Increasing CO₂ from subambient to superambient concentrations alters species composition and increases above-ground biomass in a C₃/C₄ grassland

H. Wayne Polley¹, Hyrum B. Johnson¹ and Justin D. Derner²

¹Grassland, Soil and Water Research Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Temple, TX 76502, USA; ²High Plains Grasslands Research Station, U.S. Department of Agriculture, Agricultural Research Service, Cheyenne, WY 82009, USA

Summary

- The glacial-to-present increase in atmospheric CO₂ concentration is likely to have stimulated plant production, but experimental tests in natural ecosystems are lacking.
- We measured above-ground biomass production, plant nitrogen (N) accumulation, and species dynamics in a C₃/C₄ grassland exposed for 4 yr (1997–2000) to a continuous gradient in CO₂ from 200–560 µmol mol⁻¹.
- Biomass increased with CO₂ concentration in 1997–99. Biomass increases ranged between 121 and 161 g m⁻² per 100 µmol mol⁻¹ rise in CO₂ and were similar at subambient and superambient concentrations. Biomass responses to CO₂ were determined by different species or functional groups of species during different years. Increasing CO₂ accelerated a successional shift initiated by release from grazing in which C₃ forbs increased at the expense of a C₄ grass. Effects of CO₂ on tissue N concentration varied among species and functional groups, but CO₂ did not alter total N in above-ground tissues.
- Results imply that rising CO₂ has stimulated plant production and accelerated successional change and that grasslands will remain sensitive to rising CO₂ for several decades.

Key words: biomass production, C₃ species, C₄ grasses, CO₂ concentration, grassland, nitrogen concentration, nitrogen use efficiency, species composition.

Introduction

Atmospheric CO₂ concentration has nearly doubled since the last glaciation (from < 200 µmol mol⁻¹; Petit et al., 1999) and may reach 550 µmol mol⁻¹ during the next 50 yr (Alcamo et al., 1996). Biological processes are fueled by carbon derived from CO₂, so the ongoing increase in CO₂ concentration almost surely has enhanced plant productivity and affected ecosystem processes. Indeed, the large proportional increase in CO₂ since glaciation has been implicated in a variety of changes including shifts in vegetation (Johnson et al., 1993; Ehleringer et al., 1997; Street-Perrott et al., 1997), stimulation of forest production and tree turnover rates (Phillips & Gentry, 1994), and an increase in soil carbon sequestration (Gill et al., 2002). Yet, direct evidence from intact ecosystems for most of these trends is lacking.

Most experiments at subambient CO₂ have been conducted with simplified plant communities under conditions favorable for plant growth (Baker et al., 1990; Allen et al., 1991; Dippery et al., 1995). In more natural ecosystems, CO₂ effects are influenced by plant community composition and plant accumulation and utilization of N and other limiting elements. Effects of CO₂ enrichment on production may be small in communities that are dominated by C₄ species (Owensby et al., 1999), but atmospheric change also may increase the abundance of species that are responsive to CO₂ (Stöcklin et al., 1998; Niklaus et al., 2001). Nitrogen limitation, by contrast, usually dampens plant sensitivity to CO₂ enrichment (Poorter & Pérez-Soba, 2001).

We exposed a C₃/C₄ grassland in central Texas, USA to a 200–560 µmol mol⁻¹ gradient in CO₂ concentration for 4 yr following the exclusion of cattle to determine effects of
Materials and Methods

We studied effects of atmospheric CO$_2$ enrichment on a C$_4$/C$_3$ grassland in central Texas, USA (31°05′-N, 97°20′-W) with elongated field chambers that control CO$_2$ along continuous gradients from subambient to superambient concentrations (Johnson et al., 2000). The site previously was cultivated, but has been managed as grassland and grazed by cattle for at least 50 yr. Cattle were excluded in 1992 before construction of chambers. Soils at the study site are classified as fine-silty, carbonatic, thermic Udorthentie Haplustolls. The surface 0.4 m of soil is composed mostly (55%) of clay. Annual precipitation at the site averages 879 mm (89-years average). Annual rainfall was greater than average in 1997, 1998, and 2000 (1143, 1043, and 903 mm), but was only 52% of the 89-yr mean during 1999 (461 mm).

The CO$_2$ facility consists of two transparent, tunnel-shaped chambers, each with 10 consecutive compartments that are 1 m wide and tall and 5 m long (Johnson et al., 2000). Pure CO$_2$ is injected into one chamber during daylight to initiate a superambient CO$_2$ gradient (560–350 µmol mol$^{-1}$). Ambient air is introduced to the second chamber to initiate a subambient CO$_2$ gradient (365–200 µmol mol$^{-1}$). Night-time CO$_2$ concentrations are regulated at about 150 µmol mol$^{-1}$ above daytime values along each chamber. Desired CO$_2$ concentration gradients are maintained by automatically varying the direction (daylight, night) and rate of air flow through chambers in response to changes in photosynthetic (daylight) or respiration rates (night). Air temperature and vapour pressure deficit are regulated near ambient values by cooling and dehumidifying air at 5-m intervals along chambers. Soil beneath chambers is separated from surrounding soil to a depth of 0.9 m with a rubber-coated fabric.

A continuous gradient in CO$_2$ from 560 to 200 µmol mol$^{-1}$ was maintained on this grassland dominated by the C$_4$ perennial grass Bothriochloa ischaemum (L.) Keng and C$_3$ perennial forbs Solanum dimidiatum Raf. and Ratibida columnaris (Sims) D. Don during growing seasons (March–November) of 1997 through 2000. Johnson et al. (2000) described in detail regulation of CO$_2$ concentration and environmental parameters along chambers.

Irrigation equivalent to rainfall was applied to the chambered grassland on the day following precipitation through July 1999. We eliminated runoff when irrigating, so soil sometimes was wetter beneath than outside of chambers. To better approximate soil water content in surrounding grassland, the irrigation regime was altered in August 1999. Subsequently, the amount of water applied to the entire system was determined weekly by subtracting the water content of soil in the chamber compartment maintained at 360 µmol mol$^{-1}$ from the mean soil water content ($n = 5$) measured along a 50-m-long transect in adjacent Bothriochloa-dominated grassland. Water addition was calculated from weekly measurements of volumetric soil water content to 1.35 m depth in the center of chamber compartments and along the unchambered transect with a neutron probe.

Sampling

Following imposition of CO$_2$ treatments, vegetation in the 0.5-m-long and 1.0-m-wide area immediately before and after each cooling coil was clipped monthly to ground level to minimize plant interference with air flow through coils, leaving 4 m2 (4 m × 1 m) of vegetated area in each compartment for CO$_2$ experiments. Above-ground production was determined during each year of CO$_2$ treatment (1997–2000) by clipping all vegetation in the center 4-m2 area of each chamber compartment to 5 cm height at the end of the growing season in early December. To estimate accumulation of N in actively growing above-ground tissues, we harvested two 0.5 m × 0.2 m (0.1 m2) areas from each 4-m2 area during June and October of each year. These harvests were timed to correspond with periods of peak biomass of early season (June) and late-season species (October) in this grassland. Harvests were systematically allocated among adjacent 0.5 m × 0.2 m quadrats that spanned the 1 m width of compartments and that were located at two positions, 1 m from the air entrance and 1 m from the air exit of each 5-m-long compartment.
At each harvest, plants were sorted by species and weighed after oven drying for 72 h at 60°C. For some analyses, biomass also was calculated for each of five functional groups of species (C4 grasses, C3 grasses, C3 annual forbs, C3 perennial forbs, and legumes). To minimize effects of harvesting on element cycling, plant material that was removed in December was returned in January before the next growing season to the 1 m2 area in compartments from which it was harvested. Before plant material was returned, it was shredded with a wood chipping machine to simulate effects of late-season mowing that commonly is applied to grasslands in central Texas.

Plant tissue (green + senescent) removed from the two 0.1 m2 plots during June and October of each year was assigned to functional groups. Nitrogen accumulation of each functional group was estimated by multiplying the value of peak biomass for the group by the N concentration of biomass. The total of above-ground N accumulation per year for vegetation was estimated by summing these values of peak N across functional groups for each compartment along the CO2 gradient. The nitrogen use efficiency (NUE) of vegetation was calculated by dividing above-ground biomass by N contained in live plus dead above-ground tissues (productivity per unit of N accumulation).

Photosynthetic photon flux density (light) was measured at the soil surface, at 0.5 m above the surface, and above the plant canopy in the center of each compartment. Light was measured at mid-day on single days in May and October of each year with a 1-m long sensor (SunScan, Delta-T Devices, Ltd) placed diagonally across each of two 1-m2 plots per compartment.

Species composition

For each year, we calculated the ‘similarity’ in vegetation between pairs of chamber compartments using Sorensen’s community coefficient (CC) weighted by biomass harvested in December (Barbour et al., 1980).

Sorensen’s CC = 2MC/(MA + MB),

(MA, summation of percentage of total biomass harvested from compartment A that is attributable to each species; MB, summation of percentage of total biomass harvested from compartment B that is attributable to each species; and MC, summation of minimum values of percentage of total biomass for each species common to compartments A and B.) Like other indices of community similarity, Sorensen’s CC is a measurement of species shared between sampling units. Unlike the commonly used Jaccard’s index as applied to weighted data, Sorensen’s CC has the desirable property of ranging between 0 (complete difference) and 1 (identity). We tested for divergence in species composition along the CO2 gradient by plotting values of Sorensen’s CC calculated for all possible pairs of chamber compartments vs differences in CO2 concentration. As an index of species shared by compartments, Sorensen’s CC should decline as differences in CO2 concentration increase if CO2 treatments influence species composition and abundances.

Statistics

The relationship between CO2 concentration during daylight and distance along both superambient and subambient chambers was slightly curvilinear (Johnson et al., 2000). From these relationships, we calculated mean CO2 concentration for each 5-m compartment along chambers. These CO2 concentrations were used as the independent variable in regression analyses with biomass, N concentration and content, and parameters descriptive of species composition as dependent variables (P < 0.05 significance level). To accommodate a variety of possible response curves, we fit linear, hyperbolic, power, and logarithmic functions to data. The model with the greatest r2 value was deemed the best fit. Differences among sampling years in light interception by plants were tested with single degree of freedom contrasts.

Results

Vegetation

Vegetation changed considerably during the 4 yr of this study, from dominance by C4 grasses to codominance by C4 grasses and C3 perennial forbs (Fig. 1). Among individual species, Bothriochloa exhibited the most striking change. This C4 grass alone comprised almost 60% of biomass harvested from chambers following the first season of CO2 treatment, 1997. Contribution of Bothriochloa to end-of-season biomass declined to 24–25% in 1999 and 2000, partly because of an increase in abundances of taller perennial forbs Ratibida columnaris, Solanum dimidiatum, and Solidago canadensis. As abundances of forbs increased, light interception by taller plants also increased. Of total light intercepted by plants, the fraction intercepted above 0.5 m height was greater during the final 3 yr of the experiment than during the initial year of 1997 (linear contrasts, P < 0.0001, n = 20 values per year), whether measured in May (means = 0.05 and 0.24 in 1997 and across subsequent years) or October (means = 0.16 and 0.29 in 1997 and across subsequent years).

There was no relationship between Sorensen’s CC, calculated using biomass per species of the total of 71 species encountered, and CO2 during the 4 yr of this experiment (not shown). Species also were grouped by photosynthetic pathway (either C3 or C4) or into one of five functional groups before calculating Sorensen’s CC between each pair of chamber compartments. Neither of these calculations of vegetation similarity was related to differences in CO2 treatment (not shown). The absence of a relationship between Sorensen’s CC and CO2 across years indicates that CO2 played little role in
species composition during the experiment. Heterogeneity in species mixtures increased with time, irrespective of CO₂ treatment. Averaged across pair-wise comparisons of chamber compartments, values of Sorensen's CC that were calculated using biomass per species declined from 0.53 in 1997 to 0.29 in 2000 (values were 0.48 in 1998 and 0.31 in 1999, n = 190).

Above-ground biomass

Averaged across CO₂ concentrations, above-ground biomass was greater during the final 3 yr of treatment (means = 1086, 962, 1131 g m⁻² in 1998, 1999, and 2000; n = 20) than during the initial year of 1997 (mean = 737 g m⁻²; n = 20). Above-ground biomass increased significantly from subambient to superambient CO₂ concentrations in 1997 and 1998 and increased marginally (P = 0.09) with greater CO₂ concentration in 1999 (Fig. 2). Biomass production was best described by a positive, linear function of CO₂ in 1997 and by curvilinear functions (logarithmic and hyperbolic) in 1998 and 1999. There was no relationship between above-ground biomass and CO₂ in 2000 (P = 0.20). Although there was considerable scatter in relationships between production and CO₂, mean responses of biomass to CO₂ often were dramatic. We estimate from regression, for example, that in 1997 above-ground production increased by 86% (from 510 to 949 g m⁻²) as CO₂ rose from 210 to 550 µmol mol⁻¹. Across the full CO₂ gradient, biomass production increased by a mean of between 121 g m⁻² (1999) and 161 g m⁻² (1998) per 100 µmol mol⁻¹ increase in CO₂ concentration.

Much of the increase in above-ground biomass during the initial year of CO₂ exposure (1997) occurred in Bothriochloa (Fig. 3). As estimated from regression, biomass of the dominant C₄ grass more than doubled with the 210–550 µmol mol⁻¹ increase in CO₂ concentration. This increase in Bothriochloa biomass accounted for 75% of the stimulation of community biomass by higher CO₂ during 1997. In subsequent years, however, there was no relationship between production of the C₄ grass and CO₂ (not shown; P = 0.48, 0.60, and 0.48 in 1998, 1999, and 2000). Biomass of Bothriochloa declined precipitously during the 1999 season, by an average of 245 g m⁻² across CO₂ treatments.

As biomass of the dominant grass declined, above-ground production of perennial forbs (including Ratibida columnaris, Solanum dimidiatum, and Solidago canadensis) increased from an average of 161 g m⁻² in 1997 to greater than 400 g m⁻² in subsequent years (means = 402, 441, 495 g m⁻² in 1998, 1999, and 2000; n = 20). Biomass of these C₃ species was not related to CO₂ treatment during 1997 (P = 0.39), but increased marginally (P = 0.10) at higher CO₂ during 1998 when 2 outlier points were excluded and increased significantly with CO₂ concentration during 1999 (P = 0.016) and 2000 (P = 0.003; Fig. 3). In each of the final two years of the experiment, CO₂ effects were dramatic. Across the full CO₂ gradient, we estimate from the curvilinear functions fit to biomass-CO₂ relationships that production of perennial forbs increased by a factor of 4 in 1999 and of 7 in 2000. Indeed, forb biomass increased slightly more at higher CO₂ than did total biomass during 1999 and increased during 2000 despite the absence of a CO₂ effect on production of all species combined (Fig. 2). Clearly then, biomass of other species must have declined as CO₂ and forb biomass increased during 1999 and 2000. Much of this decline in biomass occurred in Bothriochloa (Fig. 4). During the final 3 yr of the experiment (1998–2000), above-ground biomass of this C₄ grass decreased more at elevated than at subambient concentrations.

Nitrogen

Nitrogen accumulation of vegetation was estimated for each year from values of peak N of 5 functional groups of species as determined from harvests of 0.1 m² plots. In no year did above-ground N accumulation change significantly with CO₂.
Carbon dioxide enrichment frequently reduced tissue N concentration, but CO₂ effects varied among years and functional groups of species. As determined from regression, the N concentration of C₄ grasses (including *Bothriochloa*) declined by 27% in 1997 and 1998 as CO₂ concentration increased from 215 to 550 µmol mol⁻¹ (Fig. 5). The N concentration of C₄ grasses as a group did not vary significantly with CO₂ treatment in either 1999 (P = 0.67) or 2000 (P = 0.40). Nitrogen concentration of the dominant C₄ grass *Bothriochloa* declined slightly more across subambient than superambient CO₂ concentrations in both 1998 and 1999 (Table 1), but was not significantly related to CO₂ treatment in 2000 (P = 0.89). Across measurements from 1998 and 1999, N concentration of perennial forbs declined more per unit increase in CO₂ over subambient than superambient concentrations (Fig. 5). The mean decrease in N concentration at subambient CO₂ was greater by more than an order of magnitude in perennial forbs than C₄ grasses. There was no relationship between N concentration of perennial forbs and CO₂ in either 1997 (P = 0.86) or 2000 (P = 0.92).
The NUE of vegetation, defined as the ratio of above-ground biomass production to above-ground N content, increased with CO₂ concentration only in 1998 (Table 1; \(P = 0.36, 0.16, \) and 0.29 in 1997, 1999, and 2000). Although higher CO₂ frequently reduced the N concentration of dominant species, heterogeneity in species composition combined with the increased abundance of N-rich forbs at high CO₂ (Fig. 3) eliminated any CO₂ effect on NUE of the plant community during most years.

Discussion

Biomass production

Increasing CO₂ from prehistorical to predicted concentrations increased above-ground biomass of the C₄ grass *Bothriochloa* and of C₃ perennial forbs during 1998 through 2000 and the mean daytime CO₂ concentration to which 4-m² plots were exposed \((n = 20)\). Data for perennial forbs were fit with a linear function \((\text{biomass} = -253.58 + 1.52 \times \text{CO}_2, r^2 = 0.18, P = 0.06)\), and data for *Bothriochloa* was fit with a logarithmic function \((\text{biomass} = 2562.0 - 462.6 \times \ln(\text{CO}_2), r^2 = 0.35, P = 0.006)\).

The 350 µmol mol⁻¹ increase in CO₂ concentration studied here is similar in magnitude to that employed in other CO₂ experiments on grasslands, but proportional increases in biomass during this experiment were larger than typically measured in grasslands. As calculated from regressions, for example, above-ground biomass rose by between 56% and 86% in 1997 through 1999 with the increase in CO₂ from 210 to 550 µmol mol⁻¹. Below-ground production was 50% greater at elevated than subambient concentrations (Gill *et al.*, 2002). Biomass responses to CO₂ enrichment vary from nil in alpine grassland (Schappi & Körner, 1996) to
increases ranging between about 20% and 50% in annual grassland (Hungate et al., 1997; Shaw et al., 2002), calcareous grassland (Leadley et al., 1999), tallgrass prairie (Owensby et al., 1999), and shortgrass steppe (Morgan et al., 2001). The rather large responses of above-ground biomass to CO2 during initial years of this experiment apparently derived from large and usually linear increases in leaf and canopy photosynthesis (Anderson et al., 2001; Mielnick et al., 2001) and in leaf water use efficiency over subambient to superambient concentrations (Anderson et al., 2001; Maherali et al., 2002; Polley et al., 2002).

Although constrained by scatter in biomass-CO2 relationships, our results provide little evidence that above-ground biomass is more responsive to CO2 at subambient than superambient concentrations. Biomass-CO2 relationships were slightly curvilinear with greatest increase over subambient concentrations for the grassland community in 1998 and 1999 and for perennial forbs in 1999 and 2000. In other years, however, biomass was better described by a linear function of CO2 concentration. Experimental evidence that plant production is more responsive to CO2 at subambient than at superambient concentrations comes mostly from greenhouse or growth chamber studies that typically were of short duration or were conducted under conditions favorable for plant growth (Baker et al., 1990; Allen et al., 1991; Dippery et al., 1995; Grünzweig & Körner, 2001). Conditions in natural and seminatural ecosystems frequently are more demanding of plants and may involve species change or other feedbacks between plants and the environment that dampen plant responses to CO2 or contribute to temporal variability in CO2 effects. In the C3/C4 grassland that we studied, biomass response to CO2 apparently was influenced by one of these feedbacks, vegetation change. Nevertheless, increasing CO2 from the pre-Industrial to current concentration (270–370 µmol/mol−1) elicited a 20–22% increase in above-ground biomass during 1997 and 1998.

Carbon dioxide enrichment increased grassland production despite having no effect on N accumulation in above-ground tissues. Reduced N concentration is a common response to CO2 enrichment (Cotrufo et al., 1998; Körner, 2000). It is noteworthy therefore that in this experiment responses of N concentration to CO2 varied among functional groups and years. Responses to CO2 varied even within an individual species. The N concentration of Bothriochloa, for instance, declined as CO2 increased during the first two years examined, but was not related to CO2 treatment during a third year. Variability in response obviously complicates prediction and cautions against generalization.

Carbon dioxide enrichment increased biomass during the first 3 yr of this study despite temporal changes in species abundances and despite interannual differences in responses of species or groups of species to CO2. Consequently, positive responses of biomass to CO2 enrichment were determined by different species or by different functional groups of species during different years. Much of the increase in above-ground biomass during 1997 occurred in Bothriochloa. By 1999, CO2 effects on grassland production were determined largely by the positive response of perennial forbs to CO2.

Species composition

Species composition affects the response of plant production to CO2 (Niklaus et al., 2001; Reich et al., 2001), but CO2 enrichment, in turn, may influence the contribution of species to community biomass (Leadley et al., 1999; Niklaus et al., 2001). The predominant shift in vegetation during this experiment, greater production of perennial forbs at the expense of C4 grasses, clearly was amplified by CO2 enrichment across the full subambient to superambient gradient. Several studies have shown that CO2 enrichment favors forbs over grasses (Potvin & Vasseur, 1997; Leadley et al., 1999; Owensby et al.,

Table 1 Results of significant regression analyses between above-ground N and CO2 over a 200–560 µmol/mol−1 gradient (n = 20)

<table>
<thead>
<tr>
<th>Year/parameter</th>
<th>Model type</th>
<th>Slope or a value</th>
<th>Intercept or b value</th>
<th>r²</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997
[N] C₄ grasses</td>
<td>Linear</td>
<td>-0.0007</td>
<td>1.02</td>
<td>0.30</td>
<td>0.01</td>
</tr>
<tr>
<td>1998
[N] C₄ grasses</td>
<td>Power</td>
<td>6.48</td>
<td>-0.37</td>
<td>0.29</td>
<td>0.01</td>
</tr>
<tr>
<td>1999
[N] Bothriochloa</td>
<td>Hyperbolic</td>
<td>0.525</td>
<td>-64.00</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>[N] perennial forbs</td>
<td>Hyperbolic</td>
<td>1.11</td>
<td>-110.82</td>
<td>0.24</td>
<td>0.05</td>
</tr>
<tr>
<td>NUE</td>
<td>Linear</td>
<td>0.122</td>
<td>53.43</td>
<td>0.18</td>
<td>0.06</td>
</tr>
<tr>
<td>1999
[N] Bothriochloa</td>
<td>Hyperbolic</td>
<td>0.83</td>
<td>-33.56</td>
<td>0.19</td>
<td>0.03</td>
</tr>
<tr>
<td>[N] perennial forbs</td>
<td>Linear</td>
<td>-0.003</td>
<td>3.09</td>
<td>0.21</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Nitrogen use efficiency (NUE) is the ratio of above-ground biomass (determined by summing peak biomasses of 5 functional groups of species) to N content of that biomass. Linear (y = ax + b), hyperbolic (y = ax/(b + x)), or power (y = ax²) functions were fit to relationships of two parameters (y; tissue N concentration (%) and NUE (g biomass g N−1)) to CO2 concentration (x; µmol mol−1). There were no significant relationships between N and CO2 in 2000.
et al. (Polley et al., 2002), although the trend is not universal (Morgan et al., 2001). Superficially, this increase in forbs is consistent with a long-standing prediction that CO2 enrichment favors C3 over C4 plants by preferentially stimulating photosynthesis and growth of C3 species. But, relative abundances of C3 and C4 species did not respond predictably to CO2 in this experiment, consistent with results from grassland studies at elevated CO2 (Owensby et al., 1999; Morgan et al., 2001) but contrary to trends measured in salt marsh (Arp et al., 1993) and in some reconstructed communities at subambient concentrations (Johnson et al., 1993, but see Ward et al., 1999). As evidenced by the increase in Bothriochloa biomass during 1997, possession of the C4 metabolism does not preclude a CO2 response even to elevated concentrations. Rather than simply reflecting CO2 effects on C3–C4 balance, the increase in forb production probably was related to differences in plant morphology and growth habit (Bazzaz & McConnaughay, 1992), to release from grazing (Potvin & Vasseur, 1997), to differing sensitivities of grasses and of more deeply rooting forbs to droughts, or to some combination of these and other factors. Above-ground biomass of Bothriochloa decreased during 1998, a year with a 6-months drought during these and other factors. Above-ground biomass of Bothriochloa decreased during 1998, a year with a 6-months drought during mid-season (Polley et al., 2002), and declined precipitously during the drought year of 1999. Xylem potentials were more sensitive to changes in soil water in the grass than in a perennial forb (Polley et al., 2002), suggesting that grasses were especially disadvantaged by drought. Perennial forbs increase in abundance following the release of Bothriochloa-dominated grassland from grazing (Wilsey & Polley, 2003). In this grassland as in tallgrass prairie (Owensby et al., 1999), taller growth forms may eventually dominate ungrazed communities at ambient and higher CO2 concentrations irrespective of physiological sensitivities to CO2. That this shift from grasses to forbs was amplified as CO2 increased indicates that CO2 enrichment may speed successional changes in the composition of this grassland following release from grazing. Elevating CO2 above the ambient concentration favored dicots over grasses in the pasture community studied by Potvin & Vasseur (1997), but this CO2 effect slowed rather than accelerated successional change.

Conclusions

Our results provide the first evidence in an intact ecosystem for an increase in above-ground production and shift in plant composition over subambient to superambient CO2 concentrations. Biomass increased despite temporal changes in the responses of biomass and tissue N to CO2 among species and species groups. Increasing CO2 accelerated a successional shift in vegetation from the dominant C4 grass to perennial forbs. The continuous response to CO2 of above-ground biomass, plant N concentration, and grass–forb relative abundances in this C3/C4 grassland indicates that grasslands may remain sensitive to CO2 as concentration rises to twice the pre-Industrial level during coming decades.

Acknowledgements

Ron Whitis maintained CO2 chambers. Anne Gibson, Katherine Jones, Chris Kolodziejczyk, and Kyle Tiner helped with harvests and processed samples, and Joaquin Sanabria contributed statistical guidance. William Dugas, Richard Gill, Robert Jackson, Hafiz Maherli, and Patricia Mielnick provided helpful comments on the manuscript.

References

