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a b s t r a c t

Agroforestry management in smallholder agriculture can provide climate change mitigation and adap-
tation benefits and has been promoted as ‘climate-smart agriculture’ (CSA), yet has generally been left
out of international and voluntary carbon (C) mitigation agreements. A key reason for this omission is the
cost and uncertainty of monitoring C at the farm scale in heterogeneous smallholder landscapes. A
largely overlooked alternative is to monitor C at more aggregated scales and develop C contracts with
groups of land owners, community organizations or C aggregators working across entire landscapes (e.g.,
watersheds, communities, municipalities, etc.). In this study we use a 100-km2 agricultural area in El
Salvador to demonstrate how high-spatial resolution optical satellite imagery can be used to map
aboveground woody biomass (AGWB) C at the landscape scale with very low uncertainty (95% proba-
bility of a deviation of less than 1%). Uncertainty of AGWB-C estimates remained low (<5%) for areas as
small as 250 ha, despite high uncertainties at the farm and plot scale (34e99%). We estimate that CSA
adoption could more than double AGWB-C stocks on agricultural lands in the study area, and that uti-
lizing AGWB-C maps to target denuded areas could increase C gains per unit area by 46%. The potential
value of C credits under a plausible adoption scenario would range from $38,270 to $354,000 yr�1 for the
study area, or about $13 to $124 ha�1 yr�1, depending on C prices. Considering farm sizes in smallholder
landscapes rarely exceed 1e2 ha, relying solely on direct C payments to farmers may not lead to
widespread CSA adoption, especially if farm-scale monitoring is required. Instead, landscape-scale ap-
proaches to C contracting, supported by satellite-based monitoring methods such as ours, could be a key
strategy to reduce costs and uncertainty of C monitoring in heterogeneous smallholder landscapes,
thereby incentivizing more widespread CSA adoption.

© 2017 Published by Elsevier Ltd.
1. Introduction

Multiple benefits can be realized at both the farm and landscape
scale when managing for carbon (C) storage in smallholder agri-
culture (Harvey et al., 2013). Benefits include reduced erosion,
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increased habitat and biodiversity, improved nutrient cycling and
yield stability (Steenwerth et al., 2014); however, due to a variety of
methodological concerns related to Cmonitoring, international and
voluntary agreements on land-use-related Cmitigation have largely
omitted agriculture, and have instead been restricted to reforesta-
tion and afforestation activities (Pelletier et al., 2012; Turnhout et al.,
2017). Agroforestrymanagement can store substantial amounts of C
in abovegroundwoody biomass (AGWB; e.g., Henry et al., 2009) and
soil (Lorenz and Lal, 2014). It is considered a form of “climate-smart
agriculture” (CSA) because it can serve to both mitigate climate
change through increased terrestrial C storage and increase the
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resilience of agricultural systems (e.g., through the benefits
mentioned above), thereby improving farmers' ability to adapt to an
already changing climate (Steenwerth et al., 2014; Verchot et al.,
2007).

There is growing interest in including CSA practices like agrofor-
estry in C mitigation programs (e.g., Harvey et al., 2013; Steenwerth
et al., 2014), and efforts are underway to develop strategies to
monitor C sequestration associated with changes in smallholder
agricultural land management (G�omez-Castro et al., 2010; Henry
et al., 2009; Marinidou et al., 2013; Rosenstock et al., 2016). Small
farms sizes, low C sequestration rates per hectare and inaccessibility
in smallholder landscapes often result in unacceptably high costs
when attempting to monitor C at the farm scale (Cacho et al., 2013).
This not only hampers efforts to assess the C mitigation benefits of
CSA, but has also led some authors to conclude that agroforestry-
based C contracts with individual farmers would likely be imprac-
tical at current C prices (Henry et al., 2009; Luedeling et al., 2011).

An alternative is to develop C contracts with groups of land-
holders or organizations at the landscape scale (e.g., the scale of
watersheds, communities, municipalities, etc.), rather than with
individual farmers. This approach offers several potential benefits:
1) reduced monitoring and transaction costs and uncertainty if C
accounting occurs at more aggregated scales rather than on indi-
vidual farms; 2) increased flexibility for communities to promote or
incentivize CSA for multiple benefits, beyond just C storage (Harley
et al., 2012); and 3) the ability to achieve C storage through a suite
of interventions (e.g., agroforestry, fire management, afforestation
and reforestation), allowing activities to be dynamic and meet the
needs of individual land managers and communities within the
same contract (Chhatre and Agrawal, 2009; Harley et al., 2012;
Stringer et al., 2012).

A key step to developing landscape-scale C contracts is the
development of accurate C monitoring methods at aggregated
scales (Scherr et al., 2012), especially for C stored in AGWB. The
simplest andmost commonmethods to estimate landscape AGWB-
C are inventory-based or ‘stratify and multiply’ approaches (Goetz
et al., 2009). Specifically, these approaches involve assigning a
single C value, or a range of values, to individual vegetation, the-
matic or land use/land cover (LULC) classes, which are then
multiplied by class areas estimated from satellite imagery, existing
maps, census data or other sources. Such approaches face chal-
lenges for monitoring changes in AGWB-C from CSA adoption,
especially in smallholder landscapes (Kearney and Smukler, 2016).
For example, CSA practices exist along a gradient, confounding bi-
nary definitions of what is and is not CSA, thus complicating
assignation of specific C values to each LULC class. Furthermore,
calculating LULC class area totals is exceptionally challenging in
smallholder landscapes due to small field sizes, highly heteroge-
neous management practices, shifting cultivation and rapid
changes in land use over time.

Monitoring approaches utilizing remote sensing data to develop
wall-to-wall AGWB-C maps show promise to overcome the chal-
lenges of ‘stratify and multiply’ approaches in smallholder land-
scapes, although with limitations (Gibbs et al., 2007). AGWB
estimations from passive optical satellite sensors have generally
been considered too uncertain to meaningfully monitor AGWB-C
due to a variety of complications such as biomass saturation ef-
fects and highly heterogeneous landscapes resulting in mixed-
pixels (Goetz and Dubayah, 2011; Ravindranath and Ostwald,
2008; Zolkos et al., 2013). However, increasing spatial resolution
of imagery and advanced processing techniques are yielding
improved accuracy in estimating AGWB-related vegetation pa-
rameters from optical satellite imagery. For example, the accuracy
of optically-derived AGWB estimations has been improved by
incorporating texture variables representing the structural
arrangement of surfaces within prediction models (Castillo-
Santiago et al., 2010; Eckert, 2012; Fuchs et al., 2009; Kayitakire
et al., 2006; Sarker and Nichol, 2011).

While uncertainty of AGWB-C predicted from optical imagery
may remain high at the pixel and plot scale, it can be markedly
reduced when aggregated across a landscape due to the spatial
scaling of uncertainty. For example, several studies have shown
that uncertainty of AGWB predictions from remote sensing is lower
at more aggregated scales, either as a result of increasing map grain
size (Asner et al., 2010; Lusiana et al., 2014; Mascaro et al., 2011a) or
by aggregating across larger areas (Asner et al., 2010; Fazakas et al.,
1999; Saatchi et al., 2011). However, little discussion has been given
to the overall uncertainty of landscape AGWB totals derived from
very high spatial resolution optical imagery and how it relates to
monitoring efforts for C payments and CSA.

The aim of this study was to assess how landscape-scale C
mapping can overcome monitoring challenges for C contracting in
regions dominated by smallholder agriculture, with an application
to a mountainous region of El Salvador. Our objectives were
therefore to (1) investigate the potential for using high resolution
optical satellite imagery to quantify AGWB-C stocks in a small-
holder landscape at multiple scales, accounting for uncertainty, (2)
quantify expected gains in AGWB-C with the adoption of CSA and
potential payments for C credits and (3) explore the benefits of
using remote sensing to target low-biomass areas to promote
agroforestry in smallholder landscapes.

2. Materials and methods

Our analytical framework to realize the aforementioned objec-
tives consisted of four main steps. First, we took field measure-
ments of individual trees in 0.1 ha plots to calibrate high-spatial
resolution QuickBird satellite imagery acquired coincident with
field measurements. Second, we mapped AGWB-C for the entire
study area using amultiple linear regressionmodel developed from
a suite of potential predictor variable extracted from the QuickBird
image and a digital elevation model (DEM). Third, we estimated the
uncertainty of our AGWB-C map at multiple scales using two
methods: a simple quadratic scaling approach and an object-
weighted approach to account for spatial autocorrelation. Finally,
we predicted expected changes in AGWB-C for the study area for
several scenarios of CSA adoption and estimated potential gross
value of C credits at different market prices. We describe each of
these steps in detail below.

2.1. Description of the study area

The study area (Fig. 1) encompasses a 100-km2 (10,000 ha) area
within an association of seven municipalities in El Salvador known
as La Mancomunidad La Monta~nona (hereafter referred to as La
Mancomunidad). La Mancomunidad is a mountainous mosaic of
mixed-pine forest (Pinus oocarpa and Quercus spp.), broadleaf
secondary forest/fallow patches and widespread agricultural ac-
tivity dominated by subsistence smallholder cultivation of basic
grains (maize, beans and sorghum) and extensively grazed pas-
tures. The Ministry of Environment and Natural Resources of El
Salvador (MARN) identified this area as a priority region for testing
and promoting improved agricultural management due to the
predominance of basic grain farming and small-scale livestock on
steep slopes near a protected forest area. Elevations range from 265
to 1,575 m and the region has a sub-humid tropical climate with a
mean annual temperature of 22e26�C and mean annual rainfall of
about 1,985 mm (MARN, 2013). Rainfall occurs mostly between the
months of May and October with a pronounced dry season from
November to April, averaging less than 10 mm month�1 between



Fig. 1. Map of the 10,000 ha study area (inset) within the seven municipalities known as La Mancomunidad La Monta~nona (location shown in pink on the overview map). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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December and February.
2.2. Data collection

A total of 138 circular calibration plots, each with a radius of
17.84 m (area of 0.1 ha), were sampled in late 2012 utilizing a hi-
erarchical sampling method following a modified version of the
Landscape Degradation Surveillance Framework (LDSF) (Shepherd
et al., 2015). Initial site selection was carried out utilizing the LDSF
method, but plot centers were ‘pushed’ a random distance at a
randomly chosen angle into the nearest homogenous land use
parcelwhen the plot laywithinmultiple landuses. Plot centerswere
then georeferenced using GPS and differentially corrected to per-
manent base towers, achieving sub-meter accuracy for all locations.

Species, height and diameter at breast height (DBH) were
measured for all trees with DBH � 10 cm. The same measurements
were taken for trees with DBH 1e10 cm in a 0.01 ha circular subplot
in the plot center. Eleven larger plots in the study area were sur-
veyed in early 2013 as part of a regional landscape survey encom-
passing all of LaMancomunidad. Ten of these siteswere agricultural
fields ranging in size from 0.19 to 0.89 ha that encompassed
randomly selected calibration plots and the eleventh was a 1-ha
mixed-pine forest plot. These plots were used as validation sites
to compare predictedmap uncertainty to observed prediction error.

A high-spatial resolution QuickBird satellite image (0.6 m
panchromatic, 2.4 m 4-band spectral) of the study area was ac-
quired on December 4, 2012. The ASTER 30-m DEM was also
downloaded.
2.3. Mapping AGWB-C

AGWBwas calculated for each treewithin the sample plots from a
combination of species-specific and generalized allometric equations
using DBH, height and, when necessary, wood-specific gravity values
from the literature (see Supplementary Materials). AGWB-C was
estimated as 49% of AGWB based on several studies throughout
Central America (G�omez-Castro et al., 2010; Hughes et al., 1999;
Su�arez, 2002). AGWB-C density was calculated in metric tons per
hectare (Mg ha�1) by summing the estimated AGWB-C of each tree
within the plot and converting to a per-hectare area basis.

We used plot data to develop a contiguous prediction map of
AGWB-C for the entire study area using a multivariate linear regres-
sion model developed from a suite of potential predictor variables
derived from the QuickBird and ASTER DEM datasets (Table 1). Pre-
dictor variables were identified from similar studies using multiple
linear regressionmodels to estimate AGWB from optical imagery and
are listed in Table 1, along with their sources, when applicable. All
variables were created in ArcGIS 10.1 (ESRI, 2011) or ENVI 5.1 (Exelis
Visual Information Solutions, 2010) and their mean and/or standard
deviation values extracted for each 0.1 ha plot.

An exhaustive search was used to test all possible regression
model subsets with the leaps package (Lumley, 2009) in R, Version
2.9 (R Core Team, 2016). The dependent variable, AGWB-C, was
approximately log-normally distributed and was log transformed
after adding a constant of 1 to each value to avoid issues with zero
values. The maximum number of predictor variables allowed was
capped at seven (a sample size to variable ratio of roughly 20:1) and



Table 1
Potential predictor (independent) variables tested in the stepwise multivariate linear regression model. N ¼ the number of variables for each variable type.

Variable type Name Description/equation Data/equation source

Individual Bands (mean & standard deviation)
N ¼ 8

Band 1 (Blue) 450-520 nm DigitalGlobe
Band 2 (Green) 520-600 nm
Band 3 (Red) 630-690 nm
Band 4 (NIR) 760-900 nm
Panchromatic 450-900 nm

Band Ratios
N ¼ 6

NIR/Blue B4/B1 (Okubo et al., 2010)
Red/Blue B3/B1
Green/Blue B2/B1
NIR/Green B4/B2
Red/Green B3/B2
NIR/Red B4/B3

Vegetation Indices
N ¼ 6

EVI 2:5 NIR�Red
ðNIRþ6*Red�7:5*BlueÞþ1

(Jensen, 2005)

NDVI NIR�Red
NIRþRed

(Jensen, 2005)

ARI2
NIR

�
1

Green � 1
Red

�
(Exelis Visual Information Solutions, 2010)

ARVI NIR�½Red�ðBlue�RedÞ�
NIRþ½Red�ðBlue�RedÞ�

(Jensen, 2005)

OSAVI 1:5*ðNIR�RedÞ
ðNIRþRedþ0:16Þ

(Exelis Visual Information Solutions, 2010)

SR Red
NIR

(Jensen, 2005)

Tasseled Cap
N ¼ 4

TC 1 Brightness (Yarbrough and Easson, 2005)
TC 2 Greenness
TC 3 Wetness
TC 4 Fourth Coordinate

Principal Components
N ¼ 4

PC 1 Principal components 1e4 (Exelis Visual Information Solutions, 2010)
PC 2
PC 3
PC 4

GLCM Texture Variables
N ¼ 35

Contrast Individual bands (Bands 1e4 with 11 � 11 pixel
window; Panchromatic with 25 � 25 pixel window)

(Exelis Visual Information Solutions, 2010)
Correlation
Dissimilarity
Entropy
Homogeneity
Second Moment
Variance

Ratios of GLCM Texture Variables
N ¼ 28

Contrast Band Ratios with 11 � 11 pixel window
(B4/B2; B4/B3; B3/B4; B3/B2)

(Sarker and Nichol, 2011)
Correlation
Dissimilarity
Entropy
Homogeneity
Second Moment
Variance

Terrain
N ¼ 4

Elevation meters above sea level (m.a.s.l.) NASA
Slope degrees (ESRI, 2011)
Insolation Solar radiation tool, ArcGIS 10.1 (ESRI, 2011)
TWI TWI ¼ ln

�
a

tan B

�
where, a ¼ upslope contributing

area (m2) and B ¼ slope (degrees).

(Wilson and Gallant, 2000)
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the 40 best model subsets for each number of independent vari-
ables were selected using the Bayesian information criterion (BIC)
and adjusted-R2, resulting in 280 potential models. Finally, the
variance inflation factor (VIF) was calculated for each of the 280
potential models and all models with a VIF greater than 10 were
removed due to high potential multicollinearity (García et al., 2010;
Nichol and Sarker, 2011). Of the remainingmodels, the onewith the
lowest BIC and highest adjusted R2 was selected as the final
regression model and checked for heteroscedasticity and normality
of residuals.

A correction value was calculated to correct for bias introduced
by the log-transformation of the dependent variable following
methods described in Sprugel (1983). The cross-validated root
mean square error (RMSE-CV) of the final model was then evalu-
ated using leave-one-out cross validation (LOOCV) with the DAAG
package (Maindonald and Braun, 2015) in R.

In order to generate the final prediction map, a mean filter using
a circular moving window set at a radius of 17.84 m (equal to the
plot area of 0.1 ha) was applied to a raster of each independent
variable in the final model to account for the fact that the model
was built using mean values of 0.1 ha plots. These filtered rasters
were used to create a prediction map of log-transformed AGWB-C
for each pixel, which was then back-transformed and corrected to
produce a final AGWB-C prediction map.
2.4. Estimating map uncertainty

The uncertainty of aggregated AGWB-C was estimated at mul-
tiple scales as the 95% confidence interval in Mg of AGWB-C. Un-
certainty was first calculated for each pixel using the following
equation:

CPx±UPx ¼ t�
1�a

2; df
�*SEPx (1)

where CPx is the predicted AGWB-C at pixel Px, UPx is the uncer-
tainty at pixel Px, t is the Student t critical value at a specified alpha
(a) and degrees of freedom (df) (in this case a ¼ 0.05 and df ¼ 131)
and SE is the standard error of prediction at pixel Px. The lower and
upper uncertainty values for each predicted AGWB-C value were
then calculated by back-transforming the lower and upper confi-
dence interval limits, respectively, and calculating the difference
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from the predicted value for each pixel. Due to back-transformation,
this results in asymmetrical lower and upper uncertainty values.
Therefore, average uncertainty was also calculated for each pixel as
the simple average of the two values.

Aggregate uncertainty was calculated in two ways (with and
without accounting for spatial autocorrelation) at multiple scales to
explore how uncertainty changes as the size of the aggregation unit
varies from plot to farm to landscape scale. Lattice grids ranging
from approximately 0.01 to 10,000 ha on a logarithmic scale were
created for the entire study area and the average aggregate un-
certainty calculated for each grid as the mean percent uncertainty
of individual grid cells.

Aggregate uncertainty was first calculated for each grid as the
quadratic sum of all pixels within an aggregation unit as

CA±UA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXPx
n¼1

U2
Px

vuut (2)

where CA is the aggregate AGWB-C (calculated as the sum of pre-
dicted pixel values within the aggregation unit), UA is the aggregate
uncertainty and UPx is the uncertainty at pixel Px, as calculated in
Eq. (1). This method is a simple way to estimate uncertainty where
under- and over-prediction are equally likely for each individual
pixel, and has been used by others to aggregate uncertainty for
AGWB predictions (Asner et al., 2010; Saatchi et al., 2011). However,
since the quadratic sum method assumes errors are independent
and random (Palmer, 2003), it does not account for potential spatial
autocorrelation within the data. While no spatial autocorrelation
was detected in the residuals of the 138 calibration plots, it may
potentially occur at the pixel scale (i.e., at distances much smaller
than that between most calibration plot pairs) and, as a result, an
object-weighted approach was developed to account for local
spatial autocorrelation.

The object-weighted approach consisted of three basic steps: (1)
calculate the effective range of spatial autocorrelation of pixel
prediction uncertainty, (2) segment the image into spatial objects
with similar uncertainty and (3) weight the sum of uncertainty
based on the average distance between points within each object,
up to the effective range identified in step 1.

In order to calculate the effective range, a variogram was pro-
duced from the prediction uncertainty map using the gstat package
in R (Pebesma, 2004). The very high-spatial resolution of the un-
certainty map made it computationally expensive to compute a
variogram for the entire study area at once, therefore the map was
resampled to 9.6 m pixels and a bootstrapping approach was used
to construct variograms for 1000 randomly selected subsections of
approximately 1 � 1 km each. The results of these 1000 individual
variograms were averaged to produce a single estimate of the
semivariance between cells, to which an exponential model was fit.
The exponential model yielded an effective range of 281 m, beyond
which spatial autocorrelation of uncertainty is assumed to be
inconsequential (Fig. S1).

The original 2.4 m uncertainty map was then segmented using
ENVI 5.0 (Exelis Visual Information Solutions, 2010) and the
average distance between cells within each object calculated as

Do ¼ eð0:5*logðAoÞ�0:6515Þ (3)

where Do is the average distance between points within an object
(o), and Ao is the area of the object. The sum of prediction uncer-
tainty of pixels within each object was weighted using a modifi-
cation of Equation (2), where the exponent is scaled between 1 and
2, such that within each object,
Co±Uo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXPx
n¼1

USo
Px

So

vuut (4)

and So is calculated as

So ¼ 1þ Do

�
1

281

�
(5)

In this manner, uncertainty of very small objects was aggregated
by the near-arithmetic sum (i.e., assuming near-perfect spatial
autocorrelation), whereas uncertainty was scaled toward the
quadratic sum for very large objects where the average distance
between pixels exceeded the effective range of 281 m (i.e.,
assuming independence of errors). The weighted uncertainty of
each object was then summed in quadrature for each aggregation
unit according to Equation (2), since objects are by definition
assumed to be independent of each other.

2.5. Predicting changes in AGWB-C with CSA adoption and
potential C value

Simple scenarios of expected AGWB-C gains with the adoption
of CSA practices were created to examine the potential magnitude
and value of C storage in the study area. Scenarios were based on
the objectives of several recent and ongoing projects in La Man-
comunidad to promote CSA for multiple benefits, including storing
AGWB-C. Specifically, the CSA practices of interest include the
adoption of a slash-and-mulch agroforestry system (e.g., Hellin
et al., 1999) and improved silvopasture management (e.g., Dagang
and Nair, 2003), both typified by increasing the number and di-
versity of managed trees left in fields and pastures, thus increasing
AGWB-C stocks.

Predicted gains in AGWB-C with conversion from conventional
management to CSAwere estimated from expected changes in tree
density and size-distribution. Based on recommendations from
experts and on-farm trials, the average target tree density and size-
distribution for the CSA practices of interest is approximately 100
large trees (DBH 10e40 cm) and 1000 small trees (DBH 5e10 cm)
per hectare, respectively. When converted to basal area, this
equates to a target basal area averaging 9.33 m2 ha�1, which agrees
well with the limited published observations of basal area in
mature agroforestry and silvopasture systems in Central America
(e.g., Pauli et al., 2011). Using simple linear regression with data
from ground plots in cropland, pasture and broadleaf secondary
forest/fallow in this study (n¼ 127), the relationship between basal
area and AGWB-C was modeled, yielding an estimated target
AGWB-C of 23.35 Mg ha�1 ± 0.69 Mg ha�1 (one standard error) at
the target basal area of 9.33 m2 ha�1.

A LULC map was overlaid with the predicted AGWB-C map to
identify areas currently under cropland, pasture or broadleaf sec-
ondary forest/fallow classes where AGWB-C gains would be real-
ized with conversion to CSA (i.e., areas with predicted AGWB-C less
than 22.51 Mg ha�1). We note that predicted AGWB-C gains in
broadleaf secondary forest/fallow classes are likely an underesti-
mate, since we maintain the simple assumption that fallows will
retain 22.51 Mg C ha�1 coming out of agroforestry/silvopasture,
ignoring additional gains from tree growth that would come as the
fallow matures. For each pixel identified, the predicted gain in
AGWB-C with CSA adoption was calculated using a Monte Carlo
simulation where, for each iteration,

Gi ¼ Ci � Ti (6)

and Gi is the predicted gain in AGWB-C in Mg ha�1 for the ith



Table 2
Select descriptive statistics for aboveground woody biomass carbon (AGWB-C) in
calibration plots by land use/land cover LULC class (CROP ¼ cropland,
PAST ¼ pasture, BLF ¼ broadleaf secondary forest/fallow, MPF ¼ mixed-pine forest).
CV is the coefficient of variation.

LULC class n AGWB C (Mg C ha�1) CV

Mean Median Min Max

CROP 29 9.73 3.48 0.00 60.22 1.38
PAST 44 11.3 8.75 0.00 35.62 0.87
BLF 52 27.33 24.77 1.57 70.66 0.66
MPF 13 43.48 40.87 13.08 91.92 0.52
OVERALL 138 20.04 15.26 0.00 91.92 0.93
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iteration, Ci is current AGWB-C in Mg ha�1 randomly chosen from
the distribution of possible predicted values for each pixel and Ti is
the target AGWB-Cwith CSA adoption, whichwas randomly chosen
from a normal distribution with a mean of 22.51 Mg ha�1 and a
standard deviation of 0.82 Mg ha�1 (derived from our model re-
sults). The simulation was conducted 100 times and total AGWB-C
gain for the study area was calculated for each iteration. The me-
dian was taken as the expected total gain in AGWB-C and the 2.5th
and 97.5th percentiles used to calculate a 95% confidence interval.
We took the lower bound of this interval as the minimum expected
gain in AGWB-C with conversion from conventional management
to CSA across the study area.

We estimated the minimum expected gain in AGWB-C under
three adoption scenarios: 1) full adoption (100% of all agricultural
land converted to CSA), 2) 50% adoption randomly distributed
across agricultural lands and 3) 50% adoption targeting only the
most denuded areas (i.e., areas with expected gains of at least
5 Mg C ha�1). For each scenario, minimum expected gain was
calculated using a probability distribution function (PDF) to esti-
mate the gain we expect could be monitored with 95% confidence
based on the uncertainty of the prediction map.

Finally, the potential value of C-payments for CSA adoption was
estimated to contextualize the potential for developing a
community-scale C contract over a 15-year period. Gross C value
(not accounting for monitoring and transaction costs) was calcu-
lated by multiplying the minimum expected gain in AGWB-C
(converted to metric tons of CO2 equivalents) by the market price
for C. We did this for three different prices of CO2 equivalents, since
prices are highly variable across markets and over time. We chose
prices of $4 per ton (the approximate low for EU Allowance credits
in 2013), $12 per ton (the approximate price of California Carbon
Allowance Futures from 2014 to 2016) and $37 per ton, the ‘social’
or ‘shadow’ price of carbon as estimated by the US Interagency
Working Group on the Social Cost of Carbon (US Interagency
Working Group on the Social Cost of Carbon, 2015).

3. Results

3.1. Mapping AGWB-C

AGWB-C density in the 138 calibration plots ranged from 0 to
92 Mg C ha�1 and, as anticipated, varied by land use (Table 2).
Variability was high in all LULC classes, and highest for cropland
and pasture.

Of the 280 AGWB-C calibration models 149 met the model se-
lection criteria. GLCM texture variables, namely correlation, entropy
and homogeneity from the panchromatic image and Bands 1 and 3,
were the most frequently selected variables (Fig. 2). The ratio of the
Second Moment of Band 4 to Band 3 was the only GLCM texture
ratio consistently selected. In general, vegetation indices, terrain
variables, tasseled cap transformations, PCA and ratios of GLCM
texture variables were rarely included in model subsets. Models
with more variables generally had lower BIC and higher adjusted
R2. No models with seven variables passed the multicollinearity
threshold (VIF < 10). Three models with 6 variables met the VIF
threshold but did not pass tests for normality of residuals. There-
fore, the final chosen model based on the selection criteria con-
tained 5 variables with an adjusted R2 of 0.52, RMSE-CV of
16.38 Mg ha�1 (81.71%) and a correction factor of 1.38 (Table 3).

The final map of predicted AGWB-C corresponded well with
known areas of high biomass, for example the intact mixed-pine
forest in the northwest of the study area, broadleaf riparian zones
along rivers and streams and the less-populated highlands in the
southeast (Fig. 3). Map uncertainty (as percent of the prediction
value) was typically highest in image-shadowed areas and areas
with very low biomass (Fig. 4). Based on the sum total of all pixels in
the prediction map, aggregate AGWB-C for the study area is esti-
mated at 257,360 Mg, about 8.8% higher than a simple plot-based
estimate calculated using a ‘stratify and multiply’ approach
(Table 4). Overall average AGWB-C density was 25.81 Mg ha�1 and
estimates of average AGWB-C density by LULC class were similar to
plot-based averages.

3.2. Estimating map uncertainty

The grid simulation showed an exponential decay in prediction
uncertainty as the size of aggregation units increased for both
calculation methods (Fig. 5). However, prediction uncertainty for
smaller aggregation units was markedly lower using the quadratic
sum of individual pixel uncertainty compared to the object-
weighted approach.

At the scale of sample plots (0.1 ha) and farms (~1 ha), the
object-weighted approach predicted uncertainties of about
50e100%, which was nearer to the range of observed prediction
error for most validation plots compared to the quadratic sum
(Fig. 5). Object-weighted uncertainty declined below 5% for ag-
gregation units larger than about 250 ha. At the scale of the study
area (10,000 ha), uncertainty was less than 1% using both methods.

3.3. Predicting changes in AGWB-C with CSA adoption and
potential C value

Expected gain in AGWB-C with full conversion to CSA practices
within the study area is 58,920 Mg, or about 28% of the estimated
total in managed land uses. Of this potential gain, 19,510 Mg (33%)
comes from conversion of cropland to agroforestry, 26,760 Mg
(45%) from pasture to silvopasture and 12,650 Mg (21%) from
increased AGWB-C in broadleaf secondary forest/fallow resulting
from higher AGWB-C in managed lands entering back into forest/
fallow uses (Table 5). Overall, nearly 60% of the land area not
currently under mixed-pine forest could see gains in AGWB-C with
CSA adoption. Nearly all cropland and pasture areas have potential
to increase AGWB-C, while we would expect to see gains in 36% of
the area classified as broadleaf secondary forest.

Combining the uncertainty of the expected gain with the uncer-
tainty of the aggregate AGWB-C,we estimate that aminimumgain of
57,340 Mg could be measured with 95% confidence with 100%
adoption of CSA. With 50% adoption by random farms (simulating a
non-targeted approach) the expected measurable gain drops to
26,770 Mg. However, the expected AGWB-C gains are not evenly
distributed and targeting areas with high potential gain, as shown in
the map below (Fig. 6), was expected to yield substantially higher C
gains than a random non-targeted approach. Indeed, with 50%
adoption targeting only the most denuded areas, measureable land-
scape AGWB-C gains jumped to 39,110Mg, about 46% higher than the
random approach (Table 6).



Fig. 2. Top 10 most frequently chosen variables occurring in the models that met the model selection criteria (n ¼ 183).

Table 3
Results for the final model subset chosen. CF is the correction factor (see Sprugel,
1983) and VIF is the variance inflation factor.

Variable Coefficient est. Std. error Pr (>jtj) VIF

Intercept �1.67985 1.35761 0.218
Band 1 �0.03174 0.00698 <0.001 1.92
Entropy (Band 3) �0.00669 0.00129 <0.001 2.62
Correlation (Panchromatic) 8.12406 1.19259 <0.001 2.02
Entropy (Panchromatic) 1.26736 0.27321 <0.001 3.06
Second Moment (NIR/Red) 5.26955 1.14585 <0.001 3.89
Adjusted R2 ¼ 0.52 j RMSE-CV ¼ 16.38 Mg ha�1 (81.71%) j CF ¼ 1.3810
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We estimate that AGWB-C would increase by nearly 40,000 Mg,
or 143,500 tons CO2 equivalent, with a 50% adoption rate over a 15-
Fig. 3. Final map of predicted AGWB-C at 2.4 m resolut
year period targeting the most denuded agricultural areas (Table 6).
Depending on the price per metric ton CO2 equivalent, the gross
value of C gains ranged from $574,000 (at $4 per ton) to as much as
$5,310,000 (at $37 per ton) for the study area. Annual gross value of C
perhectare of land converted to CSA ranged from$13e124ha�1 yr�1,
equivalent to between2.6 and25.3%of average net on-farmprofits in
the study area (estimated at $491 ha�1 yr�1, data not shown).

4. Discussion

4.1. Mapping AGWB-C

We find that AGWB-C in this region is relatively low, consistent
with other estimates for degraded tropical landscapes dominated by
smallholder agriculture. Saatchi et al. (2011) mapped tropical forest
ion. ‘No data’ areas in grey are due to cloud cover.



Fig. 4. Percent uncertainty of AGWB-C predictions, calculated as the percent of the predicted value using the average error of the upper and lower bounds of the 95% confidence
interval. ‘No data’ areas in grey are due to cloud cover.

Table 4
Estimated aboveground woody biomass carbon (AGWB-C) totals and per-hectare
means by land use/land cover (LULC) class (CROP ¼ cropland, PAST ¼ pasture,
BLF ¼ broadleaf secondary forest/fallow, MPF ¼ mixed-pine forest).

LULC
Class

Map area Map-based Plot-based

Total Mean Total Mean

(ha) (Mg) (Mg ha�1) (Mg) (Mg ha�1)

CROP 1,680 20,610 12.27 16,360 9.73
PAST 2,217 27,800 12.54 25,410 11.46
BLF 5,218 165,700 31.75 157,270 30.14
MPF 854 43,250 50.65 37,400 43.81
OVERALL 9,970 257,360 25.81 236,440 22.63
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C stocks at the national scale across Latin America, sub-Saharan
Africa and Southeast Asia and estimated average AGWB-C density
in forests in El Salvador to be between 39 and 60 Mg C ha�1, within
the measured range for broadleaf secondary forest and mixed-pine
forest in this study. Hughes et al. (1999) found similar results for
secondary forests in aMexican smallholder landscape. Total AGWB-
C ranged from 2 to 50 Mg C ha�1 in young secondary forests
(<15 yrs) and 44e146 Mg C ha�1 in secondary forests � 15 yrs
(assuming that 50% of total AGWB in their study is C).

Our results demonstrate that a multiple-linear regressionmodel
applied to high-resolution satellite imagery can provide accurate
estimates of aggregate AGWB-C for a highly heterogeneous and
degraded (low-biomass) smallholder landscape, even with rela-
tively small calibration plots (0.1 ha). Some studies have suggested
that AGWB estimates from passive optical imagery alone are too
uncertain to satisfy monitoring guidelines (Zolkos et al., 2013).
However, our findings show that optical imagery calibrated with a
large number of relatively small plots offers a promising option for
monitoring AGWB-C aggregated across large areas (greater than
~250 ha) with very low uncertainty (less than 5%). This is encour-
aging as small sample plots are not only less costly but in fact
necessary in these fragmented landscapes where homogenous
land-use units are irregularly shaped and frequently less than 1 ha.

The ranges of map uncertainty and observed errors at the scale
of a typical farm (0.1e1 ha) suggest that monitoring AGWB-C in
individual fields may not be feasible using the methodology pre-
sented in this study. However, map uncertainty seems to corre-
spond reasonably well with observed error, implying that the
predicted 95% confidence interval for aggregate AGWB-C will
usually encompass the true aggregate AGWB-C, even in farm-size
plots.

Uncertainty estimates reported in the literature often refer only
to the fit of the model used to predict AGWB, usually by the root
mean squared error (RMSE) or the mean absolute error (MAE)
(Castillo-Santiago et al., 2010; Eckert, 2012; Fuchs et al., 2009; Tsui
et al., 2013). The RMSE and MAE are simple and common methods
for reporting the uncertainty of a prediction map (Sexton et al.,
2015), but they are derived at the scale of the sample unit used to
build the model and do not necessarily represent the uncertainty of
aggregated total AGWB-C in a landscape (Mascaro et al., 2011b). Our
method utilizing spatially explicit uncertainty estimates and sta-
tistical aggregation demonstrates that the uncertainty of landscape
predictions can be quite low, and that for areas less than about
10,000 ha spatial autocorrelation of uncertainty should be incor-
porated, but for larger areas simple quadratic scaling may be
appropriate.



Fig. 5. Aggregated aboveground woody biomass carbon (AGWB-C) prediction uncertainty by aggregation unit size. The dotted line shows average uncertainty by plot size from the
grid simulation calculated as the quadratic sum of pixel uncertainty and the solid line shows the object-weighted uncertainty. The open circle represents the cross-validated root
mean squared error (RMSE-CV) from the 0.1 ha calibration plots (n ¼ 138), and filled red circles show observed error in validation plots. NOTE: Two of the validation plots were
excluded from the figure to improve readability, but are included in the Supplementary Materials (Table S4). Percent error in these two plots was very high (>300%) despite low
gross AGWB-C error (<3 Mg) due to dividing by a small measured C value for the plot (<2 Mg). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 5
Potential gain in aboveground woody biomass (AGWB-C) by land use/land cover (LULC) class with 100% adoption of CSA (CROP ¼ cropland, PAST ¼ pasture, BLF ¼ broadleaf
secondary forest/fallow).

LULC Class Area with
AGWB-C gain

Percent of LULC
class map area

Average
density gain

Expected
total gain

Percent gain
(compared to current total)a

Percent of
expected total gain

(ha) % Mg C ha�1 Mg C % %

CROP 1560 92.64% 12.53 19,510 94.66% 33.12%
PAST 2010 90.43% 13.29 26,760 96.25% 45.42%
BLF 1860 35.61% 6.80 12,650 0.08% 21.46%
OVERALL 5430 59.47% 10.85 58,920 27.52% 100.00%

a Based on current totals by LULC class as calculated from the map prediction averages.
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Only a few other studies have explored how uncertainty in
AGWB varies with the size of aggregation units. Asner et al. (2010)
discussed how map error declines precipitously with increasing
sample area and with increasing grain size, falling to 4e5% at 5 ha
resolution, andMascaro et al. (2011b) found similar results for grain
sizes ranging from 0.04 ha to 6.25 ha. Lusiana et al. (2014) showed
lower uncertainty of C emissions with larger pixel sizes, dropping
from 82% error at 1 ha resolution to below 5% at 100 ha. Saatchi
et al. (2011) found that tropical biomass C estimates aggregated
at the national scale had uncertainties around 1% and remained
bounded to within ±5% when aggregated to 10,000 ha using 1 km2

(100 ha) pixels. Fazakas et al. (1999) mapped forest biomass in
Sweden using a Landsat TM image and found that while the RMSE
at the plot scale (~0.03 ha) was around 70%, uncertainty fell
to < 10% when aggregated to the entire 510 ha study area.

These studies show how map uncertainty is reduced as the size
of the area of interest increases, although several authors only
achieved reduced uncertainty with a loss of spatial resolution. Our
study demonstrates that focusing monitoring efforts on changes in
aggregate landscape AGWB-C over time could be an efficient
approach to developing C payment programs related to CSA
adoption. Furthermore, the methods presented in this paper show
that this can be achieved without sacrificing spatial resolution,
allowing for assessment of spatial variability within an aggregated
area for planning and monitoring purposes. The utility of spatial
analysis for project planning is underscored by our finding that
targeting areas with higher C storage potential resulted in 46%
larger C gains for the same area converted to CSA, compared to a
random approach. However, more complex analysis would be
needed to fully assess the utility of such maps for targeted project
planning in practice, and it is likely results would vary by region
and context.
4.2. Predicting changes in AGWB-C with CSA adoption and
potential C values

Widespread adoption of CSA in this landscape could substan-
tially increase C stocks. Agriculture is already an important
component of AGWB-C storage, comprising 39% of the landscape
and storing nearly 20% of all AGWB-C stocks. CSA adoption could
potentially double the AGWB-C stored in agricultural land,
increasing stocks in the study area by up to 46,270 tons.

Based on current market price ranges ($4e12 per ton CO2
equivalent), the annual value of C per hectare of land converted to



Fig. 6. Map of average expected AGWB-C density gains in the study area.

Table 6
Expected aboveground woody biomass (AGWB-C) gains for three adoption scenarios, and the potential gross value (USD) of C over 15 years at three prices for each scenario.

Adoption scenario AGWB-C Gaina CO2 equivalent at $4/ton at $12/ton at $37/ton

Mg Mg Total Annual Total Annual Total Annual

100% 57,340 210,400 $841,600 $56,110 $2,525,000 $168,300 $7,785,000 $519,000
50% Targeted 39,110 143,500 $574,000 $38,270 $1,722,000 $114,800 $5,310,000 $354,000
50% Random 26,770 98,250 $393,000 $26,200 $1,179,000 $78,600 $3,635,000 $242,300

a Minimum expected measurable AGWB-C gain after accounting for map uncertainty.
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CSA averages $13e40 ha�1 yr�1. Some studies have identified
successful programs offering similar payments for watershed
enhancement services provided by agroforestry and reforest ration
(e.g., Kosoy et al., 2007), however others have suggested that per-
hectare C payments in this range would be insufficient to incen-
tivize small-scale farmers to adopt CSA, especially once transaction
costs for farm-scale monitoring and contracting are included
(Cacho et al., 2013; Henry et al., 2009; Luedeling et al., 2011).

While we estimate that per-hectare C values from CSA adoption
are low, the value of C aggregated across the study area is sub-
stantial. Furthermore, we demonstrate that AGWB-C can be esti-
mated from high-resolution satellite imagery for large areas
(greater than ~250 ha) with low uncertainty, which could sub-
stantially reduce transaction costs and uncertainty associated with
C monitoring across landscapes. These finding support those of
other studies suggesting that C-payment programs for smallholder
CSA adoption may need to be developed with groups of land-
holders, community-based organizations or C aggregators (e.g.,
Cacho et al., 2013; Henry et al., 2009). Forming C contracts with
organizations rather than individual land owners could also offer a
number of additional benefits, especially in the context of CSA
projects, such as: increased flexibility in how CSA is promoted and
incentivized; the ability to include additional C gains that may
occur in non-agricultural lands (e.g., from reduced wildfires and
improved fallows); and the possibility to combine C payments with
incentives for additional ecosystem services provided by CSA (e.g.,
water funds) or civic and livelihood projects (Stringer et al., 2012).
However, more work is needed to better quantify how C account-
ability at more aggregated scales may impact transaction costs and
land use decisions.

5. Conclusions

CSA presents an opportunity to substantially increase C stocks in
smallholder landscapes while simultaneously providing additional
benefits, including increased resilience to an already changing
climate. The per-hectare value of AGWB-C gains from CSA adoption
is low, but becomes substantial when aggregated across hundreds
or thousands of hectares. Monitoring at this scale using satellite
imagery could substantially reduce transaction costs, however a
tendency in the literature to report only plot-scale errors (e.g.,
RMSE) without exploring the aggregated error of AGWB-C maps is
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likely limiting the operationalization of satellite-based monitoring
approaches.

Our findings demonstrate that high-resolution satellite imagery
can be used to accurately monitor aggregate AGWB-C at the
watershed to landscape scale (100~10,000 ha) in highly heteroge-
neous smallholder landscapes. Comparing the few studies that
have quantified the uncertainty of AGWB-C and C emissions at
multiple scales with our study, we conclude that areas of
200e300 ha may be an appropriate minimum scale at which to
monitor aggregated C stocks with low uncertainty (i.e., < 5%) using
optical satellite imagery. Texture variables are at least as important
as vegetation indices to develop AGWB-C prediction models with
high spatial resolution passive optical satellite imagery, and map-
ping AGWB-C at high resolution could considerably increase C gains
per unit area converted to CSA by allowing projects to efficiently
target low-biomass areas.

Landscape-scale accountability of C, supported by satellite-
based methods such as that presented in this study, can reduce
costs and uncertainty associated with C monitoring. Such an
approach can thereby overcome some of the methodological con-
cerns hindering the inclusion of CSA in international and voluntary
C agreements, and support both market and non-market mecha-
nisms to incentivize widespread CSA adoption in heterogeneous
smallholder landscapes globally.
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