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Abstract
Aims: To model regional vegetation cycles through data fusion methods for creating 
a 30-m daily vegetation product from 2000 to 2018 and to analyze annual vegetation 
trends over this time period.
Location: The Yellowhead Bear Management Area, a 31,180-km2 area in west central 
Alberta, Canada.
Methods: In this paper, we use Dynamic Time Warping (DTW) as a data fusion tech-
nique to combine Landsat 5, 7 and 8 satellite data and Moderate Resolution Image 
Spectroradiometer (MODIS) Aqua and Terra imagery, to quantify daily vegetation 
using Enhanced Vegetation Index at a 30-m resolution, for the years 2000–2018. 
We validated this approach, entitled DRIVE (Daily Remote Inference of VEgetation), 
using imagery acquired from a network of ground cameras.
Results: When DRIVE was compared to start and end of season dates (SOS and EOS 
respectively) derived from ground cameras, correlations were r = 0.73 at SOS and 
r = 0.85 at EOS with a mean absolute error of 7.17 days at SOS and 10.76 days at EOS. 
Results showed that DRIVE accurately increased spatial and temporal resolution of 
remote-sensing data. We demonstrated that SOS is advancing at a maximum rate 
of 0.78 days per year temporally over the 18-year time period for varying elevation 
gradients and land cover classes over the region.
Conclusions: With DRIVE, we demonstrate the utility of DTW in quantifying veg-
etation cycles over a large heterogeneous region and determining how changing cli-
mate is affecting regional vegetation. DRIVE may prove to be an important method 
to determine how carbon sequestration is varying within fine-scale individual plant 
communities in response to changing climate and likely will be beneficial to wildlife 
movement and habitat selection studies examining the varying response of wildlife 
species to changing vegetation cycles under shifting climatic conditions.
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1  | INTRODUC TION

1.1 | Ecological importance of vegetation events

The timing and distribution of recurring events in vegetation dy-
namics, such as green-up, flowering, fruiting and senescence, are 
bottom-up drivers for many ecosystem processes. The develop-
ment of vegetative food resources which occur on a landscape 
seasonally, and annually, have been shown to be key drivers for 
wildlife movement and habitat selection (Nijland et al., 2013), 
while monitoring the variations of vegetation cycles has pro-
vided a basis to define the progression of climate change (Brown 
et al., 2016). Furthermore, carbon sequestration in vegetation 
is known to be influenced positively by growing season length 
(Keenan et al., 2014). The timing of vegetative cycles is essential 
in determining how vegetation is changing seasonally and annu-
ally; however, a lack of precise information on the timing and 
spatial distribution of vegetative events currently limits our abil-
ity to incorporate vegetative cycles into ecological and climatic 
modelling.

Vegetative cycles are complex and species-specific (Uemura, 
1994), driven by regional climate variables, such as tempera-
ture and precipitation, coupled with localized processes such as 
snowmelt and overstorey structures (Nijland, Bolton, Coops, & 
Stenhouse, 2016). Climate change is affecting canopy and un-
derstorey vegetation cycles and timing of key events such as 
green-up and senescence of vegetation (Beaubien & Hamann, 
2011) and conceivably in different ways with canopy vegetation 
cycles potentially being disconnected to the understorey species 
due to variations in temperature, and growing season length and 
moisture availability. Average start of the growing season has 
shifted globally; for example, in the boreal forest, an advance-
ment of green-up by 2–14  days per decade has been reported 
(Delbart et al., 2008; Ma, Pitman, Lorenz, Kala, & Srbinovsky, 
2016). Trophic mismatches — where the timing of repeated life 
cycle phases for interacting species are changing at different 
rates — are occurring due to climate change and across many 
species including, plants, birds, mammals and insects (Renner & 
Zohner, 2018). For example, roe deer across Europe rely on tim-
ing birth with green-up to take advantage of the entire growing 
season. Green-up and birthing events are becoming misaligned 
as green-up is beginning earlier, creating a trophic mismatch 
where newborns are not able to acquire as much nutrition, re-
ducing their survival rates (Plard et al., 2014). In western Canada, 
with the changing climate, berry ripening is occurring earlier and 
creating a potential trophic mismatch that would require griz-
zly bears (Ursus arctos), who rely heavily on berries for hiberna-
tion, to obtain nutrition from other sources prior to den entry 
(Laskin, 2017). In order to derive annual and seasonal vegetation 
patterns, and facilitate predictive models of climate change and 
wildlife habitat selection and movement patterns, vegetation 
must first be quantified at a regional scale and with a fine spatial 
and temporal resolution.

1.2 | Remote monitoring of vegetation events

Changes in green-up and senescence of vegetation can be monitored 
using a variety of techniques at a range of spatial scales. Ground-
based field surveys are the most common and for which the longest 
historical data archive is available (Schwartz, 2003). This involves es-
tablishing permanent plots and revisiting them at set intervals to re-
cord the vegetative and reproductive phase of plants. This technique 
has been widely used throughout Europe, Asia and North America 
(Beaubien & Hamann, 2011), and in some cases, historical records 
exist dating back centuries (European Phenology Record) or even 
a millennium (Kyoto cherry blossom records; Aono & Kazui, 2008). 
With ground-based observations, vegetation data are gathered at 
fine spatial scales; however, observations are limited to present spe-
cies at discrete points in time (often with large temporal gaps) and for 
individual point locations. Therefore, it is difficult to gain landscape 
perspectives (White, Hoffman, Hargrove, & Nemani, 2005).

Recording of vegetation phases using time-lapse photography 
allows researchers to obtain vegetation changes at a fine tempo-
ral resolution with comparable spatial scales to ground-based field 
observations. It also allows objective capture of vegetation phases 
that can be analyzed visually by users or by automatic algorithms. 
Networks of cameras can be established on a seasonal (Nijland et 
al., 2013) or permanent basis (The Phenocam Network) (Richardson 
et al., 2018) and have been shown to be useful for tracking green-up 
and senescence of key vegetative food species (Bater et al., 2011; 
Laskin, 2016; Nijland et al., 2013). Despite its high temporal reso-
lution and accuracy, time-lapse photography still lacks the spatially 
explicit information to measure vegetation cycles continuously in 
space and time.

Satellite-based remote-sensing techniques have been used inten-
sively for the past three decades to describe vegetation cycles spa-
tially by means of dense temporal spectral vegetation indices. Indices 
such as the normalized difference vegetation index (NDVI) and the 
Enhanced Vegetation Index (EVI) incorporate reflectance of the visible 
and near-infrared portions of the electromagnetic spectrum to moni-
tor vegetation (Huete, Mustard, & Vadeboncoeur, 2006). Space-borne 
sensors enable the monitoring of vegetation data across broad spa-
tial scales and are able to acquire data for remote regions inaccessible 
to ground-based methods (Zhang et al., 2003). While these sensors 
typically cannot achieve the same fine spatial (species level) resolution 
possible with ground or camera-based techniques, data can be com-
bined with those from cameras to validate and exploit the key benefits 
of the two complementary approaches (Melaas, Friedl, & Zhu, 2013).

One of the most commonly used sensors is the Moderate 
Resolution Image Spectroradiometer (MODIS). For example, Beck, 
Atzberger, Høgda, Johansen, and Skidmore (2006) used daily NDVI 
derived from MODIS at 250-m spatial resolution to fit a time series 
using a double logistic function to model high-latitude vegetation 
cycles in northern Scandinavia. Soudani et al. (2008) used MODIS 
250-m EVI time series data fit to a double sigmoid function to model 
vegetation transition dates in comparison to ground camera data 
in French deciduous forests. While accurate at broad spatial scales 
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when comparing MODIS to observed vegetation trends, a reoccurring 
challenge using MODIS observations is the lack of fine-scale spatial 
resolution, resulting in a failure to resolve small-scale variation in het-
erogeneous landscapes (Coops et al., 2012; Hufkens et al., 2012).

The launch of Landsat with the Thematic Mapper™ instrument in 
1984 allowed production of a 30-m spatial resolution EVI product every 
16 days; however, this is often prolonged by cloud cover (Loveland & 
Dwyer, 2012; Wulder, Masek, Cohen, Loveland, & Woodcock, 2005) 
which has hampered vegetation studies. Studies have employed da-
ta-mining techniques and the use of multiyear Landsat data to model 
regional vegetation and facilitate a finer temporal scale of observation 
(Fisher et al., 2006; Melaas et al., 2013; Nijland et al., 2016). Nijland et 
al. (2016) acquired Landsat data from 1984 to 2014 and used a dou-
ble sigmoid function to interpolate regional annual vegetation cycles 
within western Alberta, Canada. Melaas et al. (2016) adapted these 
methodologies to incorporate a cubic spline function to interpolate 
annual transition dates and better portray seasonal vegetation cycles 
within heterogeneous forests. While these methods are able to accu-
rately calculate important average annual transition dates at a regional 
scale, it is difficult to accurately depict annual changes as results are 

attributed to average change across a broad range of years rather than 
a single target year (Baumann, Ozdogan, Richardson, & Radeloff, 2017).

1.3 | Data fusion for vegetation monitoring

In order to model inter-annual change at moderate spatial scales 
more accurately, one alternative is to fuse Landsat and MODIS data 
sets. Dynamic Time Warping (DTW) is a fusion technique that was 
first developed as a speech recognition algorithm (Sakoe & Chiba, 
1978) and has been proven capable of determining patterns in cor-
responding remote-sensing data sets (Baumann et al., 2017; Berman 
et al., 2018; Petitjean, Inglada, & Gançarski, 2012). It has the ability 
to increase temporal density of historic time series by shifting an-
nual dates based on rule sets generated from complimentary data-
sets. Baumann et al. (2017) used DTW methods to fuse MODIS and 
Landsat EVI data sets to examine vegetation cycles at individual sites 
from 2000 to 2012 in Eastern USA. They determined that, compared 
to ground camera data, the DTW Landsat product was more accurate 
than MODIS alone at predicting transition dates. Berman et al. (2018) 

F I G U R E  1   Study area located in Western Alberta, Canada, showing study area extent and ground camera locations [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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adapted these techniques to accurately assess inter-annual change in 
regional snow cover at a fine spatial scale with greater than 80% ac-
curacy when compared to ground cameras. Results were further used 
to model grizzly bear response to varying snow conditions (Berman, 
Coops, Kearney, & Stenhouse, 2019). These proof-of-concept studies 
highlight the opportunity to use dynamic time warping to model veg-
etation dynamics over a large region at a fine spatial scale.

Here, we examine vegetation trends over a large mountainous 
and forested region in western Alberta, Canada, by fusing MODIS and 
Landsat imagery using DTW and spline curve fitting. The new method, 
which we term Daily Remote Inference of VEgetation (DRIVE), is used 
to derive a 30-m daily vegetation product from 2000 to 2018. In addi-
tion, we use the DRIVE product to determine how vegetation transition 
dates have varied through time across elevation and land cover classes 
to determine the overall effect of climate change across the landscape. 
While we expect there will be a general trend towards earlier green-up 
dates, we hypothesize that the degree of this change will vary by ele-
vation and land cover classes with larger variations occurring at lower 
elevations and within open habitat such as shrub and herbaceous areas 
as these will be more accurately analyzed via satellite. Ultimately, we 
provide a product to enable the analysis of how vegetation cycles are 
changing seasonally and annually under a changing climate and the ef-
fects on different plant and wildlife communities.

2  | STUDY ARE A

We conducted this analysis within the Yellowhead Bear Management 
Area, over a 31,180-km2 area in west central Alberta (Figure 1). 

Jasper National Park defines the westernmost extent of the study 
area and is a protected mountainous region. To the east, the land-
scape shifts from mountainous to rolling foothills. In the foothills, 
there are historic and ongoing anthropogenic disturbances in the 
form of recreation, oil and gas extraction, coal mining and forestry 
operations. There are four natural subregions in the Yellowhead 
area: alpine, subalpine and upper/lower foothills (Achuff, 1994). 
The most common tree species in the area is Pinus contorta (lodge-
pole pine). Other common tree species include Picea mariana (black 
spruce), Picea glauca (white spruce), Populus tremuloides (trembling 
aspen), Populus balsamifera (balsam poplar) and Abies balsamea (bal-
sam fir). Understorey species in this area include graminoids and 
forbs such as Trifolium spp., Heracleum lanatum, Taraxacum officinale 
and Equisetum species. Berry species such as Vaccinium myrtilloides, 
Vaccinium membranaceum and Shepherdia canadensis are plentiful 
throughout the study area and become available during late summer 
into early fall (Munro, Nielsen, Price, Stenhouse, & Boyce, 2006).

3  | METHODS

3.1 | Data

3.1.1 | MODIS data

A total of 1,624 500-m spatial resolution MODIS V6 MOD13A1 and 
MYD13A1 images were downloaded from both the Aqua and Terra 
platforms from January 1st, 2000 to December 30th, 2018 for tiles 
H10V03 and H11V03. MOD13A1 and MYD13A1 EVI products 

F I G U R E  2   Ground camera extraction process: (a) an example of imagery before (left) and after (right) start of season (SOS) from five 
example sites within this study; (b) an example of a region of interest from which values will be extracted; (c) an example of the red/green/
blue index values extracted by the Phenopix package which will be used to calculate GCC (Green Chromatic Coordinates); and (d) the output 
of the filtering process with max filter (dark red being values) ultimately used with a cubic spline fit to the data and SOS and end of season 
(EOS) dates extracted [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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consist of 16-day composites of the highest quality vegetation 
index data for that period (Huete et al., 2002). When coupled, these 
datasets produce a composite every eight  days. MODIS EVI data 
and corresponding pixel assurance data from both Aqua and Terra 
sensors were extracted and stacked separately in eight -day inter-
vals annually from days 1 to 365. Pixels were masked to extract 
only the highest quality, clear-sky data, based on quality assurance 
datasets (Didan, Barreto Munoz, Solano, & Huete, 2015).

3.1.2 | Landsat data

Preprocessed 30-m resolution Landsat EVI data products for Landsat 
Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), 
and Operational Land Imager (OLI) sensors and corresponding pixel 
quality assurance were acquired from the USGS archive (https​://
earth​explo​rer.usgs.gov/) for January 1st, 2000 to December 31st, 
2018. Two WRS-2 tiles (path/rows: 43/23, 43/24) cover the study 
area and 1,186 images were subsequently downloaded from the 

USGS website for both tiles. Images were masked using correspond-
ing pixel quality assurance values. For TM, ETM + and OLI sensors, 
only pixels with corresponding clear pixel quality assurance (1, 66, 
130 for TM and ETM + and 1, 322, 386, 834, 898, 1,346 for OLI) 
were used. This eliminated pixels containing cloud, cloud shadow, 
snow/ice and water from the analysis following methods of Melaas 
et al., 2013; Melaas et al., 2016 and Nijland et al., 2016.

While EVI data range from 0 to 1, both Landsat and MODIS mul-
tiply raw EVI values by 10,000 to transform to integer data. These 
values were not altered in this analysis.

3.1.3 | Camera data

Digital time-lapse cameras were used to acquire daily vegetation 
ground data throughout the growing seasons of 2009, 2010 and 
2018. Cameras were installed at 17 locations along an elevation gra-
dient and set up with a wide field of view (FOV) to capture the sur-
rounding areas and trends in canopy and understorey vegetation for 

TA B L E  1   Ground camera site details located in UTM zone 11and Landsat tile P44R23

Site Year Easting Northing Elevation Camera type MODIS tile Site type

Hwy 40 2018 5,882,405 470,929 1,620 Wingscapes 
TimelapseCam Pro

H10V03 Non-Forested

Pond 2018 5,882,302 489,235 1,371 Wingscapes 
TimelapseCam Pro

H10V03 Non-Forested

Huck 2018 5,885,343 501,512 1,366 Wingscapes 
TimelapseCam Pro

H10V03 Non-Forested

Hi 2018 5,887,658 504,729 1,318 Wingscapes 
TimelapseCam Pro

H10V03 Non-Forested

Swamp 2018 5,889,402 505,988 1,257 Wingscapes 
TimelapseCam Pro

H10V03 Non-Forested

Cow 2018 5,892,997 501,705 1,252 Reconyx PC800 H10V03 Non-Forested

B2m 2018 5,887,995 500,568 1,247 Wingscapes 
TimelapseCam Pro

H10V03 Non-Forested

Rig 2018 5,899,801 517,637 1,161 Wingscapes 
TimelapseCam Pro

H11V03 Non-Forested

Plant 2018 5,897,700 512,533 1,121 Wingscapes 
TimelapseCam Pro

H11V03 Non-Forested

Low 2018 5,916,659 516,847 998 Wingscapes 
TimelapseCam Pro

H11V03 Non-Forested

Cardinal Divide 2010 5,860,769 483,439 2,025 Pentax K100D H10V03 Non-Forested

Drinnan Creek 2010 5,894,401 465,076 1,356 Pentax K100D H10V03 Forested

Cadomin Mixed 2009 5,877,276 478,427 1,484 Pentax K100D H10V03 Forested

Cadomin 
Conifer

2009 5,879,755 480,660 1,458 Pentax K100D H10V03 Forested

Bryan Spur 
Mixed

2009 5,899,684 502,319 1,093 Pentax K100D H11V03 Forested

Fickle Lake 
Mixed

2009 5,916,668 519,136 970 Pentax K100D H11V03 Forested

Fickle Lake 
Conifer

2009 5,916,058 518,537 951 Pentax K100D H11V03 Forested

Sites were distributed along elevation gradients capturing a variety of key understorey food species within the study area.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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each site (Figure 2a) (Vartanian et al., 2014). Sites selected in 2018 
were generally open (non-forested) to allow better detection of vari-
ations in understorey vegetation, while sites in 2009 were selected 
with canopy cover (forested). In 2010, sites were a mix of locations 
with and without canopy cover. Understorey plant communities 
across these sites were therefore a mixture of grasses, forbs and 
shrubs and were of varying species compositions. Camera models 
varied depending on the year data were collected; however spatial 
resolution of the camera images was similar (Table 1). Cameras were 
mounted on trees, between 2 and 3 m above ground level with vary-
ing directions of observation for each site and with an average spatial 
extent between 30 and 60 m. Between three and five time-lapse im-
ages were captured daily between 11:00 hours and 13:00 hours at 

half-hour to hourly intervals (Figure 2a.) and images were stored on 
memory cards.

Start and end of season dates were derived using the Phenopix 
package (Filippa et al., 2016) in R statistical software (R Core Team, 
2018). Regions of interest (ROIs) were drawn to capture vegetation 
over the entire FOV (Figure 2b). Red/green/blue (RGB) index val-
ues were extracted as an average over the entire ROI for each site 
(Figure 2c). Green Chromatic Coordinates (GCC) were calculated using 
Equation 1 and values were filtered at three levels to remove outliers. 
The first filter was the night filter, which used brightness values to

(1)GCC=
GI

RI+BI+GI

F I G U R E  3   Dynamic time warping steps. (1) Define target and query years. (2) Apply the Dynamic Time Warping algorithm and create 
the rule set to inform the warp. (3) Rearrange Landsat Enhanced Vegetation Index (EVI) based on the generated rule set and fit a spline to 
interpolate curve with rearranged values [Colour figure can be viewed at wileyonlinelibrary.com]
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www.wileyonlinelibrary.com
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The first filter was the night filter, which used brightness values to elim-
inate points occurring under conditions of low light caused by clouds 
and shadows. The second was the spline filter, which is based on recur-
sive spline smoothing and residual computation, thereby removing all 
values that did not lie within a certain residual envelope (Migliavacca 
et al., 2011). Thresholds used were two standard deviations below and 
1.5 standard deviations above mean GCC values. The third filter used 
was the max filter which identifies 90th percentile residual values in a 

three-day moving window (Sonnentag et al., 2012) (Figure 2d). Cubic 
splines were fit for each time series of images (Figure 2d.).

3.1.4 | Land cover and digital elevation model data

We analyzed how vegetation cycles changed under differing land 
cover types and across elevation gradients from 2000 to 2018. Land 

F I G U R E  4   Example of warped results from Cow camera site. (TOP) MODIS Enhanced Vegetation Index (EVI) from target year (2018) is 
interpolated. In greyscale are all corresponding query years. (MIDDLE) Example of all query years post application of the warping algorithm 
being warped to said target year. (BOTTOM) Results of rule set generated from warping algorithm being applied to Landsat EVI and then 
interpolated using a cubic spline [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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cover classes were derived from Hermosilla, Wulder, White, Coops, 
and Hobart (2015), who produced a 30-m spatial resolution Landsat-
derived land cover map of the region in 2016, which included six 
classes: bryoids, broadleaf, coniferous, herbs, mixed wood and shrub-
land. A 30-m digital elevation model (DEM) was obtained from the 
Shuttle Radar Topography Mission (SRTM; Farr et al., 2007) which we 
reclassified into elevation classes in increments of 200 m from 500 to 
2,100 m a.s.l.

3.2 | Dynamic time warping

Dynamic Time Warping (see Figure 3) involves first creating a rule 
set from MODIS data and then fitting curves to a time series of val-
ues — in this case EVI — as follows (also see Baumann et al., 2017; 
Berman et al., 2018).

First, annual vegetation curves were created per pixel using the 
stacked preprocessed MODIS EVI data, where the band order corre-
sponded to day of year (DOY) from 1 to 365. MODIS EVI data values 
were spatially smoothed using a 3  ×  3 low-pass filter to eliminate 
spatial noise. Results were calculated with 50% weighting on the 
centre pixel and 50% on the neighbourhood (Berman et al., 2018). 
Annual vegetation curves were then obtained through cubic spline 
interpolation (Melaas et al., 2016) and these were further smoothed 
using a Gaussian filter with a sigma value of 4. Linear interpola-
tion was implemented if a temporal gap between values exceeded 
eight days, to avoid extreme values (Berman et al., 2018).

Second, rule sets between query years and target years were 
generated. To accomplish this, we first defined an annual curve as 
the target year. All other years consequently became known as the 
query years. All query years were individually warped to each tar-
get year using a 365 × 365 matrix with each cell containing the 
Euclidean distance between target and query year MODIS EVI val-
ues (Baumann et al., 2017; Berman et al., 2018). Theoretically, the 
warp path possibilities are exponentially high; however, a rule set 
was generated based on the path which minimized the Euclidean 
distance between target and query MODIS EVI, with curves start-
ing at day of the year 1 and ending at day 365. The algorithm used a 
50-day window in which to restrict the resultant rule sets such that 
if observations were >50 days apart, a rule set was not able to form 
a relation (Berman et al., 2018). This second step was repeated until 
all years had become a target year generating a rule set for every 
year.

In the final step, Landsat EVI observations were rearranged 
based on generated rule sets. All query year Landsat EVI observa-
tions contained within each MODIS pixel were rearranged to fit with 
target year observations. Target year observations were not rear-
ranged as they signify real values. In situations where multiple values 
were warped to the same day of year, the mean of all values for that 
day was used (Berman et al., 2018). Landsat EVI vegetation curves 
were created for every year by iteratively generating rulesets with 
that year becoming the target year and having all other years (query 
years) warped to said target year. Observations for each year were 
interpolated using similar parameters as in interpolation of MODIS 

F I G U R E  5   Comparison of results between DRIVE (Daily Remote Inference of VEgetation) as compared to ground camera start of season 
(SOS) and end of season (EOS) and MODIS (Moderate Resolution Image Spectroradiometer) as compared to ground camera SOS and EOS 
and EOS. DOY, day of year
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EVI, the key difference being, however, that the sigma value in the 
Gaussian filter used for Landsat EVI was increased to 13 (deter-
mined by parameter tuning). This increased smoothing on all spline 
curves reducing noise and aided in comparing Landsat EVI to ground 
camera data (see Figure 4 for an example). This technique and the 
resultant product is here called DRIVE (Daily Remote Inference of 
VEgetation).

3.3 | Validating DRIVE

3.3.1 | Seasonal metrics

To compare DRIVE to ground camera data, determine accuracy of 
DRIVE in relation to MODIS data, and assess how vegetation cycles 
varied inter-annually, seasonal metrics were extracted from the ground 
cameras, DRIVE, and MODIS curves. Seasonal metrics were used to 
bridge the gap between GCC and EVI values as while their numerical 
values are not comparable, their trends are (see Melaas et al., 2016 

for example). Previous methods utilize inflection points to define start 
of season (SOS) and end of season (EOS; Beck et al., 2006); however 
the inability to define inflection points within a cubic spline make this 
method not feasible. In this study, SOS and EOS were calculated by 
splitting vegetation curves into two sections at the seasonal maximum. 
Minimum values were then calculated before and after the seasonal 
maximum to define the lower extent of the range of values before and 
after seasonal maximum. The DOY (day of year) value corresponding to 
the half-maximum (50% of seasonal maximum) values prior to seasonal 
maximum is designated as the SOS date and the DOY value correspond-
ing to the half-maximum post seasonal maximum is designated as the 
EOS date.

3.3.2 | Accuracy

In order to ensure accuracy of DRIVE, SOS and EOS dates were 
compared to those derived from the 17 ground camera sites. We 
also compared the ground camera data to the original MODIS 

F I G U R E  6   Average day of start of season (SOS) per year across 6 elevation classes with error bars representing one standard deviation 
form the mean [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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product used within the warp to quantify improvements in ac-
curacy due to increased spatial resolution (from 500 m to 30 m). 
Correlation coefficients (r) and Root Mean Squared Error (RMSE) 
were used to assess accuracy, while root mean bias was used to 
determine whether DRIVE and MODIS were over- or under-pre-
dicting SOS and EOS. Mean absolute error (MAE) was used to cal-
culate the difference in days between ground cameras and DRIVE/
MODIS results.

3.4 | Change in vegetation cycles from 2000 
to 2018

3.4.1 | Start of season and end of season layers

Dates of the start and end of the growing season were calculated 
from day 105 to 310 for each year to isolate green-up and senes-
cence signals based on visual assessment and methods proposed by 

Nijland et al. (2016). For each time series of observations within this 
period a curve was extracted along with the half-maximum and half-
minimum using the same process used to extract seasonal metrics. 
Results were masked for (a) having an EVI amplitude of less than 
1,000 (equivalent to the amplitude of 0.1 used in Nijland et al. 2016)
as they were deemed to have little to no green-up and (b) having 
non-feasible SOS values considered to be outside the main growing 
season (i.e. having a SOS less than day 125 or a SOS later than day 
200) (Nijland et al., 2016).

We used random stratified sampling to extract vegetation SOS 
and EOS dates across elevation classes and land cover classes from 
2000 to 2018. For each elevation and land cover class, 500 ran-
dom points were generated and used to extract values from SOS 
and EOS layers. Random points were generated annually in the 
case of land cover classes to account for yearly changes. The mean 
of extracted values was calculated at every elevation and land 
cover class. To assess the statistical significance of the observed 
trend over a time, we used a Mann–Kendall trend test (de Beurs & 

F I G U R E  7   Average day of start of season (SOS) per year across six land cover classes with error bars representing one standard deviation 
from the mean [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Henebry, 2005). Slopes of trends were estimated using the Theil–
Sen slope estimator.

4  | RESULTS

Using the daily coverage of DRIVE instead of the 16-day cover of 
Landsat increased the number of cloud-free, snow-free and good 
quality observations at our study sites from an average of 7.2 
to 137.3 observations per year. This marked increase in average 

annual usable observations allowed for the creation of a tempo-
rally dense time series capable of interpolating EVI values over 
the season.

4.1 | Validation results

For the 17 ground camera sites distributed over three  years 
(Table 1) DRIVE SOS and EOS resulted in higher correlations (SOS: 
r = 0.73, RMSE = 10.3; EOS: r = 0.85 and RMSE = 13.0) than MODIS 

F I G U R E  8   Comparison of ground camera vegetation curves Green Chromatic Coordinates (GCC) to DRIVE (Daily Remote Inference of 
VEgetation) vegetation curves Enhanced Vegetation Index (EVI) at four sites. (a) Hwy 40, (b) Plant, (c) Drinnan Creek, (d) Fickle Lake Conifer 
[Colour figure can be viewed at wileyonlinelibrary.com]
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data alone (SOS: r = 0.57, coefficient RMSE = 15.1; EOS: r = 0.76, 
RMSE = 13.5) (Figure 5). Both DRIVE and MODIS underestimated 
the timing of SOS with a mean bias of −4.2  days for DRIVE and 

−9.7 days for MODIS. The MAE of SOS compared to ground cam-
era data was 7.17 days using DRIVE and 10.35 days using MODIS. 
With EOS we found an over estimation in the DRIVE vegetation 

F I G U R E  9   Start of season (SOS) layers per year from 2010 (top left corner) proceeding across and down ending with 2018 (bottom right 
corner). Bottom panel represents the extent of view within the study area. Note: absent pixels are where warp did not perform well or 
accurately [Colour figure can be viewed at wileyonlinelibrary.com]
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product with a mean bias of 4.2, while there was less of an over-
estimation for MODIS with a mean bias of 1.1. The MAE between 
EOS calculated using DRIVE when compared to ground camera data 
and MODIS when compared to ground camera data was 10.76 and 
11.35 days respectively.

4.2 | Long-trend vegetation cycle changes across 
land cover and elevation

We observed a significantly decreasing trend over the study pe-
riod in average SOS for all elevation classes (p  < 0.05) and for all 
land cover classes except for bryoids (p = 0.624) and mixed wood 
(p = 0.058). Using the Thiel–Sen slope estimator, the deepest trend 
slope occurred in elevation classes 700–900  m and 900–1,100  m 
with SOS beginning 0.78 days earlier per year. For land cover classes, 
the most drastic change occurred within the shrubland class with 
SOS beginning 0.71 days earlier per year (Figures 6, 7).

5  | DISCUSSION

5.1 | Dynamic time warping

Our results show that the DRIVE approach overcomes the inher-
ent trade-off between coarse spatial resolution of MODIS data 
and the coarse temporal resolution of Landsat data. With Dynamic 
Time Warping (DTW) and DRIVE, we used MOD13A1 EVI data to 
characterize annual regional vegetation and form a basis for re-
arranging multiyear Landsat EVI imagery to create a 30-m, daily 
vegetation product. Our methods make it possible to quantify 
seasonal and annual variability in vegetation across very large 
regions, historically for the past two decades. In the Yellowhead 
region of Canada, we found DRIVE was able to increase the spatial 
resolution of MODIS data (at 500 m) when using high-resolution 
ground cameras as validation, thus increasing accuracy in deter-
mining SOS and EOS dates at finer spatial scales than when using 
MODIS data alone. We were able to predict SOS within seven days 
and EOS within 10 days with ground cameras with similar results 
being reported in Baumann et al. (2017) and Nijland et al. (2016). 
The better results for SOS compared to EOS may be related to 
the SOS signal being stronger than the EOS signal (Nijland et al., 
2016) and may also relate to lower solar elevation and sun angle 
at EOS and there being a stronger signal from conifer species as 
sun cannot penetrate to the understorey (Kobayashi et al., 2016). 
The correlation between DRIVE and ground camera data across 
17 forested and non-forested sites with varying species composi-
tion displays its ability to capture spatial patterns in vegetation 
across our study area beyond simple elevation trends. Moreover, 
our results indicate that DRIVE is influenced by both over- and un-
derstorey vegetation, dependent on land cover type. The fact that 
DRIVE detected SOS and EOS within open- and moderate-canopy 
conifer forests in our study area suggests the method is able to 

detect understorey changes. In broadleaf forests, we suspect that 
the vegetation signals are more strongly influenced by overstory 
vegetation.

Previous work has shown the usefulness of DTW in quantify-
ing annual vegetation cycles; however, it was only done at point 
locations or over small areas and never over such a large time pe-
riod (Baumann et al., 2017). Our study expands on this work and 
demonstrates the utility of DTW and DRIVE in quantifying vegeta-
tion dynamics across a large region and over 18 years. We further 
demonstrated the ability of DTW to describe floristically hetero-
geneous plant communities, whereas previous work with DTW 
in vegetation has been focused more narrowly on alpine environ-
ments and deciduous forests (Baumann et al., 2017; Huseby et al., 
2005). We attribute this advance to the use of cubic splines within 
the interpolation process, which provide a more natural fit and as 
a result better characterize differences between vegetation types 
(see Figure 8 for example) than in previous studies that character-
ized and constrained vegetation patterns using double sigmoid or 
double logistic functions (Baumann et al., 2017; Fisher et al., 2006; 
Melaas et al., 2013; Nijland et al., 2016). Cubic spline interpolation 
aided in smoothing data and eliminating noise while still preserving 
differences in vegetation trends between pixels and within individ-
ual communities. The use of cubic splines also helped in preserving 
SOS and EOS dates after pixels showing snow and ice cover were 
removed. We have confidence in the accuracy of using a spline fit 
based on the correspondence between the DRIVE-based vegetation 
curves for individual sites and those obtained from the ground cam-
era data.

Baumann et al. (2017) highlighted a potential limitation of DTW 
in that accuracy was unknown within different land cover classes. 
We validated DRIVE across several different land cover classes (e.g. 
shrubland, mixed and conifer forest, cut-blocks) and showed that 
accuracies were similar across all land cover classes. However, vi-
sual inspection suggests DRIVE performed poorly at higher eleva-
tion sites, along forested sides of mountains and hills, in places with 
dense conifer canopy cover and in places with evergreen vegetation 
or understories, as indicated by pixels being excluded when creat-
ing SOS and EOS layers (Figure 9). These discrepancies are similar 
to ones experienced by Nijland et al. (2016). In cases where there 
is dense conifer or evergreen vegetation, little to no leaf-out is de-
tected and a substantial EVI signal is observed as soon as these areas 
are snow-free. What little leaf-out that does occur is then negligible 
when combined with this initial signal, and thus an earlier than fea-
sible SOS date is detected. Similar processes may be at work along 
hill and mountainsides where vegetation is not being detected due 
to angle of observation and the inability of the sensor to observe 
understorey vegetation through the canopy.

We compared DRIVE output to existing MODIS data outputs, 
as the MODIS satellite imagery is a globally recognized vegetation 
product and one that is used in many global comparisons. MODIS 
EVI is the best available vegetation product, therefore we believe 
comparing field based data to MODIS EVI is reasonable despite het-
erogeneity of our fine-scale sites. While we acknowledge that it is 
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not possible to independently compare due to the use of MODIS EVI 
data in building the rule sets within the DTW algorithm, one possi-
ble approach would be to resample DRIVE output up to 500 m and 
observe whether the resampled DRIVE data are comparable to the 
initial MODIS data. Although not the focus of this study, additional 
tests such as this could be applied to give further confidence to the 
approach.

5.2 | Inter-annual vegetation trends

Within this study, we quantified annual change in SOS dates through-
out the past two decades and demonstrated that, overall, SOS is shift-
ing earlier across all elevation and land cover classes except for bryoids 
and mixed wood forest. These results were significant and indicate a 
measurable effect of changing climate within our study area. At higher 
elevations and within conifer forests, trends were smaller with larger 
error than when compared to lower elevations and other land cover 
classes corresponding to warp inaccuracies in these classes. Similar 
climate-driven shifts in spring vegetation cycles have been reported 
in many studies throughout North America and the world (Chuine & 
Beaubien, 2001; Chmielewski & Rötzer, 2002; Schwartz, Ahas, & Aasa, 
2006; Beaubien & Hamann, 2011). By contrast, vegetation shifts at the 
end of the growing season were less apparent, likely due to a weaker 
and less abrupt end of season spectral signal.

A shift toward earlier spring green-up has important implications 
for plant communities, carbon sequestration, and wildlife whose for-
aging patterns follow seasonal vegetative food patterns. For exam-
ple, earlier availability of vegetation may create a temporal mismatch 
between what food is available compared to what food is required in 
animal diets for that time of the year. There is evidence such mismatch 
is already occurring for some species, such as for grizzly bears foraging 
on Shepherdia canadensis (Laskin et al., 2019). Our results further show 
that similar spring advancement may be happening for other more 
important food species for grizzly bears and other wildlife species in 
the region. However, due to poor EOS signal, it is unclear whether 
the growing season is shifting towards earlier dates or the length of 
the growing season is increasing. Future research is needed on the 
response of individual vegetative species to climate change in order 
to better understand the implications for wildlife diets as well as how 
carbon sequestration is varying within plant communities.

5.3 | Conclusion

With the DRIVE algorithm and product, we were able to portray 
spatial and temporal vegetation patterns at a 30-m daily scale over 
a large region and improve upon annual detection of vegetation 
trends within a heterogeneous environment. We further demon-
strated the usefulness of DRIVE through the creation of SOS and 
EOS metrics capable of quantifying two decades of changing veg-
etation cycles within varying elevation and land cover classes. We 
envision several key applications for DRIVE. Primarily DRIVE may be 

crucial in determining how carbon sequestration is varying amongst 
different plant communities. Next is in combining the vegetation 
dynamics with wildlife movement data in order to determine how 
changing vegetation is affecting wildlife species. Potential changes 
in animal food supply could result in new patterns of wildlife habitat 
use and migration. With a 30-m resolution, DRIVE could be used 
in determining how different industrial land management practices 
are affecting vegetation cycles locally and determine management 
strategies to protect key wildlife habitat. Such application of DRIVE 
to management practices could also be extended to recreational use 
(e.g. backcountry hiking, off-road vehicle use) in order to minimize 
the public's impact on wildlife resources at sensitive times. As our 
ability to characterize fine-scale vegetation cycles in a changing cli-
mate improves, so can we improve our land use practices to more 
effectively manage both the natural and human environment.

ACKNOWLEDG EMENTS
This research was supported by the Grizzly-PAW project (NSERC 
File: CRDPJ 486175 – 15, Grantee: N.C. Coops, FRM, UBC), in collab-
oration with fRI Research and FRIAA, Alberta Newsprint Company, 
Canfor, Cenovus, Repsol, Seven Generations Energy, Shell Canada, 
TransCanada Pipelines, Teck Resources, West Fraser, Westmoreland 
Coal, and Weyerhauser. More information can be found at http://
paw.fores​try.ubc.ca/. We thank staff at fRI research and Bethany 
Parsons of the University of British Columbia for help in collecting 
vegetation data.

AUTHOR CONTRIBUTIONS
All authors contributed to the design and implementation of the 
research, to the analysis of the results and to the writing of the 
manuscript.

DATA AVAIL ABILIT Y S TATEMENT
All MODIS and Landsat data is free and open source from the USGS 
archive (https​://earth​explo​rer.usgs.gov/). All plot level ground data 
is stored at UBC and may be available upon request.

ORCID
Nicholas C. Coops   https://orcid.org/0000-0002-0151-9037 
Sean P. Kearney   https://orcid.org/0000-0002-5939-1259 
Scott E. Nielsen   https://orcid.org/0000-0002-9754-0630 
A. Cole Burton   https://orcid.org/0000-0002-8799-3847 

R E FE R E N C E S
Achuff, P. L. (1994). Natural Regions, Subregions and Natural History Themes 

of Alberta: A classification for protected areas management-updated and 
revised. Calgary, AB: Alberta Environment Protection, Parks Services.

Aono, Y., & Kazui, K. (2008). Phenological data series of cherry tree 
flowering in Kyoto, Japan, and its application to reconstruction of 
springtime temperatures since the 9th century. International Journal 
of Climatology, 28(7), 905–914. https​://doi.org/10.1002/joc.1594

Bater, C. W., Coops, N. C., Wulder, M. A., Hilker, T., Nielsen, S. E., 
Mcdermid, G., & Stenhouse, G. B. (2011). Using digital time-lapse 
cameras to monitor species-specific understorey and overstorey 
phenology in support of wildlife habitat assessment. Environmental 

http://paw.forestry.ubc.ca/
http://paw.forestry.ubc.ca/
https://earthexplorer.usgs.gov/
https://orcid.org/0000-0002-0151-9037
https://orcid.org/0000-0002-0151-9037
https://orcid.org/0000-0002-5939-1259
https://orcid.org/0000-0002-5939-1259
https://orcid.org/0000-0002-9754-0630
https://orcid.org/0000-0002-9754-0630
https://orcid.org/0000-0002-8799-3847
https://orcid.org/0000-0002-8799-3847
https://doi.org/10.1002/joc.1594


     |  237
Applied Vegetation Science

MCCLELLAND et al.

Monitoring and Assessment, 180(1-4), 1–13. https​://doi.org/10.1007/
s10661-010-1768-x

Baumann, M., Ozdogan, M., Richardson, A. D., & Radeloff, V. C. (2017). 
Phenology from Landsat when data is scarce: Using MODIS and 
dynamic time-warping to combine multi-year Landsat imagery to 
derive annual phenology curves. International Journal of Applied 
Earth Observation and Geoinformation, 54, 72–83. https​://doi.
org/10.1016/j.jag.2016.09.005

Beaubien, E., & Hamann, A. (2011). Spring flowering response to climate 
change between 1936 and 2006 in Alberta, Canada. BioScience, 
61(7), 514–524. https​://doi.org/10.1525/bio.2011.61.7.6

Beck, P. S. A., Atzberger, C., Høgda, K. A., Johansen, B., & Skidmore, 
A. K. (2006). Improved monitoring of vegetation dynamics at very 
high latitudes: A new method using MODIS NDVI. Remote Sensing 
of Environment, 100(3), 321–334. https​://doi.org/10.1016/J.
RSE.2005.10.021

Berman, E. E., Bolton, D. K., Coops, N. C., Mityok, Z. K., Stenhouse, G. B., 
Moore, R. D., & (Dan)., (2018). Daily estimates of Landsat fractional 
snow cover driven by MODIS and dynamic time-warping. Remote 
Sensing of Environment, 216, 635–646. https​://doi.org/10.1016/J.
RSE.2018.07.029

Berman, E. E., Coops, N. C., Kearney, S. P., & Stenhouse, G. B. (2019). 
Grizzly bear response to fine spatial and temporal scale spring snow 
cover in Western Alberta. PLoS ONE, 14(4), e0215243. https​://doi.
org/10.1371/journ​al.pone.0215243

Brown, T. B., Hultine, K. R., Steltzer, H., Denny, E. G., Denslow, M. 
W., Granados, J., … Richardson, A. D. (2016). Using phenocams to 
monitor our changing Earth: Toward a global phenocam network. 
Frontiers in Ecology and the Environment, 14(2), 84–93. https​://doi.
org/10.1002/fee.1222

Chmielewski, F., & Rötzer, T. (2002). Annual and spatial variability of the 
beginning of growing season in Europe in relation to air temperature 
changes. Climate Research, 19(3), 257–264. https​://doi.org/10.3354/
cr019257

Chuine, I., & Beaubien, E. G. (2001). Phenology is a major determinant 
of tree species range. Ecology Letters, 4(5), 500–510. https​://doi.
org/10.1046/j.1461-0248.2001.00261.x

Coops, N. C., Hilker, T., Bater, C. W., Wulder, M. A., Nielsen, S. E., 
Mcdermid, G., … Stenhouse|, G., (2012). Remote Sensing Letters 
Linking ground-based to satellite-derived phenological metrics in 
support of habitat assessment Linking ground-based to satellite-de-
rived phenological metrics in support of habitat assessment. Remote 
Sensing Letters, 3(3), 191–200. https​://doi.org/10.1080/01431​
161.2010.550330

de Beurs, K. M., & Henebry, G. M. (2005). Land surface phenology and 
temperature variation in the International Geosphere-Biosphere 
Program high-latitude transects. Global Change Biology, 11(5), 779–
790. https​://doi.org/10.1111/j.1365-2486.2005.00949.x

Delbart, N., Picard, G., Le Toan, T., Kergoat, L., Quegan, S., Woodward, 
I., … Fedotova, V. (2008). Spring phenology in boreal Eurasia over 
a nearly century time scale. Global Change Biology, 14(3), 603–614. 
https​://doi.org/10.1111/j.1365-2486.2007.01505.x

Didan, K., Barreto Munoz, A., Solano, R., & Huete, A. (2015). MODIS 
Vegetation Index User’s Guide (MOD13 Series). Retrieved from 
http://vip.arizo​na.edu

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., 
…Alsdorf, D. (2007). The Shuttle Radar Topography Mission. 
Retrieved from https​://www2.jpl.nasa.gov/srtm/SRTM_paper.pdf

Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Forkel, M., 
Wingate, L., … Richardson, A. D. (2016). Phenopix: A R package 
for image-based vegetation phenology. Agricultural and Forest 
Meteorology, 220, 141–150. https​://doi.org/10.1016/j.agrfo​
rmet.2016.01.006

Fisher, J. I., Mustard, J. F., & Vadeboncoeur, M. A. (2006). Green leaf 
phenology at Landsat resolution: Scaling from the field to the 

satellite. Remote Sensing of Environment, 100(2), 265–279. https​://doi.
org/10.1016/J.RSE.2005.10.022

Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., & Hobart, G. W. 
(2015). An integrated Landsat time series protocol for change de-
tection and generation of annual gap-free surface reflectance com-
posites. Remote Sensing of Environment, 158, 220–234. https​://doi.
org/10.1016/J.RSE.2014.11.005

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., & Ferreira, L. 
(2002). Overview of the radiometric and biophysical performance of 
the MODIS vegetation indices. Remote Sensing of Environment, 83(1–
2), 195–213. https​://doi.org/10.1016/S0034-4257(02)00096-2

Hufkens, K., Friedl, M., Sonnentag, O., Braswell, B. H., Milliman, T., & 
Richardson, A. D. (2012). Linking near-surface and satellite re-
mote sensing measurements of deciduous broadleaf forest phe-
nology. Remote Sensing of Environment, 117, 307–321. https​://doi.
org/10.1016/J.RSE.2011.10.006

Huseby, R. B., Aurdal, L., Eikvil, L., Solberg, R., Vikhamar, D., & Solberg, 
A.. (2005). Alignment of growth seasons from satellite data. In 
International Workshop on the Analysis of Multi-Temporal Remote 
Sensing Images, 2005. (pp. 213–216). IEEE. https​://doi.org/10.1109/
AMTRSI.2005.1469875

Keenan, T. F., Gray, J., Friedl, M. A., Toomey, M., Bohrer, G., Hollinger, 
D. Y., … Richardson, A. D. (2014). Net carbon uptake has increased 
through warming-induced changes in temperate forest phenology. 
Nature Climate Change, 4(7), 598–604. https​://doi.org/10.1038/nclim​
ate2253

Kobayashi, H., Yunus, A. P., Nagai, S., Sugiura, K., Kim, Y., Van Dam, B., 
… Suzuki, R. (2016). Latitudinal gradient of spruce forest under-
story and tundra phenology in Alaska as observed from satellite and 
ground-based data. Remote Sensing of Environment, 177, 160–170. 
https​://doi.org/10.1016/J.RSE.2016.02.020

Laskin, D. N. (2017). Remote sensing of understory plant phenology: A 
framework for monitoring and projecting the impacts of climate change. 
Calgary, AB: University of Calgary.

Laskin, D. N., McDermid, G. J., Nielsen, S. E., Marshall, S. J., Roberts, 
D. R., & Montaghi, A. (2019). Advances in phenology are conserved 
across scale in present and future climates. Nature Climate Change, 
9(5), 419–425. https​://doi.org/10.1038/s41558-019-0454-4

Loveland, T. R., & Dwyer, J. L. (2012). Landsat: Building a strong future. 
Remote Sensing of Environment, 122(October 2000), 22–29. https​://
doi.org/10.1016/j.rse.2011.09.022

Ma, S., Pitman, A. J., Lorenz, R., Kala, J., & Srbinovsky, J. (2016). Earlier 
green-up and spring warming amplification over Europe. Geophysical 
Research Letters, 43(5), 2011–2018. https​://doi.org/10.1002/2016G​
L068062

Melaas, E. K., Friedl, M. A., & Zhu, Z. (2013). Detecting interannual vari-
ation in deciduous broadleaf forest phenology using Landsat TM/
ETM+ data. Remote Sensing of Environment, 132, 176–185. https​://
doi.org/10.1016/j.rse.2013.01.011

Melaas, E. K., Sulla-Menashe, D., Gray, J. M., Black, T. A., Morin, T. H., 
Richardson, A. D., & Friedl, M. A. (2016). Multisite analysis of land 
surface phenology in North American temperate and boreal decidu-
ous forests from Landsat. Remote Sensing of Environment, 186, 452–
464. https​://doi.org/10.1016/J.RSE.2016.09.014

Migliavacca, M., Galvagno, M., Cremonese, E., Rossini, M., Meroni, M., 
Sonnentag, O., … Richardson, A. D. (2011). Using digital repeat pho-
tography and eddy covariance data to model grassland phenology 
and photosynthetic CO 2 uptake. Agricultural and Forest Meteorology, 
151, 1325–1337. https​://doi.org/10.1016/j.agrfo​rmet.2011.05.012

Munro, R. H. M., Nielsen, S. E., Price, M. H., Stenhouse, G. B., & Boyce, 
M. S. (2006). Seasonal and diel patterns of grizzly bear diet and 
activity in West-Central Alberta. Journal of Mammalogy, 87(6),  
1112–1121.

Nijland, W., Bolton, D. K., Coops, N. C., & Stenhouse, G. (2016). Remote 
sensing of environment imaging phenology; scaling from camera 

https://doi.org/10.1007/s10661-010-1768-x
https://doi.org/10.1007/s10661-010-1768-x
https://doi.org/10.1016/j.jag.2016.09.005
https://doi.org/10.1016/j.jag.2016.09.005
https://doi.org/10.1525/bio.2011.61.7.6
https://doi.org/10.1016/J.RSE.2005.10.021
https://doi.org/10.1016/J.RSE.2005.10.021
https://doi.org/10.1016/J.RSE.2018.07.029
https://doi.org/10.1016/J.RSE.2018.07.029
https://doi.org/10.1371/journal.pone.0215243
https://doi.org/10.1371/journal.pone.0215243
https://doi.org/10.1002/fee.1222
https://doi.org/10.1002/fee.1222
https://doi.org/10.3354/cr019257
https://doi.org/10.3354/cr019257
https://doi.org/10.1046/j.1461-0248.2001.00261.x
https://doi.org/10.1046/j.1461-0248.2001.00261.x
https://doi.org/10.1080/01431161.2010.550330
https://doi.org/10.1080/01431161.2010.550330
https://doi.org/10.1111/j.1365-2486.2005.00949.x
https://doi.org/10.1111/j.1365-2486.2007.01505.x
http://vip.arizona.edu
https://www2.jpl.nasa.gov/srtm/SRTM_paper.pdf
https://doi.org/10.1016/j.agrformet.2016.01.006
https://doi.org/10.1016/j.agrformet.2016.01.006
https://doi.org/10.1016/J.RSE.2005.10.022
https://doi.org/10.1016/J.RSE.2005.10.022
https://doi.org/10.1016/J.RSE.2014.11.005
https://doi.org/10.1016/J.RSE.2014.11.005
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/J.RSE.2011.10.006
https://doi.org/10.1016/J.RSE.2011.10.006
https://doi.org/10.1109/AMTRSI.2005.1469875
https://doi.org/10.1109/AMTRSI.2005.1469875
https://doi.org/10.1038/nclimate2253
https://doi.org/10.1038/nclimate2253
https://doi.org/10.1016/J.RSE.2016.02.020
https://doi.org/10.1038/s41558-019-0454-4
https://doi.org/10.1016/j.rse.2011.09.022
https://doi.org/10.1016/j.rse.2011.09.022
https://doi.org/10.1002/2016GL068062
https://doi.org/10.1002/2016GL068062
https://doi.org/10.1016/j.rse.2013.01.011
https://doi.org/10.1016/j.rse.2013.01.011
https://doi.org/10.1016/J.RSE.2016.09.014
https://doi.org/10.1016/j.agrformet.2011.05.012


238  |    
Applied Vegetation Science

MCCLELLAND et al.

plots to landscapes. Remote Sensing of Environment, 177, 13–20.  
https​://doi.org/10.1016/j.rse.2016.02.018

Nijland, W., Coops, N. C., Coogan, S. C. P., Bater, C. W., Wulder, M. A., 
Nielsen, S. E., … Stenhouse, G. B. (2013). Vegetation phenology can 
be captured with digital repeat photography and linked to variability 
of root nutrition in Hedysarum Alpinum. Applied Vegetation Science, 
16, 317–324. https​://doi.org/10.1111/avsc.12000​

Petitjean, F., Inglada, J., & Gançarski, P. (2012). Satellite image time se-
ries analysis under time warping. IEEE Transactions on Geoscience 
and Remote Sensing, 50(8), 3081–3095. https​://doi.org/10.1109/
TGRS.2011.2179050

Plard, F., Gaillard, J.-M., Coulson, T., Hewison, A. J. M., Delorme, D., 
Warnant, C., & Bonenfant, C. (2014). Mismatch between birth 
date and vegetation phenology slows the demography of roe 
deer. PLoS Biology, 12(4), 1001828. https​://doi.org/10.1371/journ​
al.pbio.1001828

R Core Team. (2018). R: A language and environment for statistical com-
puting. Vienna, Austria: R Foundation for Statistical Computing. 
Retrieved from http://www.r-proje​ct.org/

Renner, S. S., & Zohner, C. M. (2018). Climate change and phenological 
mismatch in trophic interactions among plants, insects, and verte-
brates. Annual Review of Ecology, Evolution, and Systematics, 49(1), 
165–182. https​://doi.org/10.1146/annur​ev-ecols​ys-110617-062535

Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M., 
Gray, J. M., … Frolking, S. (2018). Tracking vegetation phenology 
across diverse North American biomes using PhenoCam imagery. 
Scientific Data, 5, 180028. https​://doi.org/10.1038/sdata.2018.28

Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimi-
zation for spoken word recognition. IEEE Transactions on Acoustics, 
Speech, and Signal Processing, 26(1), 43–49. https​://doi.org/10.1109/
TASSP.1978.1163055

Schwartz, M. D. (Ed.). (2003). Phenology: An integrative environmental sci-
ence (p. 564). Dordrecht, Netherlands: Kluwer Academic Publishers.

Schwartz, M. D., Ahas, R., & Aasa, A. (2006). Onset of spring starting 
earlier across the Northern Hemisphere. Global Change Biology, 12(2), 
343–351. https​://doi.org/10.1111/j.1365-2486.2005.01097.x

Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A. M., Friedl, M., 
Braswell, B. H., … Richardson, A. D. (2012). Digital repeat photogra-
phy for phenological research in forest ecosystems. Agricultural and 

Forest Meteorology, 152, 159–177. https​://doi.org/10.1016/J.AGRFO​
RMET.2011.09.009

Soudani, K., Le Maire, G., Dufrêne, E., François, C., Delpierre, N., Ulrich, 
E., & Cecchini, S. (2008). Evaluation of the onset of green-up in 
temperate deciduous broadleaf forests derived from Moderate 
Resolution Imaging Spectroradiometer (MODIS) data. Remote Sensing 
of Environment, 112(5), 2643–2655. https​://doi.org/10.1016/J.
RSE.2007.12.004

Uemura, S. (1994). Patterns of leaf phenology in forest understory. 
Retrieved from www.nrcre​searc​hpress.com

Vartanian, M., Nijland, W., Coops, N. C., Bater, C., Wulder, M. A., & 
Stenhouse, G. (2014). Assessing the impact of field of view on moni-
toring understory and overstory phenology using digital repeat pho-
tography. Canadian Journal of Remote Sensing, 40(2), 85–91. https​://
doi.org/10.1080/07038​992.2014.930308

White, M. A., Hoffman, F., Hargrove, W. W., & Nemani, R. R. (2005). 
A global framework for monitoring phenological responses to cli-
mate change. Geophysical Research Letters, 32(4), 1–4. https​://doi.
org/10.1029/2004G​L021961

Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., & Woodcock, 
C. E. (2005). Opening the archive: How free data has enabled the 
science and monitoring promise of Landsat. Remote Sensing of 
Environment, 122, 2–10. https​://doi.org/10.1016/j.rse.2012.01.010

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., 
Gao, F., … Huete, A. (2003). Monitoring vegetation phenology using 
MODIS. Remote Sensing of Environment, 84(3), 471–475. https​://doi.
org/10.1016/S0034-4257(02)00135-9

How to cite this article: McClelland CJR, Coops NC, 
Berman EE, et al. Detecting changes in understorey and 
canopy vegetation cycles in West Central Alberta using a 
fusion of Landsat and MODIS. Appl Veg Sci. 2020;23:223–
238. https​://doi.org/10.1111/avsc.12466​

https://doi.org/10.1016/j.rse.2016.02.018
https://doi.org/10.1111/avsc.12000
https://doi.org/10.1109/TGRS.2011.2179050
https://doi.org/10.1109/TGRS.2011.2179050
https://doi.org/10.1371/journal.pbio.1001828
https://doi.org/10.1371/journal.pbio.1001828
http://www.r-project.org/
https://doi.org/10.1146/annurev-ecolsys-110617-062535
https://doi.org/10.1038/sdata.2018.28
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1111/j.1365-2486.2005.01097.x
https://doi.org/10.1016/J.AGRFORMET.2011.09.009
https://doi.org/10.1016/J.AGRFORMET.2011.09.009
https://doi.org/10.1016/J.RSE.2007.12.004
https://doi.org/10.1016/J.RSE.2007.12.004
http://www.nrcresearchpress.com
https://doi.org/10.1080/07038992.2014.930308
https://doi.org/10.1080/07038992.2014.930308
https://doi.org/10.1029/2004GL021961
https://doi.org/10.1029/2004GL021961
https://doi.org/10.1016/j.rse.2012.01.010
https://doi.org/10.1016/S0034-4257(02)00135-9
https://doi.org/10.1016/S0034-4257(02)00135-9
https://doi.org/10.1111/avsc.12466

