the future, el-
evated CO2 appears to further stabilize this mixed-grass prairie
community against shifts in precipitation. Thus, our results suggest
that production can be maintained under elevated CO2 conditions,
but with subdominant plant species contributing more to total
production and perhaps increasing in dominance. Such shifts in
species composition can have important implications for rangeland
quality and should be considered in future management plans for
mixed-grass prairie ecosystems.

Methods
The PHACE experiment was initiated in 2005 at the U.S. Department of
Agriculture Agricultural Research ServiceQ:11 High Plains Grasslands Research
Station, located west of Cheyenne, WY (41° 11′ N latitudeQ:12 , 104° 54′ W lon-
gitude). The vegetation at PHACE is a northern mixed-grass prairie and is
dominated by C3 graminoids. C4 grasses make up 25% of the plant com-
munity, and 20% of the plant community consists of sedges, forbs, and small
shrubs. Annual precipitation at the site averages 384 mm; mean winter air
temperature is −2.5 °C, and mean summer air temperature is 17.5 °C. The
site was regularly grazed since 1974, but was fenced to prevent livestock
grazing in 2005. The soil at the site is a fine-loamy, mixed, mesic Aridic
Argiusoll, pH 7.9. In the north side of the site, the soil is Ascalon series, and
the south side soil is Altvan series; as a result of these soil type differences,
we blocked the experimental units by soil type and included block as
a random effect in the models. In 2005, 25 circular 3.4-m–diameter plots
were established with a 60-cm–deep impermeable barrier to prevent lateral
inflow. Elevated atmospheric CO2 was applied starting in 2006 and accom-
plished by using mini-FACE (The Free Air CO2 Enrichment) technology [am-
bient CO2 ∼385 parts per million by volumeQ:13 (ppmv) and elevated CO2 600 ±
40 ppmv (65)], using 3.3-m FACE rings. A differential daytime/nighttime
warming (1.5/3 °C) treatment was applied by using infrared heaters (66) in
full factorial design, with five replicates for each of the four combinations
(ambient, +CO2 and ambient temperature; ambient CO2 and + temperature;
+CO2 and ambient temperature; and + CO2 + temperature). Elevated CO2

treatments were initiated in early spring of 2006, and warming and summer
irrigation were started in the spring of 2007. All plots were irrigated by hand
in 2006 to facilitate establishment of an associated experiment (20 mm ×
eight irrigation dates, the equivalent of 160 mm of additional growing-
season precipitation). Beginning in 2007, plots were irrigated to match the
water saving under elevated CO2 treatments, receiving an equivalent of
18 mm of precipitation with each irrigation × five irrigation dates in 2007,
the equivalent of 90 mm of additional growing-season precipitation. From

2008 to 2011, irrigated plots received an equivalent of 21 mm of precipitation
three times during the growing season (equivalent to 63 mm of additional
precipitation), and in the dry year of 2012, 65 mm of water was added four
times during the growing season (equivalent to 260 mm). In 2013, 24 mm was
added before harvest. The site, experimental setup, and treatment perfor-
mance are described in detail in ref. 34. Annual aboveground production was
clipped by species to the crown in 12 subplots of 625 cm2 in each experi-
mental plot, alternating the location of the clipped area each year. Vegeta-
tion was harvested in late July, at the time of peak biomass. All harvested
material was sorted to species, dried for 3 d at 55 °C, and weighed. We used
species-specific relative biomass in all subsequent statistical analyses.

Analyses Q:14. Plant community productivity and composition. To examine the effects
of the climate-change treatments over time on plant community composi-
tion, we used a two-way permutational analysis of variance (PERMANOVA)
on the Bray Curtis similarity index of square-root transformed species-specific
relative biomass, with year, elevated CO2, and warming as the fixed effects in
one model, block as a random effect, and year and irrigation in a separate
model because the treatment application was not fully factorial (warming
and elevated CO2 were not crossed with irrigations). The same main effects
were tested within each year, with the effects of elevated CO2 only in 2006
because it was the only treatment in place. The PERMANOVA analysis was
complimented with permutational analysis of multiple dispersions Q:15(PERMDISP),
a multivariate analysis of dispersion that calculates the centroid of each treat-
ment in multivariate space and calculates the distance of each plot within the
treatment from the treatment centroid. We found no significant PERMDISP
differences within treatments, indicating that the PERMANOVA results show
significant differences among treatments that are not the result of dispersion
differences within treatments. A similarity percentage (SIMPER) analysis was
performed to quantify the contribution of individual species to compositional
differences among treatments and years. The PERMANOVA, PERMDISP, and
SIMPER analyses were conducted for the whole community and the sub-
dominant community separately; for the latter, we removed the two dominant
species, P. smithii and B. gracilis, and recalculated the relative biomass of the
remaining species. Principle coordinates analysis (PCO) ordination was per-
formed to visualize whole plot composition in a 2D space. The multivariate
community analyses PCO, PERMANOVA, and SIMPER analyses were performed
by using PRIMER (Version 1.0.3; Plymouth Marine Laboratory).

The multivariate analyses were complimented with a series of univariate
analyses. We calculated a biomass response ratio by taking the difference
between dominant and subdominant biomass and dividing it by the sum of
dominant and subdominant biomass. Changes in the ratio of dominant
(B. gracilis and P. smithii) to subdominant species biomass over time were
analyzed by using an ANCOVA, with block as a random effect, plot number
nested within treatment, treatment effects and their interaction as well as their
interactions with year, and 2005 biomass and its interaction with year included
as covariates to account for differences in starting conditions among plots.
Least-square means from the ANCOVA model were plotted to illustrate the
effects of the climate-change treatments on the biomass response ratio instead
of raw biomass measures because ANCOVA model least-square means account
for differences in biomass between plots at the start of the experiment.
Ecosystem resistance/stability. We assessed the effects of the PHACE climate-
change treatments on stability using two approaches. To assess community
compositional stability, we first quantified community compositional dis-
similarity, taking the inverse of the square-root–transformed Bray Curtis
similarity index on the sample × species matrix and calculating the annual
percentage of community turnover per plot. Small changes in community
composition within a plot from year to year represent greater community
stability than larger shifts. The effects of the climate-change treatments on
indices of community composition for each year were examined by using an
ANOVA, with elevated CO2 and warming as the main effects and block as
a random effect, and followed with Tukey–Kramer post hoc comparisons. A
separate one-way ANOVA was used to look at the effect of elevated CO2 in
2006 and irrigation between 2007 and 2012. To assess temporal biomass
stability, S, we calculated the mean plot productivity per treatment across
the study (μ) and divided by the temporal SD over the same time period (σ)
(17). Log-transformed temporal biomass stabilities were compared among
treatments by using a one-way ANOVA, with post hoc Tukey–Kramer com-
parisons to distinguish treatment differences. All univariate analyses were
performed by using JMP (Version 10.0; SAS Institute).
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Fig. S1. Species PCO ordination plots, with axis 1 and 2 scores that together explain 37% of the variation. Elevated CO2 treatments were initiated in 2006 and
warming and summer irrigation in 2007. Individual and interacting effects of the PHACE treatments are noted, where significant in the PERMANOVA. +T indicates
warmed plots, +W indicates irrigated plots, +CO2 indicates plots under elevated CO2, and +T+CO2 indicates plots under both warming and elevated CO2. Each point
signifies the average of PCO axis 1 and 2 scores across replicates within that treatment (n = 5), and error bars are ±1 SEM.
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Fig. S2. The linear relationships between species richness (Top), Shannon’s diversity (Middle), and evenness (Bottom) and temporal community biomass
stability from 2005 to 2012. +T indicates warmed plots, +W indicates irrigated plots, +CO2 indicates plots under elevated CO2, and +T +CO2 indicates plots
under both warming and elevated CO2.
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