Collaborative Adaptive Rangeland Management (CARM) to integrate perspectives from ranchers, conservation organizations, and land management agencies
CARM Science Team

David Augustine
Hailey Wilmer
Maria E. Fernandez-Gimenez
Justin D. Derner
Lauren M. Porensky
Cameron Aldridge
Susan Skagen
Kristin Davis
John P. Ritten
David D. Briske
Dannele E. Peck
Jessica Windh
Key Recommendations for Grazing Management and Research

- Use adaptive management to optimize conservation benefits
- Integrate ecological scales and human dimensions
- Expand conservation-science partnerships
Declining Grassland Bird Populations

Contributing factors:
• Conversion to cropland
• Grazing management
Collaborative Adaptive Rangeland Management (CARM) Project

Central Plains Experimental Range

Pawnee National Grassland

Wyoming, Nebraska, Colorado
CARM in Colorado

Traditional Rangeland Management Treatment

Moderate, season-long stocking @ low stock density (20 – 24 steers per pasture; May 15 – Oct 1)
Collaborative Adaptive Management Implemented by

11 member stakeholder group

- 4 ranchers
 - Crow Valley Livestock Cooperative

- 3 conservation groups
 - The Nature Conservancy
 - Environmental Defense Fund
 - Bird Conservancy of the Rockies

- 4 land management agencies
 - NRCS, USFS, CSU Extension. CO State Land Board
Goal: Manage the land in order to pass it on to future generations
 - Economically
 - Ecologically
Manage all cattle as one large herd, rotated among pastures

2 rested pastures/yr (grassbanks for dry years)

Movements will consider:
• Precipitation
• Forage biomass (visual obstruction)
• Species composition
• Seasonality
2013-2019: Monitoring for multiple objectives

- Assess
- Design
- Implement
- Monitor
- Evaluate
- Adjust
Treatments applied 2014 - 2019
Enhance the abundance and productivity of C_3 perennial grasses (Western wheatgrass, Needle-and-Thread)
Achieved desired level of C3 grass production for the first 5 years of the experiment,

BUT, the same thing happens in the paired pastures managed with season-long grazing
No change in C3 production or densities of C3 plants with CARM
Linking grassland bird conservation with drought mitigation

CARM

Wet Year
- Grasshopper sparrow
- McCown’s longspur

Dry Year
- Grass bank helps maintain stocking rate

TRM

Wet Year
- Grass bank helps maintain stocking rate

Dry Year
- No grass bank – reduced stocking rate (-$)

Drawings copyright David Sibley
Grasshopper Sparrows

- Increased variation in grazing intensity among pastures

Increased Vegetation Heterogeneity

More Grasshopper Sparrows
Linking grassland bird conservation with drought mitigation

Wet Year
- Grass bank helps maintain stocking rate
- Grass bank
- Grasshopper sparrow
- McCown’s longspur

Dry Year
- Grass bank helps maintain stocking rate

CARM

TRM
- No grass bank – reduced stocking rate (-$)

Drawings copyright David Sibley
McCown’s Longspur

Abundance declining to a similar degree in BOTH the CARM and Traditional treatments over past 7 years.
Linking grassland bird conservation with drought mitigation

Wet Year
- Grass bank helps maintain stocking rate

Dry Year
- Grass bank helps maintain stocking rate
- No grass bank – reduced stocking rate (-$)

CARM
- Grasshopper sparrow
- McCown’s longspur

TRM
- Wet Year
- Grass bank helps maintain stocking rate
- Dry Year
- No grass bank – reduced stocking rate (-$)

Drawings copyright David Sibley
Uncertainty: will short-term losses be offset by long-term gains?

10 – 60% of CARM landscape is rested each year

Increased capacity to sustain cattle through drought could offset weight losses in wet years??
CARM Tradeoffs

Cattle Weight Gains: 2013 - 2019

Average Daily Gain (lbs/steer/day)

Year

CARM
TRM

Linking grassland bird conservation with drought mitigation

Wet Year
- Grass bank helps maintain stocking rate
- Grass bank helps support sparrows
- McCown's longspurs benefit

Dry Year
- No grass bank – reduced stocking rate (-$)

CARM
- Grass bank helps maintain stocking rate

TRM
- No grass bank – reduced stocking rate (-$)

Drawings copyright David Sibley
Key Takeaways:
1) Spatial Prioritization of bird habitat objectives
2) Longer periods of intensive grazing may be needed for shortgrass obligates
Conclusions: Grappling with complexity drove learning and progress in CARM, and built trust for co-produced science.
Conclusions: There is no unitary “public”, but rather the intersection of many different mental models and social worlds.

CAM makes visible, but does not reconcile, differences among stakeholder knowledge sources.
Contact: David.Augustine@usda.gov

Learn More:

Digital Fact sheet: https://spark.adobe.com/page/cDD9u5v5ZeC88/
The Collaborative Adaptive Management Spiral
Conclusions: Time lags and complex tradeoffs impede “closing the loop”
Conclusions: CAM is not a circle, but rather a spiral. Path-dependency makes it impossible to repeatedly adjust a single system component in isolation.
Herd size affects foraging behavior

Cattle Collar GPS Fixes 07/23/14 - 08/18/14

Fixes from 2 steers per pasture.