Using simple environmental variables to estimate below-ground productivity in grasslands

R. A. GILL*1, R. H. KELLY2, W. J. PARTON2, K. A. DAY3, R. B. JACKSON1, J. A. MORGAN4, J. M. O. SCURLOCK5, J. V. CASTLE7, D. S. OJIMA2 and X. S. ZHANG8

1Department of Biology, Duke University, Durham, NC 27708, U.S.A. E-mail: rgill@wsu.edu
2Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, U.S.A.
3Department of Natural Resources, Climate Impacts and Grazing Systems, Indooroopilly, Queensland 4068, Australia.
4USDA/ARS Rangeland Resources (1701) Center Avenue, Fort Collins, CO 80526, U.S.A.
5Environmental Sciences Division, Oak Ridge National Laboratory, TN 37831-6407, U.S.A.
6EROS Data Center, US Geological Survey, Sioux Falls, SD 57198, U.S.A.
7Department of Biology, University of New Mexico, Long-term Ecological Research Network Office, 801 University Boulevard SE, Suite 104, Albuquerque, NM 87106, U.S.A.
8Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, XiangShan, Beijing 100093, PR China

ABSTRACT
In many temperate and annual grasslands, above-ground net primary productivity (NPP) can be estimated by measuring peak above-ground biomass. Estimates of below-ground net primary productivity and, consequently, total net primary productivity, are more difficult. We addressed one of the three main objectives of the Global Primary Productivity Data Initiative for grassland systems to develop simple models or algorithms to estimate missing components of total system NPP. Any estimate of below-ground NPP (BNPP) requires an accounting of total root biomass, the percentage of living biomass and annual turnover of live roots. We derived a relationship using above-ground peak biomass and mean annual temperature as predictors of below-ground biomass ($r^2 = 0.54$; $P = 0.01$). The percentage of live material was 0.6, based on published values. We used three different functions to describe root turnover: constant, a direct function of above-ground biomass, or as a positive exponential relationship with mean annual temperature. We tested the various models against a large database of global grassland NPP and the constant turnover and direct function models were approximately equally descriptive ($r^2 = 0.31$ and 0.37), while the exponential function had a stronger correlation with the measured values ($r^2 = 0.40$) and had a better fit than the other two models at the productive end of the BNPP gradient. When applied to extensive data we assembled from two grassland sites with reliable estimates of total NPP, the direct function was most effective, especially at lower productivity sites. We provide some caveats for its use in systems that lie at the extremes of the grassland gradient and stress that there are large uncertainties associated with measured and modelled estimates of BNPP.

Key words Below-ground biomass, biomass to NPP conversion, functional equilibrium, grassland NPP, net primary production, NPP estimation, root turnover.

INTRODUCTION
Ecologists and land managers have invested considerable energy in recent decades to find reliable methods for estimating net primary productivity (NPP). This effort to quantify NPP is critical because of the central role of NPP in ecosystem functioning, determining plant biomass accumulation and herbivore production, as well as influencing nutrient cycling and ecosystem carbon exchange (McNaughton et al., 1989; Jackson et al., 2000; Sala & Austin, 2000). Measuring NPP is also important if we are to understand annual changes in organic matter in natural and managed systems and to understand the controls over carbon fluxes. Furthermore, understanding controls over NPP will be crucial in developing models of these processes at large spatial scales. While advances have been made in accurately determining above-ground NPP (Paruelo et al., 1997; Raich et al., 1997; Sala & Austin, 2000), the amount of NPP allocated below-ground remains among the most poorly understood attributes of ecosystems (Lauenroth, 2000).

Two primary approaches have been used to estimate below-ground net primary production (BNPP): (1) sequential biomass sampling or (2) turnover coefficients coupled with biomass estimates. Most BNPP studies have sampled biomass...
through time, either by sequential coring or by root in-growth cores, and have assumed that positive increases in biomass summed through the growing season are reliable estimates of BNPP (Bohm, 1979; Milchunas & Lauenroth, 1992; Neill, 1992; Gill & Jackson, 2000). The strength of sequential biomass sampling lies in its direct assessment of below-ground plant biomass. However, biomass sampling has limitations, including both sampling bias and an inability to account for coincidental growth and death between sampling dates (Sala et al., 1988a; Hendrick & Pregitzer, 1993; Lauenroth, 2000). Alternatively, several researchers have used radioisotopes of microchizotrons to determine root turnover coefficients, which are then multiplied by a measured biomass to estimate BNPP (Aerts et al., 1989; Milchunas & Lauenroth, 1992; Hendrick & Pregitzer, 1993). Turnover coefficients are the proportion of root biomass that is produced or that dies annually, and their use overcomes some of the problems found in sequential biomass sampling. However, these methods may be hampered by difficulties implicit in the use and disposal of radioactive materials or the soil disturbance occurring with the installation of microchizotrons, and the processing requirements for microchizotron images. Where these limitations can be overcome it appears that turnover coefficients may provide better assessments of BNPP than many other methods (Milchunas & Lauenroth, 1992; Lauenroth, 2000).

Understanding below-ground NPP (BNPP) is particularly important in grassland ecosystems. In most grasslands a large proportion of biomass is below-ground (Coupland, 1992), making estimates of total NPP in grasslands particularly sensitive to estimates of below-ground production. Early estimates of grassland NPP were based solely on above-ground peak standing matter, and even the co-ordinated efforts to characterize grassland NPP by the International Biological Programme were based mainly on changes in above-ground biomass, with relatively few estimates of below-ground production (Milner & Hughes, 1968; Singh & Joshi, 1979; Long et al., 1989). Because few studies present quantitative measurements of total NPP, including above-ground and below-ground components, the Global Primary Productivity Data Initiative (GPPDI) was established as a Focus 1 Activity of the International Geosphere–Biosphere Programme Data and Information System (IGBP-DIS; Olson et al., 1997). As part of this activity, several working group meetings on the ‘Development of a Consistent Worldwide Net Primary Productivity Database’ were held from December 1997 to October 1998 in Santa Barbara, California, USA at the National Center for Ecological Analysis and Synthesis. This activity has led to the development of a database available from the Oak Ridge National Laboratory (http://daac.ornl.gov/NPP).

This paper presents an algorithm for estimating below-ground NPP in grasslands to fulfill one of the three main objectives of the GPPDI: to develop simple models or algorithms to estimate missing components of total system NPP (Scurlock et al., 1999). This model is not strictly mechanistic. We are seeking relationships between environmental variables and NPP that allow us to predict below-ground NPP. The patterns identified in this analysis may then be useful in identifying candidate mechanisms that could be used to develop more detailed, process-orientated models. The patterns may also be useful in making preliminary predictions for the many sites around the world where no data exist. We use a method that requires estimating below-ground biomass when those data are unavailable, and then converting that biomass number to BNPP using a turnover coefficient. In this paper we used both climate and vegetation data to estimate maximum below-ground biomass and root turnover coefficients.

In addition to providing an algorithm to estimate BNPP in grasslands, we test three candidate root turnover functions that might be used to describe root dynamics in grasslands. It is possible that root turnover increases in productive environments, so one of the models that we considered had root turnover increasing with above-ground NPP. Several studies in forests have shown shorter root life spans in fertilized soils compared to control plots, indicating that site fertility has some bearing on root turnover (Aber et al., 1985). Alternatively, root turnover may not be influenced by environmental factors, including root herbivores, water stress and growing season length, that are correlated with mean annual temperature (Gill & Jackson, 2000). By comparing the ability of these three models to predict patterns of BNPP, we hope to provide some insights into regional controls over root dynamics.

METHODS

Development data

There were three sources of biomass or productivity data available to us: (1) the core NPP database compiled at the US Oak Ridge National Laboratory (Scurlock et al., 1999), (2) the Osnabruck dataset (Esser et al., 1997) and (3) Australian pasture data provided by K.A. Day (unpublished data). Using three independent data sources allowed us to develop empirical relationships between climate and vegetation data with one set and then validate the model with independent datasets. We included in our consideration all available measurements made on predominately grassland, non-wetland sites with limited woody cover. We then filtered the selected biomass and NPP data for the availability of simultaneous above-ground and below-ground measurements. In addition, we required below-ground biomass measurements to be taken at the approximate time of peak above-ground biomass, since this is the most widespread analogue for above-ground NPP.

Of the sites and treatments (e.g. burning, grazing) reported in the Oak Ridge grassland NPP database, we were able to
include 23 treatments at 16 sites that met our requirements. We used these data for algorithm development. The Osnabrück compilation of NPP measurements and estimates includes 720 total sites, 116 of which met our minimal requirements (non-forest, non-wetland), and 51 satisfied our requirement for above-ground and below-ground values reported (Esser et al., 1997). The Osnabrück and K.A. Day data were not used in algorithm development so they could be used post facto to test the relationship.

Our complete set of development data (Table 1) span a range of peak above-ground biomass from 80 to 930 g/m², with concurrent below-ground measurements ranging from 120 to 3400 g/m². The data encompass mean annual precipitation ranging from 262 to 1541 mm, and mean annual temperature between −4.3 and 28.6 °C.

Algorithm development and data analysis

To determine the relationship between environmental factors and below-ground biomass and to use environmental and above-ground plant characteristics to determine below-ground NPP we conducted multiple pairwise regressions. Once we determined the variables most strongly related to below-ground biomass, we ran a multiple regression to describe most fully the relationship. Below-ground biomass was then converted to BNPP using estimates of the percentage of live material and root turnover rate. The resulting relationship was then tested against an independent database of NPP compiled from the literature by Esser et al. (1997). In addition, we conducted a site level test of the complete BNPP algorithm for two sites with extensive NPP measurements. All

Table 1 Characteristics of grassland sites included in the development data set. MAP = mean annual precipitation; MAT = mean annual temperature. Treatments = number of datasets available per site for different grazing and burning treatments (NB not irrigation or fertilization). Total number of treatments = 52. ORNL = Oak Ridge National Laboratory DAAC (URL); DNR = Queensland Department of Natural Resources.

<table>
<thead>
<tr>
<th>Site</th>
<th>Data source</th>
<th>MAP (mm)</th>
<th>MAT (°C)</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calabozo, Venezuela</td>
<td>ORNL</td>
<td>1306</td>
<td>28.3</td>
<td>−67.42</td>
<td></td>
</tr>
<tr>
<td>Charleville, Queensland, Australia</td>
<td>ORNL</td>
<td>483</td>
<td>20.7</td>
<td>−26.40</td>
<td>146.27</td>
</tr>
<tr>
<td>Klung Ho Khong, Thailand</td>
<td>ORNL</td>
<td>1541</td>
<td>28.0</td>
<td>100.94</td>
<td></td>
</tr>
<tr>
<td>Lamto, Ivory Coast</td>
<td>ORNL</td>
<td>1165</td>
<td>28.6</td>
<td>6.22</td>
<td>−5.03</td>
</tr>
<tr>
<td>Matador, Saskatchewan, Canada</td>
<td>ORNL</td>
<td>350</td>
<td>2.4</td>
<td>50.70</td>
<td>−107.72</td>
</tr>
<tr>
<td>Mazapos, Zimbabwe</td>
<td>ORNL</td>
<td>693</td>
<td>18.8</td>
<td>−20.26</td>
<td>28.37</td>
</tr>
<tr>
<td>Naords, Kenya</td>
<td>ORNL</td>
<td>677</td>
<td>20.1</td>
<td>−1.33</td>
<td>36.83</td>
</tr>
<tr>
<td>Kursk, Russia</td>
<td>ORNL</td>
<td>583</td>
<td>5.2</td>
<td>51.67</td>
<td>36.50</td>
</tr>
<tr>
<td>Otradnoe, Russia</td>
<td>ORNL</td>
<td>485</td>
<td>4.2</td>
<td>60.83</td>
<td>30.25</td>
</tr>
<tr>
<td>Shortandy, Kazakhstan</td>
<td>ORNL</td>
<td>350</td>
<td>1.6</td>
<td>51.67</td>
<td>71.00</td>
</tr>
<tr>
<td>Tumug, Inner Mongolia, China</td>
<td>ORNL</td>
<td>411</td>
<td>2.1</td>
<td>46.10</td>
<td>123.00</td>
</tr>
<tr>
<td>Tuva, Russia</td>
<td>ORNL</td>
<td>285</td>
<td>−4.3</td>
<td>51.83</td>
<td>94.42</td>
</tr>
<tr>
<td>Montecillo, Mex., Mexico</td>
<td>ORNL</td>
<td>580</td>
<td>14.3</td>
<td>19.46</td>
<td>−98.91</td>
</tr>
<tr>
<td>Osage, Oklahoma, USA</td>
<td>ORNL</td>
<td>916</td>
<td>14.3</td>
<td>36.95</td>
<td>−96.55</td>
</tr>
<tr>
<td>Bridge, Montana, USA</td>
<td>ORNL</td>
<td>349</td>
<td>8.7</td>
<td>45.78</td>
<td>−110.78</td>
</tr>
<tr>
<td>Dickinson, Nebraska, USA</td>
<td>ORNL</td>
<td>422</td>
<td>4.8</td>
<td>46.90</td>
<td>−102.82</td>
</tr>
<tr>
<td>Hays, Kansas, USA</td>
<td>ORNL</td>
<td>586</td>
<td>12.0</td>
<td>38.87</td>
<td>−99.38</td>
</tr>
<tr>
<td>Jornada, New Mexico, USA</td>
<td>ORNL</td>
<td>262</td>
<td>14.4</td>
<td>32.60</td>
<td>−106.85</td>
</tr>
<tr>
<td>Roma (Estrella), Queensland, Australia</td>
<td>DNR</td>
<td>540</td>
<td>20.4</td>
<td>−26.48</td>
<td>148.68</td>
</tr>
<tr>
<td>Roma (DPI Research Station), Queensland, Australia</td>
<td>DNR</td>
<td>553</td>
<td>20.5</td>
<td>−26.58</td>
<td>148.77</td>
</tr>
<tr>
<td>Roma (Roselea), Queensland, Australia</td>
<td>DNR</td>
<td>541</td>
<td>20.4</td>
<td>−26.76</td>
<td>148.82</td>
</tr>
<tr>
<td>Crown Nest, Queensland, Australia</td>
<td>DNR</td>
<td>848</td>
<td>17.5</td>
<td>−27.03</td>
<td>152.02</td>
</tr>
<tr>
<td>Grandchester, Queensland, Australia</td>
<td>DNR</td>
<td>917</td>
<td>18.5</td>
<td>−27.75</td>
<td>152.45</td>
</tr>
<tr>
<td>Calliope (Galloway Plains), Queensland, Australia</td>
<td>DNR</td>
<td>797</td>
<td>21.2</td>
<td>−24.16</td>
<td>150.95</td>
</tr>
<tr>
<td>Biloela (Callide Range), Queensland, Australia</td>
<td>DNR</td>
<td>797</td>
<td>21.2</td>
<td>−24.19</td>
<td>150.69</td>
</tr>
<tr>
<td>Parkhurst, Queensland, Australia</td>
<td>DNR</td>
<td>812</td>
<td>22.4</td>
<td>−23.30</td>
<td>150.51</td>
</tr>
<tr>
<td>Bowen (Ida Creek), Queensland, Australia</td>
<td>DNR</td>
<td>916</td>
<td>23.4</td>
<td>−20.27</td>
<td>148.12</td>
</tr>
<tr>
<td>Normanton (Milgarra), Queensland, Australia</td>
<td>DNR</td>
<td>653</td>
<td>27.3</td>
<td>−18.12</td>
<td>140.88</td>
</tr>
<tr>
<td>Julia Creek (Toorak), Queensland, Australia</td>
<td>DNR</td>
<td>403</td>
<td>25.2</td>
<td>−20.98</td>
<td>141.80</td>
</tr>
<tr>
<td>Tambo (Lusnalee), Queensland, Australia</td>
<td>DNR</td>
<td>473</td>
<td>20.4</td>
<td>−25.08</td>
<td>146.50</td>
</tr>
<tr>
<td>Clermont (Epping Forest Nat. Pk.), Queensland, Australia</td>
<td>DNR</td>
<td>500</td>
<td>23.1</td>
<td>−22.37</td>
<td>146.69</td>
</tr>
<tr>
<td>Gayndah (Brian Pastures Res. Stn.), Queensland, Australia</td>
<td>DNR</td>
<td>666</td>
<td>20.6</td>
<td>−25.67</td>
<td>151.75</td>
</tr>
</tbody>
</table>
relationships discussed in this paper are statistically significant at \(P \leq 0.05 \) unless otherwise noted. To give an estimate of the error associated with our model calculation, we assess the error of estimation:

\[
\frac{\text{Modelled BNPP} - \text{reported BNPP}}{\text{Reported BNPP}} \times 100
\]

for the six most productive and the six least productive sites in the database. We also determine the error of estimation for site-level tests.

RESULTS AND DISCUSSION

Algorithm development

Our complete algorithm of below-ground NPP from simple and widely available measurements is:

\[
\text{BNPP BGB} = \frac{\text{Live BGB}}{\text{BGB}} \times \text{turnover}
\]

where: BGB is below-ground biomass in g m\(^{-2}\) and equals 0.79\(\text{AGBIO} \) – 33.3\((\text{MAT} + 10) \) + 1239; AGBIO = peak above-ground live biomass (g m\(^{-2}\)); MAT = mean annual temperature; \(^\circ \text{C} \) or, an observed value of below-ground biomass may be used.

\[
\frac{\text{Live BGB}}{\text{BGB}} = 0.6
\]

Turnover is the proportion of roots that are produced or die annually in year\(^{-1}\). We consider three options:

1. Direct function: turnover is directly related to above-ground NPP, turnover = 0.0009 g m\(^{-1}\) \((\text{AGNPP}) + 0.25 \) year\(^{-1}\).
2. Constant function: turnover is constant proportion of root biomass, turnover = 0.65 year\(^{-1}\) regardless of above-ground NPP.
3. Exponential function: turnover increases exponentially with mean annual temperature, turnover = 0.2284\(e^{0.0198\text{MAT}} \).

Ideally, any algorithm used to predict below-ground NPP would use variables that are easily measured and are broadly available. Because above-ground biomass is one of the most easily obtained field measurements, this state variable is likely to be included in any NPP database. Also, remote sensing allows researchers to determine peak above-ground biomass and climate variables, estimates could be made for ecosystem carbon exchange for entire regions. In addition, the functional equilibrium theory (Thornley, 1977; Brouwer, 1983), and other frameworks of carbon partitioning (e.g. Farrar & Jones, 2000), suggest that there is a balance between shoot and root growth because plants need both above-ground and below-ground resources in a somewhat stable ratio. Therefore, both shoot and root growth should increase with favourable plant growth conditions. After accounting for the influence of climate on root : shoot ratios, above-ground production should be an important covariate in estimating BNPP.

In support of the functional equilibrium concept, Farrar & Williams (1991) discuss how a reduction in temperature might lead to increased root : shoot ratios through differential effects of temperature on plant C sources and sinks. The model of Hunt et al. (1998) used the concept of balanced growth to model C partitioning responses of Bouteloua gracilis (H.B.K.) Lag. ex Steud. and Pascopyrum smithii P.A. Love. In line with balanced growth, Hunt et al.'s model represented increased biomass partitioning below-ground under low N and low soil water. In the development data set (Table 1) the ratio of root biomass to shoot biomass increased with declining precipitation \((r^2 = 0.15) \) and decreasing temperature \((r^2 = 0.65) \).

The data in the Osnabrück database (Esser et al., 1997) support the concept that both above-ground and below-ground NPP are increased by favourable environmental conditions since below-ground NPP increased with above-ground NPP \((r^2 = 0.22) \). Below-ground biomass was inversely related to mean annual temperature \((r^2 = 0.44) \), while there was a poor relationship between below-ground biomass and mean annual precipitation \((r^2 = 0.02) \). The poor correlation between below-ground biomass and precipitation was surprising. Sala et al. (1988b) found that above-ground NPP is increased both with mean annual precipitation and water holding capacity of soils. The effect of the precipitation relationship on above-ground NPP is clearly seen in the productivity estimates derived from the STATSGO (State Soil Geographic) database (USDA, 1991) as well as those from remotely sensed data (Tieszen et al., 1997). Yang et al. (1998) quantified the increase in NDVI (normalized difference vegetation index, an index of biomass) with moisture in some grassland classes in the steppe grasslands of the northern Great Plains of the USA. Lauenroth & Sala (1992) found that above-ground forage productivity in the northern shortgrass steppe is positively related to annual precipitation on a year-to-year basis, and that the predictive power increases when precipitation event size is taken into account at the drier end of the grassland region. However, Gill & Jackson (2000) showed that the absence of a relationship between precipitation and below-ground processes at a regional scale does not necessarily mean that precipitation is not important at site-level root dynamics.

Based upon these concepts, we regressed observed below-ground biomass against above-ground biomass (as a surrogate for ANPP) and mean annual temperature. We arrived at an equation \(\text{BNPP} \) (g m\(^{-2}\)) = 0.79 AGBIO (g m\(^{-2}\)) – 33.3 (g m\(^{-2}\) °C\(^{-1}\)) \((\text{MAT} + 10)\) + 1290 (g m\(^{-2}\)) that predicted below-ground
Castro, 1992; Kinyamario & Imbamba, 1992; Ojima & Yanai, 1997). It is necessary to describe the proportion of below-ground biomass that is live (%live). A number of studies have made efforts to separate live and dead roots. Data indicate that %live ranges from approximately 35% (Garcia-Moya & Evenson, 1992; Gilmanov et al., 1997) to 67% (Singh & Coleman, 1973, 1974; Kamnalrut & Seastedt, 1987; Gilmanov et al., 1997). The mean value for temperate grasslands is approximately 30% to 65%, although seven of eight estimates cover a much narrower range (52% to 67%; Singh & Coleman, 1973, 1974; Hayes & Seastedt, 1987; Gilmanov et al., 1997). The %live root biomass is lowest for tundra graminoids, 35–40% (Dennis et al., 1978). Such mean estimates ignore seasonal variability of this system property, which is probably dynamic and may depend on plant ontogeny, environmental factors influencing decomposition and soil depth (Troughton, 1957; Casper & Jackson, 1997; Eissenstat & Yanai, 1997). Nevertheless, many of the above estimates are based on averages of monthly measurements over many years and should provide reasonable annual estimates for each site. Due to the uncertainty associated with estimates of %live, we used a constant value of 60%. It is important to recognize that in systems where the proportion of live roots is consistently greater or lesser than the value used here, this algorithm would need to be adjusted to take into account this discrepancy. This difference is likely to be especially important in systems with slow rates of decomposition (e.g. tundra).

To arrive at a reliable estimate of below-ground NPP, we must have some knowledge of patterns of root turnover. Turnover is the death and subsequent detachment of roots, expressed as an annual proportion. A great deal of scientific effort has been made to quantify root turnover (reviewed in Cheng et al., 1991; Gill & Jackson, 2000), and although the methods have improved over time it is still one of the most difficult ecosystem characteristics to describe. Our analysis is used to evaluate three alternative assumptions about the controls over root turnover. First, it might be assumed that as above-ground productivity increases the conditions favouring faster turnover also increase, such as greater rainfall, higher nitrogen availability and faster decomposition (Schimel et al., 1997). Therefore, we used above-ground biomass as an environmental surrogate and independent variable in this equation. The resulting equation allows for annual root turnover rates of 0.3–1.0 year\(^{-1}\), based on above-ground biomass values between 0 and 800 g m\(^{-2}\), although Scarlock & Hall (1998) and Gill & Jackson (2000) suggest that root turnover rates occasionally exceed 1.0 year\(^{-1}\). Alternatively, we modelled turnover as a constant, which implies that for all grasses the proportion of roots that die annually is invariant.

The third possibility is that temperature, with its accompanying suite of covariates, controls root turnover. This assumes that higher maintenance respiration, nutrient availability, water stress and pathogen load are the dominant controls over patterns of turnover (Gill & Jackson, 2000).

Model validation

We tested the efficacy of the three turnover estimates in two ways: (1) through a comparison of modelled results with the Esser et al. (1997) dataset and (2) through direct comparison of model output and values reported for two sites in the USA with reliable below-ground NPP measurements. The Shortgrass Steppe (SGS), LTER (National Science Foundation Long-term Ecological Research Network) site (http://sgs.cnr.colostate.edu/sgshome.html), was the location of an in-depth study of below-ground NPP using carbon isotopes (Milchunas & Lauenroth, 1992). The Konza Prairie Research Natural Area (KNZ, http://www.kpsa.edu/konza/), also an LTER Network site, was the site of another below-ground NPP study (Hayes & Seastedt, 1987) using minirhizotrons. The SGS’s above-ground productivity (including crowns) was 165 g biomass m\(^{-2}\), with below-ground productivity ranging from 151 to 175 g biomass m\(^{-2}\) (Milchunas & Lauenroth, 1992). At KNZ, above-ground NPP was 450 g biomass m\(^{-2}\), with below-ground biomass estimated as 250 g biomass m\(^{-2}\).
with a range of 335–486 g biomass m\(^{-2}\) below-ground (Hayes & Seastedt, 1987). These root observations were made in surface soils (to 40-cm depth, maximum), which include > 50% of total root biomass.

We tested our algorithm against the largest database of above-ground and below-ground grassland productivity known to us (Esser et al., 1997). The constant (\(r^2 = 0.307\), Fig. 2a) and direct (\(r^2 = 0.370\), Fig. 2b) functions tended to predict lower values of BNPP than reported in the database, especially at the high productivity end and this is reflected in the error estimation. For the most productive six sites, the constant function diverged from reported values by an average of –68%, with a range from –48 to –80%. The error of estimation for these productive sites was slightly less using the direct function, with a mean divergence from reported values of –65% and a range from –55 to –79%. The exponential turnover model (\(r^2 = 0.402\), Fig. 2c) represented BNPP more effectively at the productive end of the gradient, where there appears to be a strong disparity between the reported and modelled values in the first two models. Using the exponential turnover model, the mean error of estimation for the six most productive sites was –19%, with a range of –45% to –76%. Since neither the direct or constant functions did a reasonable job in predicting BNPP in the most productive end of the gradient, we suggest that the exponential function is the most useful of the three functions in predicting regional patterns of BNPP.

These three methods of estimating turnover result in annual BNPP estimates for the development dataset (Table 1) ranging from 68 to 646 g biomass m\(^{-2}\) yr\(^{-1}\) for eqn 1, 95 to 469 g biomass m\(^{-2}\) yr\(^{-1}\) for eqn 2, and 79–1341 g biomass m\(^{-2}\) yr\(^{-1}\) for eqn 3. When applied to our test site in Colorado (SGS), the direct function was most effective, yielding BNPP of 188 g biomass m\(^{-2}\) per year. Constant turnover yielded a BNPP much higher than reported values (Table 2). The exponential function was lower than the reported values at the SGS site, while it was higher than the reported values at KNZ. The constant and direct representations of turnover resulted in somewhat low, but reasonable BNPP for KNZ (Table 2).

Based on a need for a simple way to estimate missing components of total system NPP, formalized as the Global Primary Productivity Data Initiative (GPPDI), we offer the algorithm that utilizes an exponential root turnover function. Our simple method of estimating below-ground NPP is not designed to replace more sophisticated techniques informed by direct observation or sampling. However, the use of these methods, including sequential biomass sampling, root in-growth cores and radiocarbon and minirhizotron estimates of root turnover rate is limited because they are time-consuming and expensive. The algorithm we present here allows the estimation of below-ground NPP when field observation is impractical, due to cost or when estimates are to be made over large areas. In addition, it will be possible to estimate below-ground NPP with a range of 335–486 g biomass m\(^{-2}\) below-ground (Hayes & Seastedt, 1987). These root observations were made in surface soils (to 40-cm depth, maximum), which include > 50% of total root biomass.

We tested our algorithm against the largest database of above-ground and below-ground grassland productivity known to us (Esser et al., 1997). The constant (\(r^2 = 0.307\), Fig. 2a) and direct (\(r^2 = 0.370\), Fig. 2b) functions tended to predict lower values of BNPP than reported in the database, especially at the high productivity end and this is reflected in the error estimation. For the most productive six sites, the constant function diverged from reported values by an average of –68%, with a range from –48 to –80%. The error of estimation for these productive sites was slightly less using the direct function, with a mean divergence from reported values of –65% and a range from –55 to –79%. The exponential turnover model (\(r^2 = 0.402\), Fig. 2c) represented BNPP more effectively at the productive end of the gradient, where there appears to be a strong disparity between the reported and modelled values in the first two models. Using the exponential turnover model, the mean error of estimation for the six most productive sites was –19%, with a range of –45% to –76%. Since neither the direct or constant functions did a reasonable job in predicting BNPP in the most productive end of the gradient, we suggest that the exponential function is the most useful of the three functions in predicting regional patterns of BNPP.

These three methods of estimating turnover result in annual BNPP estimates for the development dataset (Table 1) ranging from 68 to 646 g biomass m\(^{-2}\) yr\(^{-1}\) for eqn 1, 95 to 469 g biomass m\(^{-2}\) yr\(^{-1}\) for eqn 2, and 79–1341 g biomass m\(^{-2}\) yr\(^{-1}\) for eqn 3. When applied to our test site in Colorado (SGS), the direct function was most effective, yielding BNPP of 188 g biomass m\(^{-2}\) per year. Constant turnover yielded a BNPP much higher than reported values (Table 2). The exponential function was lower than the reported values at the SGS site, while it was higher than the reported values at KNZ. The constant and direct representations of turnover resulted in somewhat low, but reasonable BNPP for KNZ (Table 2).

Based on a need for a simple way to estimate missing components of total system NPP, formalized as the Global Primary Productivity Data Initiative (GPPDI), we offer the algorithm that utilizes an exponential root turnover function. Our simple method of estimating below-ground NPP is not designed to replace more sophisticated techniques informed by direct observation or sampling. However, the use of these methods, including sequential biomass sampling, root in-growth cores and radiocarbon and minirhizotron estimates of root turnover rate is limited because they are time-consuming and expensive. The algorithm we present here allows the estimation of below-ground NPP when field observation is impractical, due to cost or when estimates are to be made over large areas. In addition, it will be possible to estimate below-ground NPP

\[
\text{Root turnover} = 0.2884 e^{0.046 \times \text{MAT}} \quad \text{(Gill and Jackson 2000)}
\]

\[
\text{Reported BNPP (g m}^{-2} \text{ yr}^{-1})
\]

\[
\text{Modelled BNPP (g m}^{-2} \text{ yr}^{-1})
\]

\[
\text{Turnover} = 0.0009 \times \text{AGNPP} + 0.25
\]

\[
\text{Turnover} = 0.65
\]

\[
\text{Fig. 2 Below-ground NPP calculated using simple environmental variables (mean annual temperature, above-ground biomass) with three different representations of root turnover rate. (a) Root turnover is represented as a direct function of above-ground biomass (} r^2 = 0.370\text{), (b) root turnover represented as a constant rate of 65% per year (} r^2 = 0.307\text{), and (c) root turnover represented as an exponential increase with mean annual temperature (} r^2 = 0.402\text{). Lines are the best fit linear models.}
\]
Modelled BNPP reported BNPP
\[\text{Error of estimation} = \left(\frac{\text{Modelled BNPP} - \text{Reported BNPP}}{\text{Reported BNPP}} \right) \times 100 \]

Positive values indicate that the model overestimated BNPP, while negative values are the result of the model underestimating BNPP.

Below-ground NPP

<table>
<thead>
<tr>
<th>Error of estimation</th>
<th>SGS</th>
<th>KNZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported Minimum</td>
<td>151</td>
<td>335</td>
</tr>
<tr>
<td>Maximum</td>
<td>175</td>
<td>486</td>
</tr>
<tr>
<td>Modelled Constant root turnover</td>
<td>307</td>
<td>75% (max)</td>
</tr>
<tr>
<td></td>
<td>103% (min)</td>
<td>4% (min)</td>
</tr>
<tr>
<td>Direct root turnover</td>
<td>188</td>
<td>7% (max)</td>
</tr>
<tr>
<td></td>
<td>25% (min)</td>
<td>5% (min)</td>
</tr>
<tr>
<td>Exponential turnover</td>
<td>210</td>
<td>20% (max)</td>
</tr>
<tr>
<td></td>
<td>20% (min)</td>
<td>16% (min)</td>
</tr>
</tbody>
</table>

based on above-ground NPP measurements made in years past, making it possible to estimate historic changes in total NPP.

ACKNOWLEDGMENTS

This work was conducted as part of the ‘Development of a Consistent Worldwide Net Primary Productivity (NPP) Database’ Working Group supported by the National Center for Ecological Analysis and Synthesis, a Center funded by NSF (grant no. DEB-94–21535), the University of California — Santa Barbara, and the State of California. Financial support for NREL authors was provided by NASA-EOS NAGW 2662. We thank Mike Coughenour and Jim Clark for their helpful comments on an earlier version of this manuscript.

REFERENCES

Biosketch

Richard Gill studies ecosystem dynamics and the physiological processes that underlie emergent ecosystem properties. His research focuses on the interaction between root dynamics and soil organic matter storage, particularly within a global change context. He is currently an Assistant Professor in the Program in Environmental Science and Regional Planning at Washington State University.