Cheatgrass is favored by warming but not CO₂ enrichment in a semi-arid grassland

DANA M. BLUMENTHAL¹, JULIE A. KRAY¹, WILLIAM ORTMANS², LEWIS H. ZISKA³ and ELISE PENDALL⁴,⁵

¹Rangeland Resources Research Unit, USDA Agricultural Research Service, Fort Collins, CO, USA, ²Biodiversity and Landscape Unit, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium, ³Crop Systems and Global Change Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA, ⁴Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia, ⁵Department of Botany & Program in Ecology, University of Wyoming, Laramie, WY, USA

Abstract

Elevated CO₂ and warming may alter terrestrial ecosystems by promoting invasive plants with strong community and ecosystem impacts. Invasive plant responses to elevated CO₂ and warming are difficult to predict, however, because of the many mechanisms involved, including modification of phenology, physiology, and cycling of nitrogen and water. Understanding the relative and interactive importance of these processes requires multifactor experiments under realistic field conditions. Here, we test how free-air CO₂ enrichment (to 600 ppmv) and infrared warming (+1.5 °C day/3 °C night) influence a functionally and phenologically distinct invasive plant in semi-arid mixed-grass prairie. Bromus tectorum (cheatgrass), a fast-growing Eurasian winter annual grass, increases fire frequency and reduces biological diversity across millions of hectares in western North America. Across 2 years, we found that warming more than tripled B. tectorum biomass and seed production, due to a combination of increased recruitment and increased growth. These results were observed with and without competition from native species, under wet and dry conditions (corresponding with tenfold differences in B. tectorum biomass), and despite the fact that warming reduced soil water. In contrast, elevated CO₂ had little effect on B. tectorum invasion or soil water, while reducing soil and plant nitrogen (N). We conclude that (1) warming may expand B. tectorum’s phenological niche, allowing it to more successfully colonize the extensive, invasion-resistant northern mixed-grass prairie, and (2) in ecosystems where elevated CO₂ decreases N availability, CO₂ may have limited effects on B. tectorum and other nitrophilic invasive species.

Keywords: climate change, global warming, Great Plains grasslands, growing season length, nitrogen limitation, plant invasion, plant phenology, rangeland ecosystems

Received 16 December 2015 and accepted 25 January 2016

Introduction

Increasing atmospheric carbon dioxide and consequent changes in climate are expected to alter the species composition and distribution of plant communities, and therefore a wide range of ecosystem functions (Thomas et al., 2004; Thuiller et al., 2005; Williams et al., 2007; Suding et al., 2008). One type of community change that may be especially problematic is the potential for increasing plant invasion (Dukes & Mooney, 1999; Thuiller et al., 2007; Walther et al., 2009; Bradley et al., 2010). To date, however, invasive plant responses to the most pervasive global changes, elevated atmospheric CO₂ and warming, have been inconsistent and remain poorly understood (Sorte et al., 2013).

Mechanistic understanding of invasive plant responses to CO₂ and temperature is impeded by the fact that these changes influence plants both directly, by altering physiological rates and growing season length, and indirectly, by altering water and N cycling (Williams et al., 2007; Morgan et al., 2011; Wolkovich & Cleland, 2011). Strong CO₂ responses of some invasive species have been attributed to their ability to increase photosynthesis, water use, growth rates, resource use efficiency, and rooting depth as carbon becomes less limiting (Ziska, 2003; Nagel et al., 2004; Dukes et al., 2011; Blumenthal et al., 2013). Warming may promote invasion by increasing survival, accelerating growth, and opening phenological niches not occupied by native species, or may inhibit invasion by decreasing water availability and recruitment (Williams et al., 2007; Walther et al., 2009; Sandel & Dangremond, 2012; Wolkovich et al., 2013; Zelikova et al., 2013). The few studies to test for CO₂ by warming interactions have also had inconsistent results, with warming
counteracting CO2-induced increases in invasion in some cases (Williams et al., 2007; Dukes et al., 2011; Blumenthal et al., 2013).

CO2 and warming effects on plants are also context dependent, as the importance of their direct and indirect effects varies with the strength of C, N, and water limitation (Shaver et al., 2000; Morgan et al., 2004; Norby & Luo, 2004; Nowak et al., 2004; Reich et al., 2006). In particular, decreases in competition due to land use and disturbance may increase resource availability, allowing invasive species to respond more strongly to other global changes (Eskelinen & Harrison, 2014). The opposite may also be true, however, as observed for Centaurea solstitialis, which benefitted more from elevated CO2 under competitive conditions than when grown in monoculture (Dukes et al., 2011).

The context dependence of CO2 and warming effects underscores the need for both multifactor field experiments with realistic levels of water and nutrient limitation, and experimental manipulation of disturbance and competition (Norby & Luo, 2004; Kroel-Dulay et al., 2015).

Synergy between global change and invasive species may be particularly harmful if the invasive species have strong community and ecosystem impacts. Bromus tectorum L. (cheatgrass), a winter annual grass native to Europe, southwestern Asia, and northern Africa, can decrease fire return times from centuries to decades or less in its invaded range, with subsequent declines in native species diversity, forage production, and carbon storage (Mack, 1981; Melgoza et al., 1990; Wiseman, 1990; D’Antonio & Vitousek, 1992; Rice, 2005; Bradley et al., 2006; Balch et al., 2013). It has now invaded tens of millions of hectares in western North America (DiTomaso, 2000; Rice, 2005; Bradley & Mustard, 2006). Economic costs of controlling fires associated with B. tectorum have been estimated at $20 million annually (Knapp, 1996).

As global change proceeds, B. tectorum is predicted to become more invasive in cooler, high-elevation, and high-latitude areas, and in areas where water availability increases in the winter or decreases in the summer (Bradley, 2009; Mealer et al., 2012; Concilio et al., 2013; Prevey & Seastedt, 2014; Bradley et al., 2015; West et al., 2015). Furthermore, warming may directly increase fire frequency and lengthen fire seasons (Westerling et al., 2006; Littell et al., 2009), strengthening positive feedbacks between B. tectorum invasion and wildfires (D’Antonio, 2000; Abatzoglou & Kolden, 2011; Bradley et al., 2015). Field experiments in the Intermountain Region of the United States, where B. tectorum is most problematic, have shown that warming can promote B. tectorum invasion in wet years, particularly at cooler high-elevation sites (Zelikova et al., 2013; Compagnoni & Adler, 2014a,b). It is not clear whether these climatic changes will also allow B. tectorum to expand its invasive range to the north and east, particularly in the extensive grasslands of the western Great Plains (Bradley, 2009).

Also missing from predictions of future B. tectorum invasion is an understanding of how it will respond to elevated CO2. In controlled environment comparisons, B. tectorum photosynthesis, growth, seed production, and flammability all increased with increasing CO2 (Smith et al., 1987; Ziska et al., 2005). Elevated CO2 also increased seed production and seed banks of a closely related species, Bromus rubens, during a wet El Niño year in the Nevada Desert free-air CO2 enrichment experiment (Smith et al., 2000, 2014). These studies raise the prospect that elevated CO2 may intensify effects of warming on B. tectorum. However, no studies have yet evaluated effects of elevated CO2 on B. tectorum in the field, under competitive conditions with limited resource availability, or in combination with warming. Each of these factors can regulate CO2 responses, and each represents a substantial gap in our ability to predict B. tectorum responses to global change (Poorter & Navas, 2003; Luo et al., 2004; Dukes et al., 2011; Morgan et al., 2011; Dieleman et al., 2012; Bradley et al., 2015).

Here, we describe the results of a 2-year study of warming, elevated CO2, and competition on B. tectorum invasion of northern mixed-grass prairie. This plant community represents the largest remaining intact grassland (36 700 000 ha) in North America (Samson et al., 2004). While B. tectorum is sufficiently abundant within some parts of the northern mixed-grass prairie to warrant management, it remains much less abundant than it is in the Intermountain Region (Haferkamp et al., 2001; Ogle & Reiners, 2002; Ogle et al., 2003; Bradley & Mustard, 2006). Resistance to B. tectorum invasion may stem from summer-dominated precipitation regimes, relatively cool winters, and/or dominant grass species that tolerate domestic grazing (Mack & Thompson, 1982; Milchunas et al., 1988; Knapp, 1996; Bradley, 2009). If B. tectorum becomes more invasive in the future, it would have significant consequences for both livestock production and biological diversity (Haferkamp et al., 2001; Knick et al., 2003; Rice, 2005).

Our objectives were (1) to learn how elevated CO2 and warming influence B. tectorum recruitment, growth, and seed production under realistic conditions in the field, and (2) to determine whether effects of elevated CO2 and warming are regulated by the intensity of competition, water availability, and/or N availability. To answer these questions, we seeded B. tectorum into subplots within the Prairie Heating and CO2 Enrichment (PHACE) study (Morgan et al., 2011),
varied the intensity of competition by removing resident plants, and measured soil resource availability together with phenological, physiological, growth, and reproductive responses of *B. tectorum*. We predicted that elevated CO$_2$ would promote *B. tectorum* invasion by increasing photosynthesis or water use efficiency, and that warming would have no net effect on *B. tectorum*, due to opposing effects of reduced temperature limitation and increased water limitation. We also predicted that reduced competition would increase the availability of below-ground resources and allow *B. tectorum* to respond more positively to global change treatments.

Materials and methods

Study site

The PHACE experiment was located at the High Plains Grassland Research Station, near Cheyenne, WY, USA (latitude 41°11’N, longitude 104°54’W, elevation 1930 m). This site falls at the southern edge of the northern mixed-grass prairie. The climate is semi-arid, with a mean annual temperature of 7.6 °C and mean annual precipitation of 385 mm, approximately 60% of which falls during the growing season (late March through September) (Carrillo et al., 2012). Plant production is frequently water limited (Derner & Hart, 2007), and when water is present, belowground nutrients, particularly N, can be limiting (Blumenthal, 2009; Dijkstra et al., 2010). The site is dominated by perennial graminoids, including both cool season species, principally *Pascopyrum smithii* (Ryd.) A. Love, *Hesperostipa comata* Trin and Rupr., and *Carex deocharis* L. Bailey, and warm season species, principally *Bouteloua gracilis* (H.B.K) Lag. It also includes a diverse array of forbs and shrubs, and one native winter annual grass, *Vulpia octoflora* (Walter) Rydb. *Bromus tectorum* is widely distributed at the High Plains Grassland Research Station and is abundant in some areas, but was not present within study plots prior to this experiment.

Experimental design

We imposed five replications of each of four treatments: (1) control; (2) free-air CO$_2$ enrichment (FACE) to 600 ppmv; (3) infrared warming to increase canopy temperature by 1.5 °C during the day and 3 °C at night; and (4) CO$_2$ enrichment plus warming. Achieved treatment levels were 600.5 ppmv CO$_2$ ±50.4 (SD, measured at 1-min intervals), and +1.6 ± 0.3 °C (SD, measured at 1-h intervals) during the day and +3.0 ± 0.3 °C at night (see Morgan et al., 2011 and LeCain et al., 2015 for additional system performance details). The CO$_2$ and temperature levels were chosen to match projections for the late 21st century in this region, which call for atmospheric CO$_2$ concentration to rise to 500–800 ppm and mean annual temperature to increase 2.5–4 °C, under low and high emissions scenarios, respectively (Kunkel et al., 2013; Shafer et al., 2014).

Warming and CO$_2$ enrichment treatments were applied to 7 m2 rings starting in 2006 and 2007, respectively. Untreated rings were outfitted with mock heaters and CO$_2$ enrichment tubing to control for potential infrastructure effects. To ensure that treatment effects on soil water were not diluted by water movement between plots and surrounding prairie, rings were isolated belowground by installing a 60 cm deep plastic barrier. Throughout the construction and operation of the experiment, work was conducted from raised platforms to minimize disturbance to vegetation and soil within the rings. To account for within-site variation in belowground properties, we randomized rings within two soil-type blocks: Asc-lon Variant Loam (fine-loamy, mixed-mesic) and Altvan Loam (fine-loamy over sandy, mixed-mesic).

The warming treatment was imposed year-round, and often accelerated snowmelt during winter periods with measurable snow accumulation (D. Blumenthal, personal observation). Enrichment of CO$_2$ was limited to daylight hours during periods warm enough for plant growth. To ensure that the CO$_2$ treatment was applied even during cooler portions of the *B. tectorum* growing season, we enriched CO$_2$ throughout each full 24-h period when the daily temperature maximum reached 7 °C or above. We then calculated the proportion of growing degree days between *B. tectorum* germination and maturation for which CO$_2$ enrichment was applied. Conservatively assuming that *B. tectorum* growth occurs down to but not below 3 °C (Young, 2000), CO$_2$ was enriched during 100% (ambient temperature plots) and 98% (warmed plots) of growing degree days in 2012, and 97% and 95%, respectively, of growing degree days in 2013.

We seeded *B. tectorum* into a single 0.7 × 0.5 m plot within each ring in two consecutive years. One year prior to seeding, in August 2010, we removed competitors from a 0.5 × 0.3 m strip in the center of each plot with glyphosate, while protecting surrounding vegetation with vertical barriers. Thus, each plot contained two 0.5 × 0.2 m strips of undisturbed native vegetation (the ‘high-competition’ treatment) bordering a single strip with little vegetation (the ‘low-competition’ treatment) (Figure S1). The low-competition treatment did not represent the complete absence of competition because it may have contained roots from plants in adjacent undisturbed strips, soil resources could move among strips, and native species were allowed to recolonize the disturbed strips (little belowground recolonization occurred, but belowground recolonization may have been greater). For each of two *B. tectorum* growing seasons (Year 1: 2011–2012; Year 2: 2012–2013), we collected *B. tectorum* seed locally in June and seeded it by hand in August across the 0.7 × 0.5 m plot at a rate of 22 g m$^{-2}$, approximately 8000 seeds m$^{-2}$, within the range of reported seed production values for *B. tectorum* (Humphrey & Schupp, 2001; Hempy-Mayer & Pyke, 2008; Mazzola et al., 2011).

Measurements

At 3-week intervals during the period of active growth (October–November, and March–June), we counted all *B. tectorum* individuals and measured the height of 10 randomly selected individuals within each competition treatment of each plot.
Average plant height was closely correlated with average per-plant biomass at maturity ($R^2 = 0.70$ in Year 1 and 0.75 in Year 2).

We harvested individual *B. tectorum* plants when they contained mature seed, but had not yet begun to drop seed. Because plants matured at different times under different treatments, we harvested from all plots weekly for 6 weeks each year, at each date removing only mature plants by clipping at ground level. Mature plants were identified as those for which >50% of florets were purple and contained hardened seeds. All harvested plants were stored in paper bags and oven-dried for 72 h at 60 °C. Total aboveground plant biomass was determined for each subplot in each year. We then separated seed biomass (spikelets, including seeds, palea, lemma, and awns) from stems and leaves. Seed biomass including associated reproductive structures was closely correlated with biomass of seeds alone ($R^2 = 0.99$), determined by weighing seeds from a random 0.2 g subsample of spikelets (or all spikelets if seed biomass was <0.2 g). We harvested native species at the end of the study in Year 2, but not in Year 1, to avoid reducing competition in high-competition subplots. Native species biomass was measured across competition treatments because very low recolonization of low-competition subplots combined with their proximity to high-competition treatments precluded accurate measurement of recolonization.

We calculated *B. tectorum* N concentration and carbon isotope discrimination ($\Delta^{13}C$) as indicators of N limitation and water use efficiency integrated over the growing season. The $\Delta^{13}C$ value is a function of both the supply of CO2 to the leaf—regulated by the external CO2 concentration and leaf stomatal conductance (g_s)—and the photosynthetic demand for CO2 (Ainsworth & Long, 2005; Cernusak et al., 2013). Smaller $\Delta^{13}C$ values (lower discrimination against ^{13}C) result from lower leaf-internal CO2 concentrations, which may be due to reduced stomatal conductance and/or increased photosynthetic carboxylation capacity (V_{max}CO). Thus, smaller $\Delta^{13}C$ values often indicate higher water use efficiency. Larger $\Delta^{13}C$ values (greater discrimination against ^{13}C) indicate higher leaf-internal CO2 concentrations, suggesting either higher stomatal conductance or lower carboxylation capacity (which can, in turn, result from nutrient limitation of photosynthesis).

All *B. tectorum* stem and leaf tissue were combined across harvest dates for each subplot, finely ground, and analyzed for N and $\delta^{13}C$ on an elemental analyzer connected to a mass spectrometer (2020 Stable Isotope Analyzer; Europa Scientific, Cheshire, UK). We calculated $\Delta^{13}C$ using equation 1 below, where $\delta^{13}C_{\text{atm}}$ and $\delta^{13}C_{\text{plant}}$ are the measured $^{13}C/^{12}C$ ratios of atmosphere and plant tissue, respectively. Annual atmospheric CO2 concentrations measured at PHACE were averaged to determine $\delta^{13}C_{\text{atm}}$ isotope ratios as -9.19 ± 0.1 in ambient plots and -19.43 ± 0.09 in elevated CO2 plots.

$$\Delta^{13}C = (\delta^{13}C_{\text{atm}} - \delta^{13}C_{\text{plant}})/(1 + \delta^{13}C_{\text{plant}}) \quad (1)$$

We measured leaf xylem pressure potential (Ψ) as a relative index of leaf-level water stress. *Bromus tectorum* mid-day leaf xylem pressure potential was measured on 24 May and 4 June in Year 2, using a Scholander-type pressure chamber (PMS Instruments, Corvallis, OR, USA). On each date, we sampled leaves from three plants of similar size and appearance from each ring; measurements could only be conducted on larger plants and were therefore limited to the low-competition treatment. Leaves were sampled during cloudless 45-min periods between 1200 and 1400 h.

Soil water content and N availability were measured in low-competition subplots only, due to space and resource constraints. Although we were not able to measure soil water and N within high-competition subplots seeded with *B. tectorum*, measurements in other similarly undisturbed subplots within the same rings provide a picture of belowground resource availability in the absence of *B. tectorum* (Dijkstra et al., 2010; Carrillo et al., 2012). To measure soil N availability, we buried Plant Root Simulator (PRS) resin probes (Western Ag Innovations, Saskatoon, Canada) from March to June in Year 1 and April to June in Year 2, in the low-competition subplots only. Probes were cleaned with deionized water, extracted with 0.5 N HCl solution, and analyzed colorimetrically for NH4+ and NO3- by Western Ag Innovations on a flow injection analyzer (Seal Analytical, Mequon, WI, USA). We measured volumetric soil water content (VWC) from 0 to 15 cm depth continuously with Decagon 10 HS probes and recorded hourly average values on Em50 data loggers (Decagon Devices, Pullman, WA, USA). Probes were installed perpendicular to the ground surface, at a central location within the low-competition subplots. We used factory calibrations based on the Topp equation, which are expected to measure VWC within ±3% in mineral soils.

Statistical analysis

Analyses were conducted using mixed models in JMP (version 11, Cary, NC, USA) and, for *B. tectorum* numbers only, generalized linear models in SAS (version 9.2, Cary, NC, USA). Response variables measured in both competition treatments (*B. tectorum* biomass, seed biomass, plant N content, and $\Delta^{13}C$) were analyzed with split-plot repeated measures mixed models that included CO2, warming, competition, year and associated interactions as fixed effects and block, replicates, and NO3 concentrations as random effects, with account for correlation between subplots within a plot, and between years within a subplot. *Bromus tectorum* height and numbers, which were measured multiple times per year, were analyzed with the same model structure but with day of year in place of year. Separate models were run for each year. For *B. tectorum* numbers, a Poisson distribution was used with a log link function. As competition rarely interacted with main treatment effects, most response variables were averaged across competition levels for presentation and follow-up analyses to examine significant CO2 by warming and climate treatment by time interactions. Separate data for each competition treatment are presented in the supplementary materials. Note that in Year 1, *B. tectorum* was absent from two high-competition subplots, leading to more limited statistical power.
Response variables measured across subplots (native species biomass, harvest date) or in low-competition subplots only (soil water content and resin-available N) were analyzed with repeated measures models including CO₂, warming, year and associated interactions as fixed effects, and block and replication*CO₂*warming as random effects, to account for correlation between years within a plot. Prior to analysis, hourly soil water content records for each plot were averaged seasonally to represent the autumn and spring portions of *B. tectorum*’s growing season, omitting winter records when soils were frozen and probes did not reliably record water content. Soil water content records from the following dates were averaged for each season: October 1–November 6 in 2011 (Year 1 autumn), March 15–June 15 in 2012 (Year 1 spring), October 1–November 9 in 2012 (Year 2 autumn), and March 28–June 15 in 2013 (Year 2 spring). Data were log, square-root or fifth-root (for biomass and seed biomass) transformed when necessary to meet assumptions of normality and heteroscedasticity. Significant interactions were investigated further using post hoc mixed models; Bonferroni-adjusted alpha values were used to evaluate significance.

Results

Strong interannual variation in weather led to interactions between year and treatments in all analyses; thus, we present all results by year. Average maximum, mean, and minimum temperatures during the *B. tectorum* September–June growing season were 14.0 °C, 5.8 °C, and −0.7 °C, respectively, in Year 1 (2011–2012), and 12.3 °C, 4.5 °C, and −1.7 °C in Year 2 (2012–2013), close to the long-term averages of 11.8 °C, 5.1 °C, and −1.6 °C (Western Regional Climate Center, station 481675). September–June precipitation was 177 mm in Year 1, and 194 mm in Year 2, lower than the long-term average for the same time period: 291 mm. Spring precipitation (March–May), however, was unusually low in Year 1 (17 mm) but not Year 2 (112 mm), which likely caused the tenfold difference in *B. tectorum* biomass between years (Fig. 1; Table 1).

Warming increased *B. tectorum* biomass approximately fourfold and seed production more than threefold, while elevated CO₂ had little effect (Fig. 1; Table 1). Despite large differences in total biomass, warming effects were consistent across years. *B. tectorum* biomass production in warmed plots exceeded that of nonwarmed plots even though plants matured 3.5 days earlier with warming in both years (*F*₁,₁₆ = 46.60, *P* < 0.0001). Reducing competition increased both plant and seed mass more than eightfold, but competition did not interact with either warming or elevated CO₂. Despite a marginally significant CO₂*competition interaction for biomass, CO₂ effects were not significant in either competition treatment.

![Fig. 1](https://example.com/f1.png) Cumulative effects of elevated CO₂ (eCO₂) and warming on *Bromus tectorum* aboveground biomass (solid bars) and seed mass (shaded bars). Note the tenfold scale differences across both competition level and year. See Table 1 for statistical results. Error bars are ± 1 SE.
Table 1 Model results for Bromus tectorum and soil N responses measured at yearly time steps

<table>
<thead>
<tr>
<th>Variable</th>
<th>Biomass (g m⁻²)</th>
<th>Seed mass (g m⁻²)</th>
<th>Leaf Δ¹³C</th>
<th>Soil N (µg cm⁻²)</th>
<th>Plant N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F, df</td>
<td>P</td>
<td>F, df</td>
<td>P</td>
<td>F, df</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.13,1,15</td>
<td>0.7245</td>
<td>0.27,1,15</td>
<td>0.6129</td>
<td>3.16,1,63</td>
</tr>
<tr>
<td>Warming</td>
<td>20.7,1,15</td>
<td>0.0004</td>
<td>15.4,1,15</td>
<td>0.0014</td>
<td>0.451,1,63</td>
</tr>
<tr>
<td>CO₂*Warming</td>
<td>0.32,1,15</td>
<td>0.3819</td>
<td>0.071,15</td>
<td>0.7919</td>
<td>1.19,1,63</td>
</tr>
<tr>
<td>Competition</td>
<td>262,1,16</td>
<td><0.0001</td>
<td>264,1,16</td>
<td><0.0001</td>
<td>0.831,1,63</td>
</tr>
<tr>
<td>CO₂*Competition</td>
<td>4.13,1,16</td>
<td>0.0592</td>
<td>3.43,1,16</td>
<td>0.0825</td>
<td>0.151,1,63</td>
</tr>
<tr>
<td>Warming*Competition</td>
<td>0.28,1,16</td>
<td>0.6066</td>
<td>0.22,1,16</td>
<td>0.6425</td>
<td>0.001,1,63</td>
</tr>
<tr>
<td>CO₂WarmingCompetition</td>
<td>0.55,1,16</td>
<td>0.4709</td>
<td>0.4933</td>
<td>0.4930</td>
<td>0.171,63</td>
</tr>
<tr>
<td>Year</td>
<td>176,1,33</td>
<td><0.0001</td>
<td>238,1,33</td>
<td><0.0001</td>
<td>6.62,1,63</td>
</tr>
<tr>
<td>Year*CO₂</td>
<td>1.51,1,33</td>
<td>0.2273</td>
<td>1.99,1,33</td>
<td>0.1669</td>
<td>3.41,1,63</td>
</tr>
<tr>
<td>Year*Warming</td>
<td>3.62,1,33</td>
<td>0.0660</td>
<td>5.28,1,33</td>
<td>0.0280</td>
<td>1.65,1,63</td>
</tr>
<tr>
<td>YearCO₂Warming</td>
<td>3.50,1,33</td>
<td>0.0701</td>
<td>2.39,1,33</td>
<td>0.1319</td>
<td>5.16,1,63</td>
</tr>
<tr>
<td>Year*Competition</td>
<td>2.85,1,33</td>
<td>0.1006</td>
<td>4.40,1,33</td>
<td>0.0437</td>
<td>0.011,63</td>
</tr>
<tr>
<td>YearCO₂Competition</td>
<td>0.00,1,33</td>
<td>0.9575</td>
<td>0.02,1,33</td>
<td>0.8788</td>
<td>0.211,63</td>
</tr>
<tr>
<td>YearWarmingCompetition</td>
<td>0.00,1,33</td>
<td>0.9832</td>
<td>0.04,1,33</td>
<td>0.8490</td>
<td>0.211,63</td>
</tr>
</tbody>
</table>

Bold text indicates significant effects (P < 0.05).

Plant and seed mass were 10 and 14.5 times greater, respectively, in the wetter year compared with the drier year. A warming*year interaction for seed mass (investigated for this and subsequent interactions using post hoc mixed models by year, treatment, or date within year), indicated a stronger warming effect in Year 2 (F₁,₁₆ = 18.77, P = 0.0005) than Year 1 (F₁,₁₆ = 5.71, P = 0.03).

In contrast to the response of B. tectorum, there was no significant change in native species biomass with warming (86.5 g m⁻² under ambient temperature vs. 81.7 g m⁻² under warming; F₁,₁₅ = 0.15; P = 0.7) or elevated CO₂ (78.5 g m⁻² with ambient CO₂ vs. 89.7 g m⁻² with elevated CO₂; F₁,₁₅ = 0.81; P = 0.4). As a result, warming doubled the proportion of total plot biomass contributed by B. tectorum (52% vs. 24%, F₁,₁₅ = 11.26, P < 0.004, measured in Year 2 only), while elevated CO₂ had no significant effect.

Increases in plant number and size both contributed to the success of B. tectorum with warming (Fig. 2; Table 2; Figs S2 and S3). Bromus tectorum plants germinated in October of each year, following autumn precipitation pulses >10 mm (seedlings first observed on October 20, 2011 and October 1, 2012). By late November in both years, there were significantly more plants in warmed than ambient temperature plots (P < 0.0004 on both dates). Warming*date interactions indicated that the strong positive effect of warming on plant number persisted from late November to mid-April in Year 1 (P < 0.0002 on all dates), at which point it diminished and became nonsignificant, and persisted throughout the spring in Year 2 (P < 0.0009 on all dates). A significant CO₂*warming interaction in Year 2 indicated that CO₂ also increased B. tectorum numbers, but only in combination with warming (F₁,₉ = 7.75, P = 0.02).

Warming increased average per-plant height in both years, and warming*date interactions indicated that the height increase was significant between March 15 and May 15 in Year 1 (P < 0.002 on all dates) and on all dates except October 9 and November 19 in Year 2 (P < 0.009 on all other dates). Although we also observed a significant CO₂*date interaction in Year 1, the effect of CO₂ was not significant on any individual date.

Warming increased leaf-level water stress in B. tectorum, as indicated by lower leaf xylem pressure potentials (Fig. 3; Table 2). Leaf xylem pressure potential was 0.27 and 0.55 MPa more negative with warming in May and June of Year 2, respectively (May 2013, F₁,₁₅ = 9.13, P = 0.009; June 2013, F₁,₁₅ = 7.0, P = 0.02). A trend toward lower leaf water stress under elevated CO₂ vs. ambient CO₂ was significant between May and June of Year 2, respectively (May 2013, F₁,₁₅ = 9.13, P = 0.009; June 2013, F₁,₁₅ = 7.0, P = 0.02).
nificantly lower soil water content with warming in spring (Year 1, $F_{1,16} = 24.31, P = 0.0002$; Year 2, $F_{1,15} = 5.91, P = 0.03$), but not autumn. Warming reduced average spring soil water content by 26% in Year 1, and 18% in Year 2. Elevated CO$_2$ had no detectable effect on soil water content in either season of either year.

In contrast to most other response variables, resin-available soil N and *B. tectorum* tissue N concentration were strongly influenced by elevated CO$_2$ (Fig. 5; Table 1). Tissue N concentration was lower in plants exposed to elevated CO$_2$ in both years. A year*CO$_2$ interaction indicated that elevated CO$_2$ reduced soil N, by 47%, only in the wetter year (Year 2; $F_{1,16} = 12.19, P = 0.003$). Warming did not influence soil N availability or plant N concentration in either year. Competition increased plant N concentration, but did not interact with elevated CO$_2$ or warming (Fig. S5).

Discussion

In contrast to our predictions, we found that experimental warming more than tripled *B. tectorum* biomass and seed production while elevated CO$_2$ had little effect. Warming effects were surprisingly consistent, occurring across CO$_2$ and competition treatments, and across years with very different precipitation patterns (Fig. 1). Furthermore, warming increased *B. tectorum* growth and reproduction despite the fact that it decreased water availability and increased leaf-level water stress during the late spring, when *B. tectorum* was growing most rapidly (Figs 2 and 3). These results suggest that the combination of global change and *B. tectorum* invasion will have profound impacts in some western North American ecosystems, and lower than expected impacts in others. In the relatively invasion-resistant northern mixed-grass prairie, which accounts...
Table 2 Model results for *Bromus tectorum* and soil water responses measured at multiple time steps within years

<table>
<thead>
<tr>
<th>Variable</th>
<th>Year 1 Plant number (m2)</th>
<th>Year 2 Plant number (m2)</th>
<th>Year 1 Plant height (mm)</th>
<th>Year 2 Plant height (mm)</th>
<th>Year 1 Soil water (m3 m$^{-3}$)</th>
<th>Year 2 Soil water (m3 m$^{-3}$)</th>
<th>Year 2 Leaf Ψ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_{df} P</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>0.381,18 0.5465</td>
<td>4.471,18 0.0488</td>
<td>0.131,15 0.7186</td>
<td>0.521,15 0.4814</td>
<td>0.141,15 0.7114</td>
<td>0.031,15 0.8703</td>
<td>0.341,15 0.0840</td>
</tr>
<tr>
<td>Warming</td>
<td>22.91,18 0.0002</td>
<td>27.11,18 <.0001</td>
<td>18.41,15 0.0007</td>
<td>35.21,15 <.0001</td>
<td>13.41,15 0.0023</td>
<td>3.821,15 0.0696</td>
<td>8.751,15 0.0093</td>
</tr>
<tr>
<td>CO$_2$*Warm.</td>
<td>3.531,17 0.0773</td>
<td>5.341,18 0.0332</td>
<td>0.001,15 0.9454</td>
<td>0.011,15 0.9116</td>
<td>0.101,15 0.7537</td>
<td>0.931,15 0.3498</td>
<td>1.541,15 0.2324</td>
</tr>
<tr>
<td>Competition</td>
<td>2041,181 <.0001</td>
<td>99.61,215 <.0001</td>
<td>3.451,16 0.0817</td>
<td>83.11,16 <.0001</td>
<td>1.741,16 0.0001</td>
<td>0.951,16 0.0001</td>
<td>1.351,15 <.0001</td>
</tr>
<tr>
<td>CO$_2$*Comp.</td>
<td>0.031,181 0.8551</td>
<td>0.001,215 0.9840</td>
<td>0.371,16 0.5502</td>
<td>0.301,16 0.5940</td>
<td>0.371,16 0.5502</td>
<td>0.371,16 0.5502</td>
<td>0.371,16 0.5502</td>
</tr>
<tr>
<td>Warm.*Comp.</td>
<td>0.171,181 0.6817</td>
<td>2.881,215 0.0909</td>
<td>1.571,16 0.2284</td>
<td>0.441,16 0.5155</td>
<td>0.371,16 0.5502</td>
<td>0.371,16 0.5502</td>
<td>0.371,16 0.5502</td>
</tr>
<tr>
<td>CO$_2$*Warm.*Comp.</td>
<td>3.381,181 0.0675</td>
<td>2.191,215 0.1408</td>
<td>0.041,16 0.8394</td>
<td>0.041,16 0.8447</td>
<td>0.371,16 0.5502</td>
<td>0.371,16 0.5502</td>
<td>0.371,16 0.5502</td>
</tr>
<tr>
<td>Date</td>
<td>27.05,181 <.0001</td>
<td>20.06,215 <.0001</td>
<td>4735,165 <.0001</td>
<td>8565,198 <.0001</td>
<td>6311,16 <.0001</td>
<td>95.81,16 <.0001</td>
<td>1051,15 <.0001</td>
</tr>
<tr>
<td>Date*CO$_2$</td>
<td>0.715,181 0.6170</td>
<td>1.741,215 0.1121</td>
<td>4.005,165 0.0019</td>
<td>1.725,198 0.1169</td>
<td>1.471,16 0.2436</td>
<td>0.021,16 0.8876</td>
<td>0.221,15 0.6486</td>
</tr>
<tr>
<td>Date*Warm.</td>
<td>4.005,181 0.0018</td>
<td>9.196,215 <.0001</td>
<td>5.569,165 <.0001</td>
<td>6.246,198 <.0001</td>
<td>14.11,16 0.0017</td>
<td>7.661,16 0.0138</td>
<td>1.351,15 0.2619</td>
</tr>
<tr>
<td>Date*CO$_2$*Warm.</td>
<td>0.535,181 0.7522</td>
<td>0.441,215 0.8524</td>
<td>0.715,165 0.6141</td>
<td>1.836,198 0.0953</td>
<td>2.424,16 0.1393</td>
<td>0.671,16 0.4257</td>
<td>0.501,15 0.4883</td>
</tr>
<tr>
<td>Date*Comp.</td>
<td>4.935,181 0.0003</td>
<td>4.666,215 0.0002</td>
<td>11.23,165 <.0001</td>
<td>4.316,198 0.0004</td>
<td>4.316,198 0.0004</td>
<td>4.316,198 0.0004</td>
<td>4.316,198 0.0004</td>
</tr>
<tr>
<td>Date*CO$_2$*Comp.</td>
<td>0.425,181 0.8320</td>
<td>0.301,215 0.9366</td>
<td>0.195,165 0.9646</td>
<td>1.205,198 0.3099</td>
<td>1.205,198 0.3099</td>
<td>1.205,198 0.3099</td>
<td>1.205,198 0.3099</td>
</tr>
<tr>
<td>Date*Warm.*Comp.</td>
<td>1.075,181 0.3775</td>
<td>1.716,215 0.1197</td>
<td>1.145,165 0.3401</td>
<td>2.926,198 0.0095</td>
<td>2.926,198 0.0095</td>
<td>2.926,198 0.0095</td>
<td>2.926,198 0.0095</td>
</tr>
</tbody>
</table>

Bold text indicates significant effects ($P < 0.05$). Variable abbreviations are listed as follows: Warm. (Warming) and Comp. (Competition).
CHEATGRASS IS FAVORED BY WARMING BUT NOT CO₂

For more than one-third of remaining native grassland in the Great Plains (Samson et al., 2004), increases in B. tectorum appear likely. Where its abundance increases, fire frequency may also increase, while biological diversity and forage production may decline (Haferkamp et al., 2001; Rice, 2005; Abatzoglou & Kolden, 2011; Balch et al., 2013). At the same time, the absence of a CO₂ effect in our study suggests that elevated CO₂ may not exacerbate B. tectorum invasion in all ecosystems. This finding contrasts with results from both controlled environment studies with B. tectorum (Smith et al., 1987; Ziska et al., 2005) and field studies with other invasive species at this site (Blumenthal et al., 2013), demonstrating both the context and species dependence of invasive plant responses to elevated CO₂.

The most likely mechanism underlying B. tectorum’s warming response appears to be decreased temperature limitation of recruitment and growth. Because B. tectorum germinates in autumn or early spring (depending on autumn precipitation) and matures in late spring, low temperatures can limit its recruitment, survival, and growth (Mack & Pyke, 1983; Young, 2000; Bradford & Lauenroth, 2006; Chambers et al., 2007; Bykova & Sage, 2012). Correspondingly, we found that warming increased B. tectorum numbers and growth during the cooler parts of its growing season (Fig. 2; Figs S2 and S3). Higher plant numbers, which reflect both germination and survival, were apparent soon after germination in the fall and were maintained through the course of each growing season. Larger plant size became apparent early in each spring and increased as growth continued, despite the fact that warming concurrently decreased soil water availability.

These patterns suggest that warming expanded the phenological niche occupied by B. tectorum, enhancing its ability to grow when native plants are inactive and competition for water and nutrients is least intense (Wolkovich & Cleland, 2014). Although warming of temperate grasslands has been predicted to open early-season phenological niches and lead to invasion by early-flowering species, previous work in the US Great Plains has not found this to be the case (Wolkovich et al., 2013; Wolkovich & Cleland, 2014). Our results match both the predictions for temperate grasslands and the hypothesized mechanism: decreased temperature limitation at a time of limited competition (Wolkovich & Cleland, 2014).

Two studies conducted in the US Intermountain Region found warming to favor B. tectorum in wet years, but to have no effect or to inhibit B. tectorum in dry years (Zelikova et al., 2013; Compagnoni & Adler, 2014b). Similarly, we found that warming increased seed production more in the wetter year, particularly in absolute terms, in accord with the idea that warming may have more positive effects on invasion when moisture is less limiting (Bradley et al., 2010, 2015; Dukes et al., 2011). Unlike in the Intermountain Region studies, however, warming strongly promoted B. tectorum in both wetter and drier years at our site. We speculate that increased recruitment and growth during the cool, wet part of the growing season out-competed early-flowering species, previous work in the US Great Plains has not found this to be the case (Wolkovich et al., 2013; Wolkovich & Cleland, 2014). Our results match both the predictions for temperate grasslands and the hypothesized mechanism: decreased temperature limitation at a time of limited competition (Wolkovich & Cleland, 2014).

Surprisingly, elevated CO2 had no net effect on B. tectorum growth or seed production. Previous field studies, including one within the PHACE experiment, have shown that elevated CO2 often (but not always) promotes plant invasion (Hattenschwiler & Korner, 2003; Belote et al., 2004; Williams et al., 2007; Dukes et al., 2011; Blumenthal et al., 2013). Bromus tectorum responded strongly to elevated CO2 in controlled environments with ample water and nutrients (Smith et al., 1987; Ziska et al., 2005). Furthermore, in the Mojave Desert, free-air CO2 enrichment increased growth of Bromus rubens, a close relative of B. tectorum, in a wet year, leading to long-term increases in its seed bank (Smith et al., 2000, 2014). These results have led to the expectation that elevated CO2 will also favor B. tectorum in the field (Bradley et al., 2015). In this study, however, elevated CO2 did not increase either the biomass or seed production of B. tectorum. The only hints of a positive response to CO2 may be due to indirect effects of CO2 on N. Invasive plants, including B. tectorum, can be quite sensitive to N availability (Adair et al., 2008; Perry et al., 2010; James et al., 2011; Concilio et al., 2013; Chambers et al., 2014; Seabloom et al., 2015). For example, in the Mojave Desert, smaller CO2 responses of B. rubens in open spaces between perennial plants were likely due to lower N availability in those microsites (Smith et al., 2000, 2014). In a previous study at our site, reductions in N availability limited recruitment and growth of several introduced forbs (Blumenthal, 2009). While elevated CO2 can often promote invasion, it also commonly reduces N availability (Luo et al., 2004), which could indirectly limit CO2 effects on invasion (Sorte et al., 2013). Here, CO2 reduced resin-available soil N by 47% in Year 2, and B. tectorum N concentration by 31% in Year 1 and 28% in Year 2 (Fig. 5), suggesting that CO2 increased N limitation, as also observed in adjacent undisturbed subplots within PHACE (Dijkstra et al., 2010). The decrease in B. tectorum N concentration was not due to dilution, as CO2 did not increase B. tectorum biomass. Furthermore, given that elevated CO2 did not influence soil water, the increase in 13C discrimination in Year 2 most likely reflected increased N limitation of photosynthesis (Fig. 4) (Ainsworth & Long, 2005; Cernusak et al., 2013). Thus, our study provides evidence, albeit circumstantial, that CO2-induced reductions in N can limit CO2 effects on invasion. To the degree that CO2 effects on B. tectorum and other invasive species are constrained by N, this constraint could be intensified by progressive N limitation (Luo et al.; 2004), or alleviated by either N deposition (Kochy & Wilson, 2001; Fenn et al., 2003), or positive feedbacks between invasion and N availability (Ehrenfeld, 2003; Stark & Norton, 2015).

We expected that elevated CO2 might favor B. tectorum in part by improving plant water status (Ains-
CHEATGRASS IS FAVORED BY WARMING BUT NOT CO₂

worth & Long, 2005; Morgan et al., 2011), as observed for the invasive forb Linaria dalmatica at this site (Blumenthal et al., 2013). There was little evidence, however, that improved water relations influenced B. tectorum in this study. Although elevated CO₂ resulted in a marginally significant increase in B. tectorum leaf xylem pressure potential in May of Year 2, it also led to an increase in Δ¹³C, reflecting either lower water use efficiency or, more likely, downregulation of carboxylation capacity due to N limitation (Figs 4 and 5) (Ainsworth & Long, 2005; Cernusak et al., 2013). Furthermore, elevated CO₂ did not increase soil water, as it has in other plots within the PHACE experiment (Morgan et al., 2011). The absence of a CO₂ effect on soil water may be due to a paucity of active, transpiring native plants both during the B. tectorum growing season and in the low-competition subplots. These results suggest that species which complete their life cycle early, such as B. tectorum, may be less likely than other species to benefit from CO₂-induced increases in soil water.

To date, few experiments have tested how competition influences invasive species responses to elevated CO₂ or warming (Dukes et al., 2011; Manea & Leishman, 2011; Compagnoni & Adler, 2014a). We predicted that reduced competition might, by increasing availability of limiting belowground resources (Carrillo et al., 2012), strengthen B. tectorum responses to global change treatments. However, while competition strongly inhibited B. tectorum, it did not interact with either warming or elevated CO₂. Rather, effects of competition and global change treatments were additive. Reduced competition led to an eightfold increase in B. tectorum biomass, suggesting that resident mixed-grass prairie species provide strong biotic resistance against B. tectorum invasion. Warming increased B. tectorum biomass an additional fourfold. Similarly, competition rarely interacted with warming effects on B. tectorum in northern Utah (Compagnoni & Adler, 2014a). Notably, the fourfold effect of warming observed with both low and high competition in the present study led to a much greater absolute increase in seed production in low-competition plots (Fig. 1). Thus, while warming may have similar effects on B. tectorum’s ability to invade more and less competitive environments, its effects on seed production, and therefore, larger-scale population dynamics may be stronger in less competitive environments. The absence of a CO₂*competition interaction may be explained by reduced N availability and tissue N with elevated CO₂ even in low-competition subplots (Table 1; Fig. S5). While it remains difficult to predict how competition will interact with warming and elevated CO₂, the frequency with which it influences invasion suggests that competition needs to be taken into account when predicting future invasive species distributions and abundance (Ibanez et al., 2009; Bradley et al., 2010).

Adapting management to counteract effects of global change on B. tectorum will require monitoring changes in B. tectorum distribution, and management to increase ecosystem resistance to invasion and control B. tectorum populations in areas of expansion (Chambers et al., 2014). Our results, combined with previous experiments (Concilio et al., 2013; Compagnoni & Adler, 2014a; Prevey & Seastedt, 2014), suggest that climate envelope models are likely to be useful for guiding monitoring efforts. Not only are the warming and precipitation responses of B. tectorum in accord with predictions (Bradley, 2009; Bradley et al., 2015; West et al., 2015), but the lack of a CO₂ response suggests that the absence of CO₂ in such models may not be a concern for all ecosystems. Strategies for increasing ecosystem resistance in the face of warmer temperatures could include promoting native species with very early or late phenology. More broadly, the importance of competition across our global change treatments supports the idea that maintaining healthy stands of desired vegetation will continue to be essential for restricting cheatgrass invasion (Chambers et al., 2007, 2014).

Acknowledgements

We are grateful to Erik Hardy, Dan LeCain, Jack Morgan, David Smith, and David Williams for their roles in developing and running the PHACE experiment, to Karen Burke, Julie Bushey, Mary Carlson, Katherine Dirsmit, Sarah Hylander, Lauren Mancini, Caitlin May, Matthew Parsons, Julia Pendergrass, and Nicole Reese for technical and field assistance, to Ronald Follett and Elizabeth Pruettner for analysis of tissue N and δ¹³C, to Arnaud Monty and Grégory Mahy from the Biodiversity and Landscape Unit, University of Liège, for their financial and intellectual support, and to Kevin Mueller and Laura Perry for comments on the manuscript. This work was supported by the USDA-ARS Climate Change, Soils & Emissions Program, the USDA-CSREES Soil Processes Program (grant no. 2008-35107-18655), the US DOE Office of Science (Biological and Environmental Research) through the Western Regional Center of the National Institute for Climatic Change Research at Northern Arizona University, and the US NSF (DEB no. 1021599).

References

CHEATGRASS IS FAVORED BY WARMING BUT NOT CO₂

