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INTRODUCTION

The United States ig interested in expanding renewapje CNergy resources to address
the interrelated problems of tinite fossil fuels ung global climate change by chung-
ing the energy paradigm from one based almost solely on fossil fuels to another thay
Integrates multiple renewable energy platforms (Johnson et al, 2007d). Plang bio-
mass feedstocks wif be among the sources of renewable energy. Ethanol from corn
(maize; Zey mays. L), grain, and Sugarcane (Succharim officinarum 1. and biod-
iesel fuel from soybeans (Glveine max L.y and other oilseed Crops are already used
for transportation fuels, However, 4lone they are insufticient 10 replace petroleum
(Perlack et al., 2005). Interest In using non-grain, cellulosic biomass has increased
fecently (Perlack et al., 2005). Agricultural and forest products tepresent potentigl
fon-grain biomasy feedstocks for thermochemical {pyrolysis and gasification) and
SUgar (fermentation) platforms. Thermochemica) technologies can substitute hig.
mass for natural gas or coal and can 450 be used for producing liquid (pyrolysis oil)
and solid (biochar) fuels (Islam and Ani, 2000: Gercel, 2002; Yaman, 2004),
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2 Soil Quality and Biotuel Produc tiv

Potential cellulosic biomnaas feedstocks are numerous and mclude woody
herbaceous perennial species, fumber industry wistes, forage crops. industrial win
manmicipal wastes, animal manure, cn presidues. and agricoltural wastes of co-prod
ucts such as bagasses and CAHCEy wastes (FAQL 2004: Perlack ot af 2005 Johnwo
ctal 2007d) Corn stover and wheat raticum aestivum 1y straw are grown in sufti
clent guantitios o support commercial-sized cellulosic ethanol production { Dipardo
2000: Hettenhaas ot ol 20002 Nelson, 2002 Graham et 4l 20071 The sourves and
mportance of individual feedstock s vary with location. Regional sources such as
sugarcane bagasse and rice (Orvza sariv L)y may individuully muke only tocal con
tributions, hut collectively they significantly help satisty Uniited States cnergy needs
{Dipardo. 2000,

Several dentands compete for non-grain crop biomass (a term used tnterchange-
ably with crop residue in this chapter). Small grain straw and corn stover are used for
animal bedding and high-fiber feed. Burning corn cobs and other cellulosic materi-
als for heating or cooking was a relatively common practice less than Cenilry ago.
and stilb oceurs in some locations, Straw is considered viable as 4 low-cost building
or insultion material {Batnbridge. 1986; Yang et al., 2003). From a soil perspec-
tive, keeping non-grain biomass in the ficld returns essential nutrients for subsequent
Crops. maintains soil organic matter (SOM). promates soil aggregate stability, and
provides groundcover to reduce erosion (Johnson et al., 2006a).

Most estimates of the amounts of crop residues available for harvest are based
on the sole constraint of minimized soil crosion (Lindstrom, 1986, Nelson, 2002:
Perlack ctal.. 2005: Graham ot al. 2007). Soil loss tolerance (1) was detined in 1997
as the average annual erosion rate (mass per area per year) that can oceur and still
permit u high level of crop productivity 1o be sustained ceonomicatly and indefi-
nitely by the United States Department of Agriculture (USDA) Natural Resource
Conservation Service (NRCS). Nebson (2002) completed a three-year (1995. 1997
county-level evaluation of residue remon alrates that would provide ol crosion rates
fess than T, This analysis suggests that an average of 43 million Mg of corn sto-
verand 8 omilhon Mg of wheat could be removed annuatly for biofuel production
(Nelson, 2002y Graham et al (2007) estinvated that sufficient stover was available
i central Hinois, northern Towa, southern Minnesota, and along the Platte River 1o
support large biorefineries. Hury ool rates were rmited 1o amounts tha maintaimed
croston rates fess than T, and the study assumed all Tands mcluded were managed
without tilage (Graham o al2007) However, Wilthelm et ). £2007) noted that ress-
due requirements for manntaning sort orpanic carbon (St O exceeded those needed
to it erosion at or below T for aosimilar geographic area. The assessments con-
ducted by Nelson (2002 and Griham et al. (2007) constrained harvest rites onhy 1o
it erosion: howeyer. they provide a basis for maore detaited analyvaes ncluding the
Hupact of residue removal on ¢ cyching, future crop productivity, and other mpor-
tant considerations rarsed by Wiihelm et 4l (2004; 2007,

Harvest of non-griin bromass has the potential o directly and mdirectly affeer
many sort physical. chemical, and biological processes. Simnilar sstes are ridsed
concerning soil guality and sustumability for all proposed hoenergy platfarms,
Undersunding the tmpacts of non-grain biomass harvest on saib processes will aid
i developing huarvew Management systems including utilization of by producis 1o
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Soil Processes and Residue Harvest Management 3

offset harvest impacts, thus optimizing potential benefits and reducing risks. Harvest
guidelines and BMPs are necessiary to protect soil from degradation. In this chupter,
we discuss soil processes impacted by residue management with cmphiasts on gon-
2rain biomass harvest. Soil processes reviewed include temperature, moisture and
energy balance, € cveling, ~oil brology. nutrient cycling. oil aggregation. soil ero-
ston, and watershed hydrology.

TEMPERATURE, MOISTURE, AND ENERGY BALANCE

The impacts of residue management on temperature (McCalla, 1943) and moisture
(Duley and Russel, 1939) have been researched for more than 60 years, especially
m the context of tillage. Surface residues modify the soil microclimate (moisture
and temperature) primarily by altering the surface energy balance (Fny et al., 1UXK:
Stemner. 1994, Horton et al, 1996 Withelm et al.. 2004y, Specitically, residue adds a
boundary luyer between the soil and atmosphere (Enz et al, 1988) that changes the
corresponding enerygy inputs into the soil system (Horton et al., 1996). The net radia-
ton for a bare soil is represented by:

R, =5, aty )+ L= Loy (i

where R, is the net rudiation: Sy 1s the incident short-wave (solar) radiation; a is
the surface albedo (fruction of rudiation reflected from the surface); L, is the inci-
dent long-wave sky radiation; and L. s the critted long-wave radiation from the
sotl (Horton et al., 1996; Hillel, 1998). As indicated by Hillel (1998), day and night
energy balances exhibit a major difference (Figure L1). At night, S, is negligible
and the soil long-wave radiation is typically larger than the long-wave sky radiation,
resulting in a negative net radiation flux at night and as a result, net energy movement
is from the soil to the atmosphere. For a bare sotl, the net radiation is the difference
between the energy absorbed and lost by the soil. The net radiation on a bare soil
can be apportioned as (1) sensible heat. (2) energy to heat the soil. or (3) energy used
to evaporate soil moisture (Figure 1.1). However, the addition of 4 residue tayer pro-
vides additional sources and sinks of energy (Ross et al., 1985: Bristow et al.. 1986:
Chung and Horton, 1987; Enz et al., 1988).

In addition to the processes described for a bare soil, the residue layer can (1)
reflect more or less of the incoming radiation, depending on the residue surface
albedo (Table 1.1); (2) utilize some of the incoming radiation to heat the residue
layer; (3) use energy to evaporate water from the residue; (4) add increased resistance
to water vapor fluxes from the soil, thereby reducing soil evaporation flux. and (5)
transmit remaining energy to the soil surface (Shen and Tanner. 1990; Horton et al,
1996). Typically residues are lighter in color than soils, thereby increasing the albedo
of a residue-covered surface compared 10 bare soil (Sharratt and Campbelil, 1994;
Table 1.1). Residues also trap & significant amount of air within the residue layer. thus
sigmiticantly reducing the effective thermal conductivity of the material layer and
reducing the amount of heat transmitted through the residue (Pratt, 1969), Thus. the
amount of energy incoming to the soil surface will be less with & residue layer pres-
ent compared to bare soil. Residues can intercept SO% 1o 8G0% of icoming radiation
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FIGURE 1.1 Energy fluxes for (a) bare soil during daytime. (b) bare soil during nighttime.
(©) residue-covered soil during daytime. and (d) residue-covered soil during nighttime con-
ditions. Arrows indicate directions of energy movement, Relative sizes of AIFOWS approxi-
mate one potential scenario of dynamics of energy fluxes, Residue cover reduces energy
gained (during daytime) and Jost (u mighty by dry soi) surface. (Sourcey: Hillel, D. 199k,
Environmental Soi) Physics, Academic Press, San Diego, CA; Horton, RUKL. Bristow. g
Kluitenberg, and 15 Sauder. 1996 Theo, Appl. Clim 54:27.375

(5.0 keeping the surface soth temperatures within 20°C of ambient. whereas bare
soil temperatures may rise 30°C or more above ambient (Ross et af. 19%5),

The residuc layer also impacts the aerody namic boundary layer conditions of the
soif surface (van Bavel and Hillel, 1976: Hagen, 1996, Residues typically increase
surface roughness and correspondingly impact surface exchanges of heat and waler
and reduce soil foss by wind erosion, Residues increqse infiltration and decrease
evaporation, generally resulting in a pet increase in soil maoisture (Smikg and Unger,
1986; Blevins and Frye. 1993 Wells of al. 2003: Govaerts o al, 2007y, In regions
that cxperience significant amounts of wind-blown snow. surface residues trap
SBow, reducing frost penctration depth due 1o the insulating properties of the spow
pack (Benoit ¢t af 1986 tn addition. the SHOW surface s typically smooth due 1o
fow winter evaparation, pr ducing additional soi maisture in the spring (Sauer et o).,
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TABLE 1.1
Albedo Comparisons for Several Crop Residues and Materials
Material Albedo* Citations
Bure ol 6 04 1o 1) 40 Lobell and Asner, 2007,
Markvart and Castafier, 2003
Gireen grass .25 Markvart und Castudier, 2003
Growing crops 010 16 040 Stanhilf ¢t al| 1966:
2 Al Yemeni and Grace. (995
Marze (Zea Mavs L resrdue 03 o 46 Fanner and Shen, 1990
Bastey tHovdeam vidyare 1.5 sraw .42 104150 Novuk ctal., 2000
Sugarcane (Succharum officinaron L.y residue 4.31 Bussiere and Cellier, 1994
Wheat (Dincum aestivam 1.5 Struw 0381 0.70 Major ctal., 1990
Snow .70t 0.94) Murkvart and Castager, 2003

Albeda vulues depend on residue maistore content typically, the higher the moisture content. the lower
the utbedo.

1998). Furthermore, trapped snow provides additional soil water recharge during
spring thaws (Benoit et al., 1986).

As shown in Figure L1, residues impact the surface energy balance by reducing
diurnal energy gain and loss at the soil surface, The resulting changes in soil tempera-
ture and moisture are functions of the physical properties of the residues and the con-
ditions of the soil (Bristow et al.. 1986; Steiner, 1994). In general, most studies agree
that with increased residue cover (i.e.. decreased crop residue removal), soil moisture
content is increased (Russel, 1940): soil temperature maximums decrease, and mini-
mums increase ( Blanco-Canqui et al., 20064). Consequences of these temperature and
moisture impacts from residue coverage are less clear, All these factors depend on the
interactions of altered soil microclimate conditions with other factors (soil type, cli-
mate, and crop type). Crop emergence has been shown to be sensitive to alterations in
soil microclimate (Ford and Hicks, 1992: Drury et al., 2003). These resulting effects
can be beneficial (Linden et al., 2000: Dam et al., 2005; Blanco-Canqui et al., 2006a),
detrimental (Munawar et al., 1990; Liu et al., 2004), or negligible (Bristow, 1988:
Swan et al., 1994) for crop emergence. development, and yield. Lower yields observed
with high residue covers are hypothesized to result from slower soil warming during
seed germination, lower pH. nutrient immobilization, and higher incidence of weeds
and pests under residues (Cox et al.. 1990: Mann et al, 2002; Drury et al., 2003:
Jiang and Thelen. 2004; Liu et al., 2004), Delayed soil warming may delay planting,
thereby offsetting gains of soil moisture retention (Nafziger et al., 1991). However, in
drought-stressed areas, increased soil moisture can be vital (Power et al.. 1986; Power
ctal. 1998: Jalota et al., 2001: Kato et al.. 2007).

Surface residues insulate the soil surface, reducing diurnal temperature fluctua-
tions in a residue-covered soil compared to a bare soil (Buerkert, 2000). In Minnesota,
tafl (0.6 mj corn stubble reduced frost penetration by 0.5 m and increased the mini-
mum sotl temperature by 2°C compared to soil with no residue. leading 1w a 25-day
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6 Soil Quality and Biofyel Praduct

decrease 1o begin spring thaw (Sharratt, 2002). However, these beneficial proper
of reducing frost depth and ncreasing soif moisture (Sharratt et 4., 1998) resulted
lower spring soil temperatures. This i problematic because these factors may del
spring ficld operations and significantly impede early germination (Ljy o al, 200
Crop residue Impacts on soil microclimate affect both Crop emergence and grow
and also the timing of the biological production of N, O (Wagner-Riddle et al., 200
weed pressure (Garcia-Huidobro ctal, 1982: Shafii and Price, 2001: Duppong et a
2004; Dhima et al, 2006). und C ynd nutrient cycling (Bayer et al.. 2006),

SOIL ORGANIC MATTER (SOM)

Many physical, chemical, and biological characteristics of high guality soils ar
related to SOM (Doran and Parkin, 1994). Soi] hiota, nutrient cycling, residu
decomposition, humification. and SOM cycling are interrelated. Soils tend o b
more productive when organic matter is added regularly and allowed 1o decompose
thus stimulating nutrient and ¢ cycling and maintaining or enhancing soil structure
(Albright. 1938 Kumar uand Goh, 2000y, Suil Organic matter enhances aeration, per-
meability, water fetention, cation exchange, and buffer capacity (Stevenson, 1994;
Kumar and Goh, 2000) and reduces soil compactability (Guérif, 199(: Soane, 199¢;
Diaz-Zorita and Grosso, 2000; Krzic et al., 2004).

Soil compactability is likely to increase i biomass harvest lowers SOM. Within
one year, soil bulk density in the surface 6 cm was related inversely 1o the amount
of corn stover returned on silt loan and clay loam soils in Ohjo (Blanco-Canqui et
al.. 2006b). The highest bulk density was | 45 Mg m * when ali harvestable stover
was removed compared to 1,24 Mg m *with 10 Mg ha ' stover returned. Similurly,
cone index and shear strength measurements also decreased with increasing sur-
tace stover,

C CYCLING

Plant roots and uitharvested above-pround biomass provide the raw materials for
butlding SOM. Photosynthate (organic Cy enters the below-ground food web and tra-
verses through muftiple rrophic levels betore returning to the atmosphere with only
asmalt fraction humified into stable SOM. AL reviewed by Wilhehn et al, (2004,
the amount of plant residue C in oif decreases over time through decomposition:
within two years, less than 20% remains in the soil These authors suggested that the
small amount of new ¢ canverted to stable SOM implied that o large biomass influx
was needed to provide substrate i excess of the respiratory demand of soil fauna.
Soil organic matter is about 567 organic ¢ (Stevenson, 1994 Sof organic C(SOC
1 frequently used g 4 proxy to estimate SOM. A simiple one-component mode! of
SOC tarpover using first-order Kineties (Equation 1.2} is useful where input for more
complex models iy lacking (Bayer ot af 2006

A - 5 k:A "
Co=Cop Wy (t-e *y
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where C,is the SOC stock attime t; C,, is the initial SOC altime t = 0 K. s the annual
rate of SOC loss by mineratization and erosion; K, is the annual rate of added C humi-
fied tnto SOM: and A is annual rate of C addition. The first derivative of Equation 1.2
can be expressed as Equation 1.3 (Bayer et al, 2006; Hugpins et al., 2007):

dC .
d[ ‘:k!/\“]\‘(, l‘;j)

Simply stated. the change in SOC over time is a function of the rate of humification
minus the rate of mineralization (inputs minus outputs). At cquilibrium, dC/dt goes
to zero and kKA = k,C and SOC content reaches dynamic equilibrium C.. as noted
by Bayer et al (2006):

kA
A (4

Conversely, it is possible to use this simple model 1o solve for the annual rate of C
addition (Huggins et al., 2007) at C.;

k:C.
As I (L.5)

I kA exceeds k,C, then SOC should increase: if not, SOC will decrease. [f kK, and
k, remain constant, the change in soil C is proportional to inputs for a given manage-
ment system. Several studies indicate that the amounts of both SOC and ¢ inputs
mereased linearly (Larson et al., 1972; Paustian et al., 1997; Wilhelm et al., 2004
Follett et al., 2005, Kong et al., 2005: Bayer et al., 2006: Johnson et al.. 2006a).
However, other results reveal that SOC sequestration did not correlate with the
amounts of organic matter inputs (Dexter et al.. 1982: Campbell et al., 1991; Johnson
and Chamber, 1996: Nicholson et al., 1997), implying that k,C exceeded kA or that
the rate coefficients were not constant over the duration of these experiments. The
k coefficient is a function of C input quality (Franck et al., 1997; Heal et al., 1997
Wang et al., 2004; Johnson et al., 2007a). The k, coefficient is affected by tempera-
ture, rainfall, soil texture, mineralogy, and residue management, especially tillage
(Bayer et al.. 2006). Although first-order kinetics cun provide preliminary informa-
tion, the rates of decomposition and humification slow as more labile materials are
decomposed (Wieder and Lang, 1982; Johnson et al., 2007a).

When above-ground biomass is harvested, the quality and quantity of C inputs
change because roots and other plant organs may have different chemical composi-
tions (Johnson et al., 2007a). This has the potential o shift the rate of decomposi-
tion and subsequent humification (k). Carbon originating from root hiomass and
rhizodeposition contributes 1.5 10 3.0 times more C 1o stable SOM compared o C
originating from above-ground biomass (Balesdent and Balabane. 1996 Allmaras
etal, 2004, Wilts et al., 2004; Hooker et al., 2005). The higher values correspond

4
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8 Soil Quality and Biofuel Production

to systems with little or no incorporation of shoot material, Unincorporated residues
decompose more slowly (Ghidey and Alberts, 1993) and have fewer opportunities to
enter the soil. Roots of corn, alfaifa (Medicago sativa L..), and switchgrass (Panicum
virgatum L..) decompose more slowly than corresponding leaves or stems, but this is
not the case for soybean or cuphea (Cuphea viscisissima Jacq. and Cuphea lanceo-
lata WT, Aiton) tJuhnson et al., 2007a). Although roots contribute more C to SOC,
they comprise less plant biomass than above-ground biomass for most annual spe-
cies (Amos and Walters, 2006; Johnson et al., 2006a).

Using empirical data and linear regression of ¢ inputs and SOC, Johnson et al.
(2606a) proposed minimum source C(MSC) as a term to describe annual C inputs
necessary for dC/dt (Equation 1.3) 1o equal zero, implying no net change in SOC
content. For many agronomic crops, grain is harvested and not returned to the sofl,
and thus is not included in calculating MSC. Since the Johnson et al. ¢ 20064 review,
several other studies allowing MSC estimates revealed similur above-ground MSC
estimates (Table 1.2). Using above-ground non-grain C inputs, MSC was 2.5 + L7
Mg Chalyr (n = 28) for different crops and tillage practices at several experimen-
tal sites—slightly higher than the mean MSC of 2.2 £ 1.l Mg C ha! yr' (n=2ph
cited by Johnson et al, ( 2006a),

Moldboarq plowed systems had higher MSC Tequirements than those withno till-

age; this result was also reported by Bayer et al. (2006). In general, wheat systems
have lower MSC than corn-based systems (Kong et al., 200s5: Sainju et al., 2006;
Kundu et al., 2007). When rhizodeposition is included, MSC values are larger (Clay
et al., 2006; Huggins et al., 2007).

Herbaceous perennial species (e.g., switchgrass) have extensive and deep rooting
systems (Ma et al., 2000), and thus may exhibit low above-ground MSC relative to
anaual species so long as sufficient cover js provided to minimize erosion. Several
authors reported increases in SOC under perennial grasses. After six years, SOC
under tall fescue (Festuca arundinacea) was 3 Mg ha! greater than under corn in
Ohio (Lal et al., 1998). After four years, SOC under switchgrass stands in south-
western Quebec increased by 3 Mg ha'! compared to corn (Zan et al., 2001). In a
three-year study, SOC increased at 10 Mg Cha'yr' (0to 09 m depth) in central
North Dakota under switchgrass harvested annually (Frank et al., 2004). The very
low initial soil C content of the North Dakota soil was thought to contribute to the
very high SOC accrual rate,

The MSC is a useful guideline for determining the amount of allowable biomass
harvest for a management system (Johnson et al., 2006a; Johnson et al., 2006b;
Wilhelmet al., 2007). ¢ learly, given the range of MSC values reported, using an aver-
age value is untikely to provide accurate local harvest rates. Improved understanding
of SOM dynamics is critical to developing sustainable biomass harvest guidelines.
In the short term, use of process or mechanistic models such as CENTURY (Parton,
1996} or CQSTR (Rickman et al., 2002 may be useful to estimate site- and system-
specific biomass harvest rates.

;
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TABLE 1.2
Empirical Estimates of Annual Above-Ground Non-Grain Carbon Inputs
Required to Maintain Soil Organic Carbon Levels

Primary MSC

Location Crap*® Tillage** Soil Type* Mg Cha'yrhy Citation

MN M cp Sil, R Allasis et al, 2004

sD M Cp l. 321 Pikuf et al, 2008

Wi M NT SHL. 20 Kucharik et af 3001

Mi M MBP Saf. 16 Vitosh et al, 1947

Wi M MBP Sif. 2.3 Vanoti et al., 1997

IN M MBP Sil >4 Barber, 1979

1A M MBp 1. 24 Larson et al., 1972

MN M MBP L 10 Crookston et al., 199
Huggins et al.. tygg

MN M MBP CLSICE, 3.3 Reicosky ot al, 2002

Sil. Wilts et al . 204

MN M. s MBP (613 30 Crookston et al . 1991
Huggins etal, 1993

NE M. S D Sil. 24 Varvel and Wilhelim, 2008

MN M. S NT L 8.7 Huggins et af, 2007

sD M. S NTor ST CL. 1. SiCL 16 Clay etal., 2001 2006

KS S. Sr P Sil. L7 Havlin and Kissel, 1997

KS S. Sr NT Sil. b2 Havlin and Kissel, 1997

WA w NR — 1.2 Horner et al., 1960
Rasmussen et al., 1980

KS w NR 2.0 Hobbs and Brown, 1965:
Rusmussen, [980)

OR w MBP Sil. 21 Rasmussen, 1980

WA W NR © Sl 20 Paustian et al., 1997

WA w NR Sil. 1.0 Paustian et al., 1997

MT w NT CL (1.82 Sainju et al.. 2006

MT w Vv Sal. 0.3 Black. 1973

CA W.M T T Sit., SiCL 26 Kong et al.. 2005

Sweden W, Ba HT SaCt, 1.5 Paustian et al.. 19972

Mexico W, M MBP.NT (¢ 1.5 Follett ev al., 2005

India WS NR Sal, 0.032 Kundu et af.. 247

Brazil OMV.C T SaCt. 6.2 Bayer et al., 2006

Brusil OMV.C NT SaCl. 27 Bayer et al., 2006

Average 2517 N =24

" Crops: Ba = barley tHordewm vilgare 1,.) ¢ = cowpen tVignda unguiculia () Walp.). M = maize ( Zea
Hays L) O = vat (Avena srigoas Schreb,). S = soybean (Glveine may (1. Merr.y. Sr = sorghumn
(Sorghum hicolor b T o= tomato thyeopersicon escrlentum Mill ), V = vetch (Vicrr sativa ) W=
Wheat (Friticum aesti um L)

" Primary filluge: CP = chiel plow. CT = conventional Gikage, details not provided. D = disk. HT = hand rill-
age MBP = mokdboard plow. NR = not reported. RT = rdge Gl ST = wrip tillage V= Voblade. 9 1012 ¢m,

£ Soil type: Si = ilt §q = sandy o= foam, C = clay.
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SOIL BIOLOGY AND NUTRIENT CYCLING

Plant biomuass provides 4 complex matrix of OTRANIC Materialy (hat interact
SOM. This complexity can influence the diversity of the soil microbig] COt
and related physiologicat and CRZYMAtc processes, thus affecting nutrieng inn.
ization and N availabifity (Bending et al., 2002) In general, harvesting Crop resi
reduces indicators of soil biology activity. Based on compendium of worldy
studies, harvesting residyes reduced the concentrations of microbiy| biomuss (
5% and microbig) biomass N by 29% (Tables 1.3 and 1.4) In some cases, the jiny
of residue harvest was measured as carly as (wo years after biomuass harvest. Of
25 observations, only three cases indicated that residue removal had no effec
exerted u positive impact on microbial biomass ¢ concentration relative 1o g,
ments that retained residue (Table 1.3). Microbia) biomass ¢ increased proportic
ally to the amount of bionuiss returned when harvegg rates were varied (Karfen el
1994 Cookson et al. 1998: Deboss et al, 1999: Salinas-Garcig ot al, 2000 Lin
Ortega ¢t al., 2006,

Earthworms are macroscopic indicators of 4 healthy soil ang provide benetic
functions related to nutricnt cycling, soil structure, hydrology, und root growth.
reduction in earthworm activity caused g decrease in saturated hydraulje conducty
ity to a depth of 20 ¢y (anco\(‘unqui etal, 2007, Numerous studijes have note
that reducing or eliminating tillage increases carthworm biomays (Nuutinen. 199:
and abundance (Edwards et 4] 1990; Nuutinen, 1992; Kladivko, 2001). Eliminatio
of burning CrOp residue also increased carthworm abundunce (Fraser et al., 199¢
Wuest et gl 2005). Therefore, it was expected that retaining non-grain biomas:
would reveal greater carthworm populations than areas from which the biomas.
was removed (Table LS) Similar 1o microbial hiomass C. earthworm abundance
increased with the amount of biomass returned when hurvest raes varied such thu
at least 25% of corn stover decreased midden numbers,

Crop residue management may influence plant discases, Retention of resicdues can
result in net changes in soi microbiota by retatting inoculum or Creating an environ.
ment more conducive 1o pathogens (Cook et al 1978y, For eximple. corn stover and
small grain straws are the principal noculum sources ot Fusarium SPp. that cause
head blight iy wheat, espectally in no-ti) systems (Maioriano et g, 200%). Population
COUnts of Fusariunt were highest in continuoys corn with residue retention and lowesg
under continuons wheat or corn - whey rotation, also with residue retamed tGovaerts
ctal. 2008). The same study indicated thy residue retention Increased populations
of discasc—supprcsxing MIcroorganisms including fuoreseent Pseudomonas tha pro-
vide hiological control of Fusariim and other fungal pathogens,

Greater incidence SEPOOL ot in corn was assoctated with stover retention relative
0 stover harvesy without tillage: however. foot rot did not redyce yield (Govaerts
Ctal. 200740, Govaerts et al (2008 proposed that no tillage and residue retention
have potential for biological controf hy promoting plant prow th and suppressing dis.
case, but climinating tillage alone did not improve <o health. Disease response to
repeated burning of whey stubble wag vitriable, depending on precipitation and N
management Smiley ot af 1996). Crown roy incidents were positively correfated
with SOC, while roor ot imeidents were negatively correlated (o microbial biomass
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20 Soil Quality and Biofuel Prod:

(Smiley et al.. 1996). Effects of residue harvest on microbial species are di
to predict: negative, neutral, and pasitive responses have been reported aluny
interactions of tillage, climate, and nutrient management,

Harvesting crop non-grain biomass aftects nutrient cycling by removing
macronutricnts (N, P K. Ca, and Mg) (Mubarak et al., 2002) and micronut
(Fageria, 2004). The concentration of nutrient in non-grain biomass averaged
S51egNkg ! 1L1+£052 gPkg'land S0+ 13 g K kg "based on results from se
common annual crops and likely perennial biomass crops (Table 1.6). The am.
of nutrients removed vary among plant species, organs harvested {cob versus ¢
stover), physiological stage. and amount of biomass harvested ( Lindstrom,
Burgess et al., 2002; Mubarak et al., 2002; Fageria, 2004: Johnson etal., 2007

The amount of nutrient removed can be calculated from the concentration
biomass harvest rates, Bransby et al. (1998) indicated that harvest of above-gre
switchgrass biomass has the potential to remove 126 (o 281 kg N ha "or more u
fertilized conditions and 38 kg N ha ! under unfertilized conditions. From a nut
management view. harvesting biomass after senescence removes the least am
of mineral nutrient. In Washington state, the amount of N removed by harves

switchgrass varied by cultivar and harvest date more than by the amount of N fe
izer applied; early harvesting prior to N translocation below ground removed n
N than harvesting in October (personal communication. Hal Collins, USDA A
Prosser. WA). Continued removal of nutrient without replacement by applying fe
izer, manure, or compost depletes soil fertility, in turn reducing soil productivity
Harvesting non-crop biomass affects soil microbial processes that impact N av
ability. For example, the activity of N-acetyl-b-D-glucosaminidase was reduced
harvesting corn stover for 10 years in a continuous corn system, suggesting a red
tion in N mineralization (Ekenler and Tabatabai, 2003), In Kenya, corn stover h
vest for I8 years in a corn--bean (Phaseolus vulgaris 1..) rotation reduced N stocks
to 15 ¢m depth) that corresponded to declines in total N, particulate matter N, m
eral N, microbial biomass N. and potentially mineralizable N {Kapkiyai et al., 199
Corn and soyheans took up more N where stover was retained than where stover w
removed, possibly because stover maintained a soil environment more conducive
biological activity that increased N availability (Power et al., 19%6). In India, more
was available (0 to 30 ¢m depth) with residue retained and incorporated compared
residue removal in wheat- groundnut (Archis mypogea 1..j rotation {Bhatnagur ¢t 4
1983). These studies indicate increased plant-available N with stover retention ap
suggest that harvesting non-gram biomass may impact soil fertitity adversely.

SOIL AGGREGATION

Inagricultural systems. maintenance of SOM has long been recognized as a strateg
to improve soil structure and reduce soil degradation. Soil structure is an importa
property that mediates muny physical and biological processes and controls SON
and residue decomposition (Van Veen and Kuikman, 1990, Soil agpregates ar
the basic units of soil structure and consist of primary particles and hinding agem
(Figure 1.2 Edwards and Bremner, 1967 Tisdall and Oudes, 1982 Tisdall, 1996

Jastrow and Miller. 1997). Water stability of soil aggregates depends on organic
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TABLE 1.6

Plant Concentration + Standard Deviations Based on Literature Reports of
N, P, and K in Non-Grain Above-Ground Portions of Potential Non-Grain

Biomass Feedstocks

Crop

Barley Hordewm salyare b
N

Mutre tca miivs 1y

N

Mittet ¢ Ponicam il vanm |
N

Rice «thnasaina b g

N

Sovghows (Sorvluom brolor {3
N

Soybean (Glveme max thg

N

Wheat tIriticum westivin 1),
N

Miscanthus (Miscanthus x gigantens)
N

Switchgrass (Pasmcunt virgatom 1)
N

Other grasst

N

Annuuls

N
Perennads
N

‘Citations:

N g/kg)

Annuals
05«11
6
TR+ 10
16
K49+ 56
i
Yilr72
9
20194
i
P70 2 1201
i
6.8 £ 22
3]

Perennials
$0+53
6
6.8+ 4.2
17
G5
5

9875
(318
7.5+ 45
2%

P (g/kg)

[ 1 e NAY
1

IR
(43

(RS x 021
2

O7F ei) 24
1
0S5 x NA

BRI ]

4206

0.25 £0.21

N

0.62+0.23
7
[O8 £ 0.52
5

I1t+05
I8
73 £ 05
14

K (g/kg)

PR +62
)
18 £ NA
I

1 b e 14

345 £ 0.21
2
32433

£

50«13
S
3176
4
3924
13

Citations*

@ = Christensen, 1986; Lindstrom. 1986: Andren and Paustian. 1987, Cookson et al., 1998 Mitchell ot

ab. 20010 Velthof et al, 2002 Halvorson and Reale, 2007,
b = Lindstrom, 1986; Breakwell and Furco, 1989: Tian et al. 1992 Burgess et al., 20020 Mankay et ul..
2002, Velthof et al, 2002 Fageria, 20040 AL Kaist er ak, 2005; Hoskinson et . 2007; Yu o al.,

200K, Halvorson and Johnson, in press,
< Manbay et all 20020 Fatondj et b 20060 Sarr o al., 200%
savetal 1992 Ying etal, 1998 Manlay of al |, 2002, Abiven ot al | 2005 Tirol- Padre ot . 208

P

Liegunst et al L2007 Kaew pradit et 4., 2008

e Satfipmacet ab 1989 Fransluchbers ot al, 1995 Abnen et ab . 2005 Monn ot al., 2008

Fs Lindstrom, 1986, Fransduebbers vtad 1995 Fageria, 20040 Nhoven et al, 20050 AL Kaise o ab 2005,

Rov et al | 2005 Johnson et ab. 20074

PSS

Bl il L



22 Soil Quality and Biofuel Produc

TABLE 1.6 (CONTINUED)
Plant Concentration + Standard Deviations Based on Literature Reports o;
N, P, and K in Non-Grain Above-Ground Portions of Potential Non-Grain
Biomass Feedstocks

‘Citstions (continued ):

# = Jawson and Lot 1986 Lindston, 1986; Fransluehbers et b 1995, Conrkvon etal, 1998 Miic
etal, 2001 Borie et al, 2002 Velthol et 4l 20020 Abiven et al . 2005: Tirol Padre ef 4l L2005,

b= Clifion Brown and Fewandowsks, 2002 Monti et al.. 200K

t= Bransby ot al.. 19958, Mudakadze of ab., 1999; Reynolds et al., 2000 Dufly and Nanhou, 2001 [ e
etal 2002; Vogel et al., 2002; Cassida et al., 005 Adler et al.. 2006 Lemus et al.. 2008; Monti «t
2008.

§= Katterer et ab, 1998, Monti et al,. 200K,

NA = not appropriate.

NR = not reported

T Other grasses include cardoon (Cviarg Carduncidus 1oy, giant reed (Ariondo donar 1. boand reed cam

grass (Phularis arundinacea 1.y,

S OISO

materials such as polysaccharides, roots. fungal hyphae. and aromatic COMPoun
{(Tisdall and Oades, 1982),

SOM is considered a major bonding agent responsible for the formation and st
bilization of soil aggregates (Tisdall and Oudes, 1982: Dormaar, 1983: Chaney an
Swift. 1984; Miller and Jastrow, 1990): Haynes et al., 1991 Degens, 1997; Anger
1998). In addition, improvement of soil aggregate stability results from the niicrobi;
utilization of carbohydrates and from plant phenolics released during decompaositio

W Plantroot
G Microaggregate « 250 mm

Plant and tungal debris
@ siitsize micraaggregate 2 20 mm
®  Clay nucrostiuctures

. Particulate orgamic mattet

Mycotchizal hyphae

Macroaggregate - 250 mm

- Pore space binding agents

FIGURE 1.2 soil Macraggregde formation Source. Jastrow and Miller. 1997 fn Lal. R et
abobds Sl Processes and the Cardaon Cucle CRC Press, Boca Raton, F. pp. 207 223,
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of structural components such as lignin (Martens. 2000). Plant root and fungal
hyphae form a network in soil that entangles microaggregates to form macroaggre-
gates that are then stabilized by exiracellular polysaccharides that confer increased
resitience to aggregates in the presence of water (Elliott and Coleman, 1988; Tisdall,
1994). The length of fungal hyphae can be reduced by harvesting residue (Cookson
ctak, 1998). which may contribute 10 a reduction in aggregate stability.

The addition of fresh organic residue induces the formation and stabiftzation of
macroaggregates by the addition of a C source for microbial activity (Golchin et
al, 1994b; Justrow, [996: Six et ab.. 1999 Mikha and Rice, 2004: Johnson ¢t al.,
2007¢). In a conceptual model proposed by Golchin et al. (1994a), plant residues
are colonized by microorganisms as they enter the soil. Plant fragiments also can be
encrusted by mineral particles that become the centers of water-stable aggregates
(Figure 1.2). Since these plamt fragments are rich in readily decomposable carbohy-
drates, microbial metabolites permeate the coatings of mineral particles and <tabilize
the aggregates (Golchin et al.. 1994a). In addition, soil conditions can cause incredsed
solubility of some polyvalent cations such as Fe and Mn, therehy contributing to the
formation of soil microaggregates and the stabilization of SOM (Figure 1.3) through
formation of cation bridges (Elliott and Coleman, 1988). Thus, the addition of
organic residues high in available C can promote the stabilization of soil aggregates;
conversely, insufficient C inputs can lead to losses of stable aggregates,

Different management practices affect formation and stabilization of soil aggre-
gates through their effects on SOM level and soil biota (Tisdall and Ouades, 1982;
O'Halloran et al., 1986; Beare and Bruce. 1993; Edwards et al., 1993: Frey et al.,
1999: Six et al., 20004). Cultivation affects soil structure due to the destruction of
soil aggregates and the loss of SOM (Low, 1972; Van Veen and Paul, 1981 Tisdall

Strongly sorbed polymer Cation bridges

i

Organic matter

FIGURE 1.3 Soil microaggregate formation (<250 pmy and SOM stabilization, Note cation
bridges that connect SOM and clay particles. (Source: Tisdall, | M. and J M. Oudes. 1982/,
Senid Sed. 33141163

-

b
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and Gades, 1982: Elliot, 1986: Angers et al., 1992, Six et al., 1998; Sixet al.. 19
Losses of SOM from cultivation of grassland have been attributed ar least part
the mineralization of organic materials that bind microaggregates into macrougy
gates (Elliote, 1986; Gupta and Germida. [988),

McVay et al. (2006) observed that aggregate stability was greatest in treatin
with the highest SOC in several long-term studies in Kansas. De Gryre et al. (20
observed that aggregate formation increased lincarly with increasing residue amou
atarate of 120 £ 1.24 p aggregate g fresidue added. They also observed that m
roaggregates (> 2000 pmy increased from 3% 1o 409 as the amount of residue e
was increased from 0 g to 3 g per 100 g soil. Water-stable aggregation index v
significantly greater in a tllage-plus-straw-retained treatment (0.97) compared
tillage without straw treatment (0.68) (Singh et al.. 1994). In another study, ad,
tion of a high-lignin organic material and corn stover increased water-stable aggl
gates (Johnson et al.. 2007¢). These results are indicative of the beneficial effects
organic matter addition on the 4gEregation process.

Soil aggregation affects soil water and azeration, which are important factors
crop production. The size. shape. and stability of soil aggregates impact pore si;
distribution (Lynch and Bragg. 1985). Soil structural stability depends on the abili
of aggregates to remain intact when subjected to stress such as rapid wetting ( Tisdal
1996). Lynch and Bragg (1985) reported that unstable aggregates slake when wette
Slaking occurs when aggregates are too unstable to withstand pressures resultin
from entrapped air inside air-dried aggregates during rapid rewetting (Elhott, [9%¢
Giith and Frede, 1995: Six et al.. 2000b). Resistance 1o slaking is associated wit
large picces of organic debris from plant roots, surface litter, and fungal hypha
(Oades. 1984). When air-dricd soils are slowly rewetted, changes in aggregates ar
minimal (Six et al.. 2000b). Under field conditions, aggregates near the surface an

subjected to more slaking compared (o aggregates below the surface Layer that urc
protected from air drying and rupid wetting (Lynch and Bragg. 198S),

Soil aggregation ix important for increasing water infiltration, Residue cover pro-
tects the soil surface from direct raindrop impact and minimizes aggregate slaking
fromy fust rewetting. thus maintaining soil aggregates and reducing surface crusting
compuared with bare soil. Unstable aggregates at the surface can lead to the formation
of crusts that inhibit water mfiltration and air movement into the soil (Tisdall and
Oades. 1982 Lynch and Bragg. 1985 Within 24 hours of the formation of surface
crusts the O. diffusion rate is reduced by 50% (Rathore et al., 1982). No tlling and
retaning crop stubble increased infiltration rate 3 7-fold compared with convention|
tilage tthree cultivation passesy and burnt stubble in a 24-year study (Zhang et al .,
2007) Water-<tuble Macroaggregates were positively correlated to hydraulic con-

ductivity and negatively correlated to bulk density under dryland crop production
m castern Colorado (Benjamin et al, 2008). Govaerts et al. (20074 reported that
retaming wheat and maize residue improved water infiltration drumatically in both
no-tll and conventionatly tilled plots. Harvest of non-gram hiomass has the poten-
tial (o increase water ranoff and sotl erosion by impairing soil stracture through
decreased aggregate stabifity and macroparosity of the soil surface.
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FIGURE 1.4 Soil loss ratios predicted hy the revised universal soil loss equation (RUSHE.
and revised wind erosion equation (RWEQ) with varying amounts of soil cover, Soil ko
ratios include specified amount of residue cover for hare soil under high erodibifity comn
tions. (Source: Merrill, $.0. et al. 2006, /. Soil Warer Conserv. 61:7-13.)

and field studies suggest even low fractions of residue cover can drastically decrea
wind erosion (Bilbro and Fryrear. 1994),

For both wind and water erosion. the refationship between soil cover and o
is @ non-linear function where >50% groundcover can virtually eliminate erosio
(Figure 1.4). Generally. researchers have observed that the amount of crop residu
can be estimated from grain yield. For example. linear relationships between th
amount of crop residue and grain yield have been reported for small grains (MeCo
¢tal.. 2006) and corn (Linden et al., 2000). such that grain yield has been used
predict residue yield (Johnson et al., 20064).

The relationship between residue amount and groundcover varies with crop
Gregory (1982) presents « method o estimate the fraction of groundeover from th
mass of residue per area of ground. using coefticients determined from field studies
For cach crop, Gregory reported that the fraction of soil covered increased expo
nentially with increasing residue amount, with the Towest rate of mereuse for cottor
(Gossypium spy and the highest rate of increase for oats (Avene sativa F). Thus, the
amount of sotl cover generally increases exponentially with grain yield. This expo
nential refationship indicates that hary esting residue will not result in a pProportonid
decrease i groundeover. For example. under most circumstances, harvesting 2547 of
the crop residue mass will decrease the amount of groundeover by less than 254

Roots and growing plant materials abso effectively reduce wind and water erosion
and show trends semilar to crop residues, Sail Toss rates by water erosion decreise
exponentially with mercasing vegetative cover: soil loss is approximately the same
for 60% and 1009 vegetation cover (Stocking, 1988). Rescarch also has shown
exponential decreases in soil foss rates by water erosion with INCreasing root mass
(Gyssels erat. 20054
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Cover crops and perennials also may reduce soil eroston drastically by keeping
the soil covered. The amount of soil cover provided by growing plants. their height.
structure, orientation, rooting characteristios, position, and other factors are impor-
it i determuning their effectiveness at reducing erosion. For example, erosion
from fand planted o woody species can be comparable to traditional vow-cropped
Land 11 no cover crop is present (Malik et al, 20000, and crosion rates can be very
Bigh m mature forests (Stocking, 9881, Positioning of plants plays a role i their
ability to reduce erosion Ina tiekd study. measured soil foss exceeded the predicted
wind crosion soil foss because plants were sited between soil ridges, hmiting their
abihity to reduce erosion (Van Donk and Skidmore, 2003),

For residue to be effective Tor decreasing erosion, it must cover the soil surface
dugiog the erosive event. Thas, residue must renain on the sotl surface until the next
crop s established. Tillage., seeding. und other soil disruptions decrease crop residue
present on sorl surfuce Extensive research has been conducted to determine soil
eroston rites under ditfering conditions of cover following titlage. Eck et al. (2001
reported that cach titlage operation can decrease the crop residue cover by 109 10
200 tor muld disturbance caused by some drifls or planters) to 95% or more (for
aggressive tflage such as w moldbouard plow). Tillage incorporates residue into the
sotl, where 1t can stll contribute to C cyeling and natrient cycling, but harvesting
residue removes soil cover along with C and other nutrients.

Soils with poor aggregate structures exhibit less resitience against erosive forces
such as wind and water. In both tilled and not-tilled soils, residue harvest increased
the number of small aggregates susceptible to wind crosion (Singh et al., 1994 Malhi
et al, 2006; Singh and Malhi, 2006: Malhi and Kutcher, 2007; Malhi and Lemke,
2007). Blanco-Cangui and Eal (2007) also reported that removing wheat straw
reduced sotl aggregate strength compared o mudching. Tillage can increase erosion
through decreased aggregate stability and increased soil detachment. Conversely,
under some conditions, tillage can decrease soil loss by wind and water due to
mcreased water infiltration and soil surface roughness (Dabney et al.. 2004).

Fhe effect of interaction between tiflage and crop residue on soil loss by erosion is
compleand varies with soil properties such as moisture (Cogo et al,, 1982 Dabney
et al, 2004). Reduced tillage can provide more soil cover (Guy and Cox, 2002),
but residue removal can negate some of the benetits of reduced tittage. In both the
northern and southern ULS., removing corn residue from reduced-titl or no-till plots
can resultin sotl oss rates by water erosion similar to those for conventionally titled
soil with no residue removed (Lindstrom, 1986: Dubney et al.. 2004). In no-till soils,
the portion of standing residue refative o flat residue changes with time (Steiner et
al. 2000y, and this is expected to alter the effectiveness of remaining residues in
reducing wind and water erosion. McCool et al. (2006) noted that for small grains,
stems e the most important components for reducing erosion because they are
more resistant to degradation and relocation than feaves. Some studies suggest that
decomposition of corn residue over winter reduces cover by 200 1o 309 (Van Donk
and Skidmore, 2003 Wikson et al., 2008). Residue decomposition rates vary with the
chemical composition of plant materials, temperature, moisture, soil characteristics,
and placement (Paul, 1991).

AT e £ ¥
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The highly non-tincar nature of the erosion process and the simultancous int
tons of mumerous provesses make soil loss by erosion very difticult 1o predict
amount of soil lost by erosion is g complex function of mucro- and HHCrot
raphy. the energy of the wind or water impucting the soil, erodibility, and o
factors. Current models based on years of research indicate soil cover s 4 ar
determinant of soil loss by wind und water erosion tFigure 1.4) that varies with
types (Landstrom, 1986; Erenstein, 2002). Additional rescarch is needed to n
completely characterize the implications of biomass harvest on long-termi and .
sodic soil erosion in relation to biofuel production.

WATERSHED HYDROLOGICAL IMPACTS

Generally, much of the preceding material is based on studies of residue cover
affected by tillage practices (i.e., incorporation) rather than removal. Most of

work was done at plot scale. Extending this knowledge to include effects on witt
shed hydrology is difticult. Uhlenbrook (2007) stated that no research had been pt
lished on the impacts of biofuel development on watershed hydrology. It is critic
to develop an understanding of these Impacts as soon as possible and more clew
appreciate the differences between residue incorporation and removal in terms
their relutive effects on interacting C, nutrient. and water cycles.

As more land becomes dedicated 1o producing biofuel Crops, environment
impacts of associated land use conversions will depend on the nature and exte
of changes in land cover and vegetation management. Any change in land use wi
influence the pattitioning of precipitation into canopy niterception, overland oy
evaporation, transpiration, and deep percolation, along with accompanying hydr
logical consequences. In the tropics, land use may shift toward clearing of forew
and expansion of agriculioral areas with hydrological consequences that are i
ficult to model due to fimited datasets covering hydrology of tropical watershed
{Uhlenbrook, 2007),

In temperate zones, land use conversion for biofuel cropsamay expand perennia
cover at the expense of annual Crop cover. Short-rotation tree crops {Poplar or Saliy
or tll prairie grass species (switchgrass) can be highly productive in semi-arid 1
humid temperate climates. and probably require fewer nutrient inputs than annua
crops (Johnson et al. 20074y, Land cover conversions (o these perennial crops woule
Inerease transpiration and reduce overland fow (Rachmun ¢t al . 2004; pdegratty
etal 2004). and have been shown to sequester more sotl Cthan cornin highly fertile
sotls (Zan et al, 2000 This would benefit the hydrologic regimens of Midwestern
streams and rivers based on recent trends of ereasing precipitation amounts and
intensities that are predicted o continue {Nearing et al., 2004: Hadgkine et al..
2007).

Tor the extent that brocnergy feedstocks are derived from residues of annual Crops
such as corn, potential hvdrologic impacts mav lean toward greater fractions of pre-
cipitation ost via overland flow and less near-wurface soil moisture (Rhoton et al .
2002; Maontgomery. 2007, Tilluge practices that mcorporate residue were shown o
mcrease the overliand flow compaonent of stream discharge from small watersheds by
nearly S0% in one fong term (25-year) study (Tomer et al.. 2005) The difterences
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oceurred during Large cunfall events wp o 100 mm d )y and itermediate and small
runotfproducing events AUthe same time, watersheds with consery ation tlh TR
tems Tke ridge tills yickded greater basellow and total dische ree. and showed more
raprdrecovery from drought. The icrease i discharge was dbout 37 of the ol
hydrofogic budget. accompanicd by fess variation i streamilow. Consersy ation Gllage

resulicd m lower bulk denstties, greater SOM, and under wet soil conditions., greater

watter contents than conventionad tlage Clomer et al., 20061 Differcnces in hydrology
Trhety resalt frony the directmmpacts of <ot cover on water flow il changes maggre
sate stabihiny and mtiltration capacity. Stover remon al reduced siturated conductivity

on thiee Oho sorls (Blanco-Canqui et al., 2007y, and is expected to result m greater

overkind flow and decreased haseflow, Ensuring adequate pround cover follow ing
residue harvest iy be cnstical o mercase inhlration and reduce surtace runoft.
especrtly if chimate change ereases amounts and imtensiies of previpitation

INTEGRATION OF CARBON, NUTRIENT, AND WATER CYCLES

Removad of non-grain biomass sumultancously interacts with C.nuteient. micro-
climate, and hydrological cycles (Figure |8, Harvesting restdue i excess of
MSC will reduce SOC Excess harvesting Limits the organic material necded
tor sotl aggregation, making soil more susceptible to crosive forces. Removal
of bromass can fead to surface scaling of soil. reducing mfiltration and increas -
mg surface runoft. Surface runoft across unprotected soils removes top sorl and
the nutrients it contains. An influx of P and K into surface water promotes algal
blooms. cutrophication, and hy poxia (Kim and Dale. 2005). Over time, soil ero-
ston can result in exposed subsoil that typically is less fertile with fess SOM
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compiared o surface soil this mmpeding soil nutnent cvclg and devreasing
nutrient holding CApactts s AS aresult, additional MUFICIS are required 1o sup
port production,

Phe Lack of bionigss mputs decreases oil ama (Fables 13 through 13 and ca
tertere with nutrient cveling Retaiming biomass on the sarface can promaote infil
tration. reducing surface runoft. bt can imcrease the potential Jor feaching nutrients
such as nitrates into cround water. Surtuce residue heeps the soil sarface cooler,
slowing esaporution and promoting denurify ing conditions by extending the duration
of anacrobic soil conditions Ball etil 1999 Aulahh et al. 2001, Cooler surtace
soifcan delay germination and retard carly scason growth i regions with cool. wet
springs (Swan et ab, 1994, In warmer drier climates. the laek of surface COVeT pro-
mates water stress and decreases yield (Power of al 19%06: Wilhelm et al., 1986). The
nteractions of residue manigement with biological. chemical and physical processes
are compliciated by climatic factors and anagement practices. The Key s finding a
balunced non-grain biomass harvest approach tha SUPPorts sotl processes and con.
trols ¢rosion to mipimise potential negative eftects of non-gran biomass remos .

BIOMASS HARVEST: COMPENSATION STRATEGIES

Several strategies can i oid or reduce Joss of SOM and solve refated problems arising
from biomass harvest. Harvest rates should be Timited 1o those that mantiain SOM
and do not exacerbate erosion. Reducing or chiminating tillage utilizos renaining
residue as ground cover to reduce on wion I harvest rates exceed the amount necded
o provide adequate inputs for SOM. alternative inputs such as muanure should he
applied. In general. manures tend 1o increase SOC under a wide range of manage -
mentand climatic conditions (Johnson of alo 2007bL Animal manures contain 407,
10 60% € onu dn weight basis and can promote SOC sequestration dnd provade
nuteient inputs (CAST, 1992, Another strategy s plinting cover crops and living
mulches where crop residuces are han ested o prosent erosion and replace Cand N
remosed the residues (Zemenchik et al 20000 Drinhwater Snapp. 2007,

Other amendmens such s apphication of by-producis of cethulosic fermentation
contimimg Bigh henin concentiations rmproved sonl quahity characteristios in labo
fators studies dohnson ot al, 2004 Johnaon ctal, 200700 Nnothey by product s
hochar from g rolvas or pasiitcanon. Biochar has the potentid 1o cnhance plant
growth by sapplying znd FCLHIINY BUEricis s mmproving sorl physical and chen
wal propertics. Biocha M o renove pesticrdes or other pollutants from <ol
water (Glaser et ol 20020 T ehinm of al 2003 Lehmann of al. 2000 belimann
and Rondon. 2006, Compensation strategios will LA by managenment seaem ol

Hrabe recime, and stritbihiey of SEHeRy o Birnmge s oaeme

SUMMARY

Harvesting crap non SLHI Blomass nitiates o caseade of mterrelated brological.
chenncad and physical <ol cvents Bromass harvest has the patentiad (o disrupt ol
BOLECnt dy naniios, water relations, an other nportant ol processes Considerable

Ruoscledge evists ahog Warssto minamize the visks of Barsestime non-gram bromass,

o
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