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ABSTRACT

Crop residue is important for erosion control, soil water storage, filling gaps in various agroecosystem-based modeling, and sink
for atmospheric carbon. The use of remote sensing technology provides a fast, objective, and efficient tool for measuring and
managing this resource. The challenge is to distinguish the crop residue from the soil and effectively estimate the residue cover
across a variety of landscapes. The objective of this study is to assess a select Landsat Thematic Mapper (TM) and hyperspec-
tral-based indices in estimating crop residue cover and amount for both standing and laid flat, and between two winter wheat
(Triticum aestivum L.) harvest managements (i.e., stripper-header and conventional header) and fallow following proso-millet
(Panicum miliaceum L.) plots. The primary plots were located in Colorado with additional plots in eastern Montana, Oregon,
and Washington states. Data collected include hyperspectral scans, crop residue amount (by weight) and residue cover (by photo-
grid). Mean analyses, correlation tests, and spectral signature comparison show that the relative position of the crop residues
affected the values of some remote sensing indices more than harvest management. Geographical location did not seem to influ-
ence the results. There was not enough evidence to support the use of these indices to accurately estimate the amount of residue.
Hyperspectral data may deliver better estimates, but in its absence, the use of two or more of these datasets might improve the
estimation of residue cover. This information will be useful in guiding analysis of remotely sensed data and in planning data

acquisition programs for crop residue, which are essentially nonexistent at present.
q prog

C ROP RESIDUE IS an important agricultural C sink compo-
nent for greenhouse gas (GHG) mitigation. According to
Smich et al. (2008), there are three general mechanisms where
opportunity for GHG mitigation in agriculture is viable, namely,
reducing emission, enhancing removal and avoiding emission. The
use of crop residue falls in two of these chree mechanisms. Pacala
and Socolow (2004) and Caldeira et al. (2004), both identified
crop residue as a valuable, rapidly deployable option for GHG miti-
gation. The Intergovernmental Panel for Climate Change (IPCC)
derailed the large mitigation potential of agriculture for short and
medium term coming from C sequestration, and to a lesser. degree
from biomass (from agriculrural residues and dedicated energy
crops) for bioenergy feedstock (Smith et al., 2007). However,
measuring and validating crop residue is limited by measurement
uncertainty and monitoring costs (Smith et al,, 2007). In addi-
tion to the mechanistic variations in C sequestration processes,
agricultural systems inherently exhibit several sources of spatial
and remporal variability. Increasing the geographical extent and
employing remote sensing methodologies in field measurements
are some of the options being considered to help address these
challenges (Izaurralde and Rice, 2006; Smith et al., 2007). A
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review on the U.S. C sequestration research needs by Morgan etal.
(2010) identifies remote sensing as an important tool for quancify-
ing estimated C fluxes.

Whatever the focus, accurare measurement of the amount of
crop residue left in the field after harvest is important. There are
several methods to estimate crop residue. One method estimates
crop residue from measured yield darta for a location using the
harvest index (HI). For example, Johnson et al. (2006) used HI ro
estimate the crop residue and consequently historical C. Alchough
this method is useful for estimaring residue in cthe absence of addi-
tional data, accuracy is often questionable because this technique
does not incorporate variable harvesting and management prac-
tices and may differ depending on environmental conditions and
the time of harvest. Another method of estimating the crop resi-
due amount would be through conversion charts relating percent
crop residue cover to residue amounts (Sloneker and Moldehauer,
1977; Gregory, 1982; McCool et al., 1995). Adjustment factors
associated with tillage operations and implements used in the field
are available for wheat (Hickman and Schoenberger, 1989) and for
a few other crops (McCool et al., 1995; Kline, 2000).

Remote sensing techniques have been used for many years to
measure various agricultural resources at regional scales. Using
satellite and acrial images, landscape assessment can be quickly
achieved with minimal ficld sampling. Another advantage of using
remote sensing technologies is their capability of monitoring large
spatial extents in a relatively short span of rime, These tools offer

Abbreviations: ASTER, advanced spaceborne thermal emission and reflection
radiometer; an instrument sensor system on board Terra sacellite; CAL
cellulose absorption index; GHG, greenhouse gas; HI, harvest index; LAIL
leaf arca index; LCA, lignin—cellulose absorption index; NDIS, normalized
differential index 5; NDI7, normalized differential index 7; NDSVI,
normalized differential senescent vegeration index; NDTI, normalized
differential cillage indexi NDVI, normalized differencial vegeration index;
SWIR, shorewave infrared; TM, thematic mapper.
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convenience in data gathering and monitoring while reducing
the inherent bias in most rapid field survey data or estimates, for
example percent crop residue cover. Distinguishing crop resi-
dues from soils using remote sensing is a challenge because boch
materials lack unique spectral signatures in the 400 to 1100 nm
wavelength region widely used for remote sensing. They are often
spectrally similar, and may differ only in amplitude at certain
wavelengths. Complicating the challenge is that crop residues are
frequently brighter than the soil shortly after harvest, but as the
residues decompose they may become cither brighter or darker
than the soil (Nagler et al,, 2000). Thus, attempts to discriminate
crop residues from soils using Landsat TM bands has had mixed
success (Daughtry eral., 2005).

Several remote sensing spectral indices reported in che literature
are also used ro estimate residue cover. Derivation of these indices
is based on three general methods: broadband spectral normalized
difference indices, reflectance-band height indices, and spectral
angle methods (Serbin et al,, 2009). Indices using Landsac TM
bands, such as the normalized difference tillage index (NDTI;
van Deventer et al,, 1997), the normalized difference index 5 and
7 (NDI5 and NDI7, respectively; McNairn and Protz, 1993), and
the normalized ditferential senescent vegetation index (NDSVI;
Qi et al,, 2002) are examples of the broadband spectral category.
The lignin-cellulose absorption index (LCA; Daughtry etal,,
2005) and the cellulose absorption index (CAL; Daughtry eral,
1996) are examples of reflectance-band heigh indices category
which are both operating in the shorcwave infrared (SWIR)
region of the spectrum (700-2500 nm). Unfortunately, the
TM-broadband spectral indices are not robust across diverse
agricultural landscapes and only correlated to crop residue cover
for selected soil and crop residue combinations (Daughtryetal.,
2005; Serbin et al,, 2009). The LCA and CAl seem to work better
in distinguishing crop residue from many background soils (Serbin
eral,, 2009). No investigations have been reported relating all chese
indices to crop residue amounts.

Exploratory analysis of CAI measurement in the same region
(i.e., Pacific Northwest and the central and northern Great Plains)
shows that CAI values respond to increasing residue density
(Aguilar eral,, 2012). Though the coefficient of determination
was low (2 = 0.42), it was strong enough to indicate a relationship
berween CAl and residue density. Nagler etal. (2003) reported a
similar observation on the CAI when they were investigating the
performance of CAl against residue cover and density over black
soil. It is not surprising that indices such as these could relate to
abundance or absence of a particular material. The normalized
differential vegeration index (NDVT) derives a similar correlation
with che leaf area index (LAI) representing the amount of leaf
material in a given landscape. It could be argued that LAl and
NDV1 do exhibit chis relationship due to the vertical orientation
and stratification of the plant canopy. In many instances, stratifi-
cation in the crop residue is still evident in the field after harvest.
Relating postharvest crop cover ro residue density is nota new
principle. Gregory (1982) developed a logarithmic function that
accurately estimated percent residue cover from residue densicy
based on the premise that crop residues overlap each other.

There are several factors that spatially and temporally affect the
spectral reflectance of a given landscape. Presence, absence, and
abundance of a certain clemental composition; mineralogy or
chemical bonding; light intensicy and angle; absorptive, reflective,

and transmitrable features of the material; and moisture content of
the soil and residue are all factors that alter the spectral response of
a particular landscape. The objective of this study was to examine
the response of selected remote sensing indices in estimaring the
percent cover and amount of residue in a field harvested using
stripper-header and conventional header methods. The response of
CAL NDSVI, NDTI,NDI5, NDI7,and LCA with varying crop
residue orientation, amount, and condition were each investigated
as a measure of their capacity to quantify crop residue dcnsil.'y. The
ability to remotely measure crop residue amount or density in the
ficld will open more opportunities in resource management and
improve the accuracy of input parameters for various modeling
efforts and systems management.

MATERIALS AND METHODS
Field Data Collection

The study was primarily conducted in the study plots in Akron,
CO havinga winter wheat—sorghum (Sorghum bicolor L.)—proso
millet-fallow crop rotation with two harvcsting methods, conven-
tional sickle bar reel type header and a stripper-header (Shelbourne
Reynolds Engineering Led., Shepherds Grove, England). The
plots were in randomized complete block design with a splic-plot
added for this study. Main plot treatments were stripper header
and conventional header stubbles, and subplots were laid flat and
standing stubbles. Additional sampling and measurements were
also done in several wheat and durum (77 turgidum L.) experimen-
tal plots and farms across the northern Great Plains, the Columbia
Basin, and the Palouse region after harvest of the 2010 cropping
season. At least two conditions were measured: standing and laid
flac stubble., Laid flac stubble were either previously toppled by
passing tractor tires and implements or manually toppled before
the measurement (e.g, laying wooden board over the stubbles). A
third set-up, flailed stubble, found in the field was also measured.
Flailed stubbles are mechanically chopped down standing wheat
stubbles commonly practiced in che Pacific Northwest region.
Crop residues on the soil surface enclosed within two random
0.1 m? sampling rings were collected for each sampling location
in each plot. Measurements and sampling were conducted within
30 d after harvest or between Seprember to October 2010,

Reflectance measurements were conducted during clear sunny
days within the 4-h window centered on the local solar noon using
an ASD spectroradiometer (FieldSpecPro Full Range, Analyti-
cal Spectral Devices, Boulder, CO). The spectroradiometer was
capable of measuring the reflectance at 350 to 2500 nm wave-
length region with spectral resolutions of 3nm at 700nm band and
10 nm at 1400 and 2100 nm bands. The bare fiber fore optic of the
spectroradiometer and a 6.1 megapixel SLR digital camera (Nikon
Model D40) were aligned and mounted on a pole at 1.56 m above
the soil at a 0° view zenith angle which resulted in 2 0.69 m diam.
feld of view. For calibration, a 30-cm square Spectralon reference
panel (Labsphere, Inc., North Sutton, NH) was placed in the field
of view of the spectroradiometer at 0.34 m from the optical probe.
The spectroradiometer averaged 20 scans per sample reading and
multiple sample readings were acquired per plot by walking diago-
nally across the planted rows. For smaller plots, or subplots, data
acquisitions were made by slightly moving the field of view within
the experimental sctup. Simultaneous digital images were taken
by the digital camera on the scenes for comparison and additional
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analysis of percent cover. At least seven spectroradiometer and
digital images were taken per plot. _

The soil type in Akron, CO is Weld silt loam (fine, smectitic,
mesic Aridic Argiustolls). Other soil types include Dooley sandy
loam (fine-loamy, mixed, superactive, frigid Typic Argiustolls)
in eastern Montana, Walla-Walla Riczville silt loam (coarse-
siley, mixed, superactive, mesic Typic Calcidic Haploxerolls) in
norcheastern Oregon and Palouse silt loam (fine-siley, mixed,
superactive, mesic Pachic Ultic Haploxerolls) in southeastern
Washington. Spectral measurements were done when the soil
moisture at the surface (upper 3 cm) was <15% by volume. Soil
moisture was vertically measured by a Fieldscout time domain
refectrometry (TDR) 300 soil moisture meter (Spectrum Tech-
nologies, Inc., Plainfield, IL) ficted with 3.6-cm long rods.

Laboratory Analysis

The crop residue samples were dried in a forced-air convection
oven at 60°C for 5 d or until completely dried. The dry weight was
measured and the crop residue densicy was calculated by dividing
the dry weight by two times the ring area or 0.2 m?,

Soil reflectance spectra were acquired with the spectroradi-
ometer in a laboratory. The samples were illuminated by cwo
150-W tungsten-halogen lamps at 30° zenich angle 0.3 m away
from the target. The bare fiber optic was set at 0.3-m vertical
distance and 0° zenith angle which resulted in a 0.13-m diam.
field of view. Soil samples were prepared in 26-cm paper plates
painted flat black. Soils were passed through a 2-mm sieve and
evenly spread on the plate to a depth of 2 to 3 cm. Two to four
spectral measurements were made per sample, with the plate
rotated under the spectroradiometer setup berween samples. Soil
spectral signatures were compared before expanding the analysis
to other locations.

A randomly-selected digital photographic image of the
scenes in the field was cropped to match the field of view of the
spectroradiometer. Then, a regular 100-point grid was overlaid
on each image using Adobe Photoshop CS4 (v11.0.2 Adobe
Systems Incorpomtcd, San Jose, CA). Percent residue cover was
estimated by manually counting the number of points underlain
with crop residue as described by Laflen et al. (1981). A second
count was done by rotating che grid anywhere from 30 to 90
degrees to avoid having the grids in parallel wich the crop rows in
the photographic image. The average of the two counts was used
in the analysis.

R.Cﬂccta-ncc Valllcs WEre Cxﬂ'actcd me thl: mcasumd fﬁﬂﬂc—
tance measurement corresponding to each image. Remote sensing
indices were computed using the following equations (McNairn
and Prorz, 1993; Daughery etal,, 1996; van Deventer et al., 1997;
Qietal, 2002):

CAI=100(05 (R2.0 + R2.2) - (R2.1)] 1)
NDSVI = (TMS - TM3)/(TMS + TM3) 2]
NDTI = (TMS5 - TM7)/(TMS + TM7) (3]
NDIS = (TM4 -TMS)/(TM4 + TMS5) (4]
NDI7 = (TM4 - TM7)/(TM4 + TM?7) 5]
LCA = 100 2 (A6) - (A5 + A8)] [6]

where

R2.0 = average reflectance at 2025 to 2035 nm band centered
ar 2000 nm

R2.1 = average reflectance ar 2095 to 2105 nm band centered
at 2100 nm

R2.2 = average reflectance ar 2205 to 2215 nm band centered
ar2210 nm

TM3 = average reflecrance at 630 to 690 nm band
corresponding to TM band 3

TM4 = average reflectance at 750 to 900 nm band
corresponding to TM band 4

TMS = average reflectance at 1550 101750 nm band
corresponding to TM band 5

TM7 = average reflectance at 2090 to 2350 nm band
corresponding to TM band 7

AS = average reflectance ar 2145 t0 2185 nm band
corresponding to Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER)
sensor’s band 5

A6 = average reflectance at 2185 to 2225 nm band
corresponding to ASTER sensor’s band 6

A8 = average reflectance at 2295 o 2365 nm band
corresponding to ASTER sensor’s band 8

Statistical analyses were performed using SAS software (Ver. 9.2 SAS
Instituce Inc., Cary, NC). Most of the analyses were performed using
the PROC MIXED model statement. For example, in the Colorado
plots, four replications were available and used with management
rype as the whole plot and stubble treatments as the subplot. PROC
CORR statement was used to derive the correlations. Least Signifi-
cant Difference (LSD) at & = 0.01 was che basis in comparing the
means of different parameters. Tests of fixed effects were employed

in comparing the means at different locations.

RESULTS AND DISCUSSION
Comparison of Means

The selected remote sensing indices had mixed responses on the
different management and treatment of crop residues (Table 1),
Mean values of residue cover for all management and treatment
were not significantly different from each other as measured by
photo-grid method. However, four of the indices were able to sepa-
rate standing scubble from laid flar stubble. Apparently, existing
planc litter was sufficient chat wheat stubble did not significantly
change the percent coverage as measured with the photo-grid
method. The stripper-header harvest left significancly higher
stubble amount (~20% by weight) than conventional manage-
ment. The difference is due in part to the higher amount of partly
decomposed plant material on the ground from previous cropping
season on stripper-head harvested plots. Only the NDTT index
showed a significant difference for the two harvest management
scenarios,

Surprisingly, despite almost equal values of residue cover and
density on both treatments, thus equivalent responses were
expected, four of six indices showed significant differences in
cheir index values. The CAI, NDIS5, and NDI7 had higher index
values for laid flat stubble chan standing stubble. The NDTT and
LCA did not show any significant difference, The NDSVI, on the
other hand, exhibited higher index value for standing stubble. It
should be noted that NDSVI was the only index using the shortest
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Table |. Comparison of mean indices to residue cover and amount according to management, treatment, and crop and its combi-

nations.
Residue Residue
Treatment group N cover density CAlt NDSYI NDTI NDI5 NDI7 LCA
% Mg ha~!
New harvest only
Management}
Stripper-head (SH) 8 74.1a§ 6.18a 8.3a 05la 0.060a -0.334a -0.28a -1.85a
Conventional {C) 8 8l.ta 4.82b 7.9ab 0.50a 0.016b -0.336a -0.32a -5.59ab
Treatment
Standing (S) 8 778a 5.50a 7.1b 0.56a 0.042a —0.387b -0.35b ~2.56a
Laid flat (L) 8 77.4a 5.50a 9.1a 0.45b 0.034a -0.282a ~0.25a —4.87a
Combination
SH xS 4 67.1b 6.18a 6.7b 0.56a 0.060a -0.388b —0.34c -1.6la
SH x L 4 81.0ab 6.18a 9.9a 0.46b 0.061a -0.27%9a -0.22a ~-2.0%9a
Cix's 4 87.8a 4.82a 7.4b 0.55a 0.025ab ~0.386b -0.36¢c -3.52ab
CxL 4 74.5ab 4.82a 8.3ab 0.45b 0.007b -0.287a -0.28b -7.66b
Fallow only
Management %
SH 4 77.8a 3.93bc 7.4ab 0.50a -0.018c -0.332a -0.35a -7.75bc
C 4 73.3a 3.49¢ 6.0b 0.48a ~0.044¢ -0.312a -0.35a -11.8¢c
Standing
Management
SH 8 724a 5.05a T.la 0.53a 0.021a -0.360a —-0.34a . —4.68a
e 8 80.5a 4.16a 6.7a 0.52a -0.010a . —0.348a -0.36a -7.68a
Crop
Wheat (W) 8 77.4a 5.50a 7.la 0.56a 0.042a -0.387b -0.35a -2.56a
Fallow (F) 8 75.5a 371b 6.7a 049b -0.031b -0.322a -0.352  -9.80b
Combination
SH x W 4 67.1a 6.18a 6.7ab 0.56a 0.060a -0.388b -0.34a -l.6la
SH x F 4 77.8a 3.93b 7.4a 0.50b -0.018b -0.332a ~0.35a ~7.75bc
CxW 4 87.8a 4.82ab 742 0.55a 0.025a -0.386b -0.36a -3.52ab
CowR 4 73.3a 3.45b 6.0b 0.48b -0.044b -0.312a -0.352a -1 1.85¢

t CAl, cellulose absorption index; NDSVI, normalized differential senescent vegetation index; NDTI, normalized differential tillage index; NDIS, normalized differential

index 5; NDI7, normalized differential index 7; LCA, lignin—cellulose absorption index.

$ The means of new harvest and fallow managements groups were compared and are reflected by the letters following the values.
§ Within each column and group, values followed by the same letter are not significantly different at « = 0.05 using the LSD test,

wavelength at TM3, the visible red band, which is intended for
chlorophyll content estimation. There is, however, no indica-
tion that chlorophyll was active in the scenes, The response of
the indices to the treatment and management combinations was
apparently influenced more by the stubble trearment than harvest
management and it did not necessarily reflect the variations in
the residue cover and density. In general, CAI, NDIS5, and NDI7
exhibit higher index values for laid flat stubble than standing
stubble regardless of harvest management. This is apparently due
to angle of reflectance since laid flat scubble have more surface
area facing the spectroradiometer than the standing scubble.
The NDSVI resules were opposite of this general pattern and
NDTI showed lower index values for conventional management
scenarios. Another plausible explanation for this observation is
the interaction of the soil in the scenes. Indices that have SWIR
reflectance bands, such as NDTTand LCA, were well correlated

with residue cover in laid fac treatments as shown in Table 2. The
influence of soil and minerals in the SWIR are diminished when
covered with crop residues.

Comparison of fallow to the newly harvest plot data showed a
remarkable decrease in residue density but not in the residue cover.
Other than the partly decomposed crop residue on the ground, fal-
low plots also had a considerable amount of weeds, both growing
and dead, that partly contribured to the statistically insignificant
difference in residue cover. Residue density was not significantly
different since the presence of weeds was not sufficiently dense to
contribute significantly to the measured amount of biomass in the
plots. Ofall the indices, LCA and NDT] responded to the change
in residue density wich a stacistically significant decrease in their
respective index values. Conventional management had slighly
lower residue density and corresponding CAL NDSVI, NDTI,
and LCA values than stripper-header management. Apparently,
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Table 2. Pearson correlation tests for each index with percent residue cover

Cover vs.
Location Crop Management Treatment N CAIlt NDSVI NDTI NDIS NDI7 LCA
co both both standing 16 0.76%* ns} ns ns -0.47 ns
both laid flat 8 0.82* 0.89+ 0.75* ns ns 0.83%
both stripper-head both 12 0.50 -0.58* ns 0.51 ns ns
conventional both 12 ns 0.61* 0.52 -0.53 ns ns
wheat both standing 8 ns ns -0.79% ns ns ns
both laid flat 8 0.82* 0.8+ 0.75% ns ns 0.83%*
wheat both both 16 ns ns ns ns ns ns
fallow both both 8 ns ns ns ns ns ns
Other wheat both standing 7 ns ns ns ns ns ns
both laid flat 8 ns ns ns ns ns ns
All both both standing 23 ns ns ns ns ns ns
both laid flat 18 ns ns 0.7 % 0.44 0.62+ Q.79+
both stripper-head both 15 ns -0.59* ns 0.72% 0.66%* ns
conventional both 26 0.40% ns 037 ns ns 0.43*
wheat both standing 15 ns ns ns ns ns ns
both laid flat 18 ns ns 0.7 [Hoes 0.44 0.62+* 0,794

*0.05 level of significance (n = 0.1),
** 0,01 level of significance (o = 0.1).
***0.001 level of significance (o = 0.1).

t CAl, cellulose absorption index; NDSVI, normalized differential senescent vegetation index; NDTI, normalized differential tillage index; NDI5, normalized differential
index 5; NDI7, normalized differential index 7; LCA, lignin—cellulose absorption index; CO, Colorado.

% ns, not significant.

this is due to accelerated decomposition of the conventional har- NDIS was negatively correlated and the differences in other indi-
vest stubble compared to the stripper-header plots. The significant ces were barely consistent.
decrease in the LCA values partly reflected the decomposition A noteworthy observation was the differences in reflectance
process whereby plant structures, for example, hemicellulose, cel- behavior of laid flat stubble compared to fallow. From 500 to 1800
lulose, and lignin, responsible for the reflectance absorption at the nm, laid flat scubble had higher reflecrance than fallow, but the par-
2100 nm, were continually being depleted in the different scenes. tern inverted after the 2025 nm wavelength (Fig. 1). Compared with
This residue decomposition was also evident in CAI bur was not fallow, laid flat stubble reflectance dipped significantly at the 2100
statistically significant. Daughery et al. (2010) reported that for a nm wavelength, which corresponded to the previously observed
79 decomposition-day-old residue, CAI could be underestimated wavelengths for cellulose and lignin absorprion (Daughtry, 2001).
by as much as 21% of its true percent residue cover value. The This indicated that the relative abundance of plant structural materi-
NDTI measured reflectance near this 2100 nm band, but not as als is expected to be much higher shortly after harvest than in fallow.
narrow or as specific as the bands used by the LCA and CAL It was observed in the field char standing stubble inhibited opti-
Reorganizing the parameters to consider only standing scubble mal reflection of the light compared wich laid flat stubble. Higher
areas in comparing stripper-head with conventional harvest for than conventional harvest stubble also increased the potential for
both fallow and newly harvest wheat plots reaffirmed some initial casting shadows in the targer scenes. This would partly explain why
observations. In these cases, residue cover was not significantly three of six indices had significantly higher index values for laid
different regardless of harvest management, crop condition (i.c., flat compared to standing stubble despite almost identical values
freshly harvested wheat or fallow) or the combination of both. of residue cover and density. Inspection of the spectral responses
However, residue density was significancly different in a fallow of the different serups (Fig. 1) further supported this observation.
field that was either harvested as stripper-header or conventional. Standing stubble had lower reflectance throughout the measured
Ofall the indices, only NDI7 did not show any differencesin all wavelength than laid flac scubble. The same principle was possibly
setups. The NDSVI,NDTI, NDIS, and LCA showed significanc responsible for che higher reflectance in the fallow plots compared
changes corresponding to the changes in the residue densiry, to standing wheat plots. Though the fallow plots were generally
although NDIS'’s values were negatively correlated to the residue considered to have standing stubble, much of the stubble was
density changes. The CAI did not detect change between fallow actually lying on the ground due to parrial decomposition and
and whear treacments, However, CAL NDSVI, NDTI,and LCA from other environmental elemencs. At this stage, the difference in
did show significant changes in the combination of serups atcribut- harvest management is indistinguishable in the spectral signatures.
able to the residue density changes. It appears that residue density Its relative dryness compared to the newly harvested stubble could
was not the only factor thac interacted with the indices because also have been responsible for chis effect. A similar comparison

could be noted on the conventional and stripper-header setup
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Fig. |. Field spectral responses of the different setups with the relevant bands on the foreground.

where the conventional had higher reflectance especially in the
SWIR region (1400-2500 nm). Conventional harvests tended to
leave the crop residue or stubble laying on the ground, which was
not the case for the stripper-header harvests.

From these observations, it became more apparent why indices
based on broad TM bands showed mixed results in characterizing
crop residue lying on the ground. For example, the TM7 band was
o broad and off to effectively detecr the presence or absence of
certain plant materials, that is, cellulose and lignin at the selected
wavelengehs, The reflectance behavior in visible, near infrared, and
portions of the SWIR bands were similar to the crop residue values
and were cherefore difficult to differentiate from the soil. On the
other hand, the narrow bands used in CAI were not performing
well in response to the different scubble treatments, Several stud-
ies have reported that CAI outperformed indices based on TM
bands in distinguishing crop residue against different factors, such
as background soil color (Serbin et al., 2009), age of crop residue
(Daughtry eral., 2010), and residue moisture content (Nagler
cral, 2000, 2003; Daughery cr al, 2004), There is not enough
evidence to support that CAI have outperformed the other indices
on che harvest management and stubble treacments.

Means by Location

Soil spectral signatures of the sites were not very different from
each other (Fig, 2) facilicating the comparisons of means among loca-
tions. The means analysis expanded to three more locations showed
that the different treatment (i.e., standing and laid flac stubbles) was
the prevailing factor influencing changes in the index values (Table
3). Considering conventional harvest only, Type 3 tests of fixed
effects showed two parameters, treatment and the combination of
treatment and location, were statistically significant to residue cover
aca = 0.01. Of the indices, only CAI was significant tied to both
parameters. This result suggested that CAI could estimate residue
cover across the given location, but not residue density.

From the combination parameter, it appears that the flailed plot
has the highest (or lowest in the case of NDSV1) value across all
indices. At this point we could only speculate that this observation
is brought about by high residue density, although it could also
be due to residue cover. The mixed model produced nonestimable
results in comparing the locations possibly due to inadequate
number of samples (Sjoberg, 1995; Gao et al,, 2008; SAS, 2011),
and therefore it is difficult to derive conclusive statements.

Similar to conventional harvest, stubble treatment on stripper-
headed plots was the more dominant factor in the index values
rather than locarion. Tests of fixed effects find NDI7 to be
statistically significant parameters in modeling the trearments. If
combined with location, CAL, NDSVI, and NDIS were showing
significant effect. Among the indices, only NDI7 showed signifi-
cantly different index value for the treatment despite a relatively
similar crop residue cover and density. The combination of location
and treatment shows no consistent observable results,

Correlations

Correlation of the various indices (i.e., CAI, NDSVI, NDT],
NDI5, NDI7,and LCA), residue cover, and residue density against
each other (Table 2) revealed some contrasting responses. For the
Colorado plots, only CAI and NDI7 was correlated to residue
cover for standing stubbles. However, for laid flat stubbles che
CAIL NDSVI, NDTI, and LCA were all significantly correlated
to residue cover (Table 2). This is another instance where more
indices respond or correlates well to residue cover if they are lying
on the ground. But when fallow plots are removed from the stand-
ing treatment datasct (i.c., wheat, both management and standing
treatment), NDTI responds with negative correlation to residue
cover. Conventional harvest management shows more indices (i.c.,
NDSVI, NDTI, and NDIS) to be correlated than the stripper
head management (i.c., CAL, NDSVI, and NDIS5), Expanding the
daraset to include other locations shows a similar trend. More indi-
ces with significancly higher correlations show on laid flat stubbles
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Fig. 2. Spectral signatures of the soil types in the sampling areas measured in the laboratory.

Table 3. Comparison of mean indices to residue cover and amount according to harvest management, location, treatment, and its
combinations.

Residue Residue

Treatment group N cover density CAlf NDSVI NDTI NDI5 NDI7 LCA
% Mg ha™!
By location conventional harvest

Treatment k= ¥
Standing (5} 11 78.8a§ 6.79a 4.5b 04la 0.148a -0.22a -0.08a 4.64a
Laid flat (L) I 84.6a 7.05a 6.1a 0.35b 0.140a -0.18a -0.04a 491a
Flailed

Combination t ks k4 %
COxS§ 4 87.8ab 4.82a 6.6ab 0.53a 0.091be -0.36d —0.28¢ 2.62bc
COoxL 4 74.5b 4.82a 6.1abc 0.43b 0.073¢ -0.26c -0.19bc 096 ¢
MT % § 2 68.1b 2.7% 3.8bc O.44abc  0.13labc —0.25abcd -0.13abc 5.64ab
MT x L 2 85.9ab 3.86a 4.6bc 0.43ab 0.155ab —0.22bc —-0.07ab 5.73a
OR % § 2 72.0ab 10.26a 3.3c 0.29cd 0.19a -0.11ab 0.08a 4.81ab
OR x L 2 82.3ab 10.26a 6.0abc 0.25d 0.184a -0.10ab 0.08a 6.46a
WA x § 3 87.3ab 9.28a 42bc 0.37d 0.179a —0.17abc 0.0la 5.49a
WA % L 3 95.92 9.28a 7.5a 0.28bcd  0.15ab -0.13ab 0.02a 6.50a
OR x Flailed | 100.0ab 13.63a 8.5a 0.23d 0.196a —0.06a 0.14a 7.04a

By location stripper-head harvest

Location
co 8 74.1a 385 6.0a 0.49a 0.125a —0.31a -0.1%a 3852
MT 3 90.8a 5.93a 6.2a 04la 0.173a ~0.20a -0.04a 593
Treatment % i 4
Standing(S) 5 78.2a 451a 6.la 0.45a 0.138a -0.28a -0.15b 45la
Laid flat (L) 6 86.6a 5.27a 6.2a 0.45a 0.161a -0.24a -0.08a 5.27a
Combination $ 4 3 ¥ t
CO xS 4 67.1b 3lla 4.6b 0.53a 0.124a -0.37b -0.25b 3lla
COxL 4 81.0a 4.60a 74a 0.44b 0.126a -0.26a —0.13a 4.60a
MT x5 | 89.3a 5.92a 7.5ab 0.35¢ 0.152a -0.19a -0.05a 5.92a
MT x L 2 92.2a 5.94a 49b 0.46b 0.195a -0.22a -0.02a 5.94a

+ CAl, cellulose absorption index; NDSVI, normalized differential senescent vegetation index; NDTI, normalized differential tillage index; NDI5, normalized differential
index 5; NDI7, normalized differential index 7; LCA, lignin—cellulose absorption index; CO, Colorado; MT, Montana; WA, Washington.

 Denotes significance on tests of fixed effects for the parameter.
§ Within each column and group, values followed by the same letter are not significantly different at « = 0.05 using the LSD test.
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than on standing stubbles. Almost the same number of indices
was evident for stripper head and conventional management, but
the index (i.c, NDSVI, NDIS, and NDI7) values have slightly
higher correlation and significance for stripper-head management.
Interestingly, NDT1 and LCA are negatively or not correlaced
atall to standing stubble but when the stubble is lying down the
correlation is positive. As explained eatlier, this may be due to the
interaction of soil in the SWIR band.

The correlations of the indices with residue density was barely
evident in the Colorado plots, rather most were significant when
all locations were considered (Table 4). This could be partly acerib-
uted to an increase in the number of samples when all locations are
considered. The CAI was negatively correlated to residue density
for standing whear stubbles when with other locations. Most of
the broad band indices (i.e., NDSVI, NDTI, NDIS, and NDI7)
showed highly significant positive correlations (>0.50) with residue
density for the combined locations except for stripper head set-up.
The NDSVI exhibited negative correlation on all setups for the
combined locations, but was positively correlated when the loca-
tion was Colorado only. The NDIS shared a similar but opposite
trend with the NDSVI correlations. The LCA was positively
correlated to all but one setup in the combined locations, and for
a couple more setups in the Colorado plots. In general, there was
no definite trend in the correlarion of indices to residue density
whether the stubble was lying or standing. Low or insignificant
correlation existed when the harvest management was stripper
head. Percent residue cover and residue density were correlated in
only two of the setups, which are positively correlated to lying-
down stubbles in the combined locations.

Results of these correlations were by themselves inconclusive.
‘This was because the plots and the sampling designs used in this
study were not meant for correlating different residue cover condi-
tions. There were, however, a few valid observations deduced. The
CAland LCA were correlated more to residue cover than for
residue density. Broadband indices show good correlations for resi-
due density, especially across locations and when there were more
samples, but usually fails when the scene was stripper-head har-
vested. One caution in using broadband indices is its inconsistent
shifting from positive to negative correlation across serups. The
interactions between the indices and the different setups shown
by this research are reasons enough ro justify more investigations
on this marrer. The given scenarios are particularly importanc if
remote sensing acquisition will be done after harvest where most of
the stubble is left standing and mixed scenes cannot be ignored.

CONCLUSIONS

Placement and relative position of the crop residues atfected the
values of some remore sensing indices more than the influence of
the amount of residue on the ground than had been previously
hypothesized. From the results of this experiment, it was apparent
that the presence of crop residue lying horizontally on the ground
could increase the reflectance measurement on a given scene for
most indices. This was evidenc in che laid flat vs. standing stubble,
stripper-head harvest vs, conventional harvest, and fallow fields
with considerable residue lying on the ground vs. newly harvested
field with mostly standing stubble. There was not enough evidence
to support the use of remote sensing indices meant ro estimate the
percent cover of crop residue to accurately estimate the amount of

Table 4. Pearson correlation tests for each index with residue density.

Location Crop

Management Treatment N CAlt

co both both standing 16 ns
both laid flat 8 ns
both stripper-head both 12 ns
conventional both 12 ns
wheat both standing 8 ns
both laid flat 8 ns
wheat both both 16 ns
fallow both both 8 ns
Other wheat both standing 7 -0.74
both laid flat 10 ns
All both both standing 23 -0.44
both laid flat 16 ns
both stripper-head both 16 ns
conventional both 25 ns
wheat both standing 15 ~0.70%
both laid flat 16 ns

Residue density vs.
Residue

NDSVI NDTI NDIS NDI7 LCA cover
0.62%* 0.66%* -0.58* ns 0.58* ns
ns ns ns ns ns ns
ns 0.61% ns ns 0.53 ns
ns ns ns ns ns ns
ns ns ns ns ns ns
ns ns ns ns ns ns
ns ns ns ns ns ns
ns ns ns ns ns ns
ns 0.85*% 0.68 074 ns ns
—0.77% ns 0.79* 0.78* ns ns
-0.53** 0.75%+¢ 0.58%+* 0.7+ 0.63% ns
—0.75%* 0.56* 0.74%=* 0.73% 0.46 047
ns ns ns ns ns ns
0.7 | 0,77+ Q.74 0.80=+* 0.63%+* ns
-0.58* 0.73% 0.62% 0.66** 0.58* ns
-0.75%* 0.56* 0.74%= 0.73*= 0.46 0.47

* 0,05 level of significance (o = 0.1).
**0.01 level of significance (o = 0.1).
***0.001 level of significance (« = 0.1).

t CAl, cellulose absorption index; NDSVI, normalized differential senescent vegetation index; NDTI, normalized differential tillage index; NDI5, normalized differential
index 5; NDI7, normalized differential index 7; LCA, lignin—cellulose absorption index; CO, Colorado,

 ns, not significant,
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residue. Resules among indices lack consistency across the treat-
ments. This warrants more investigations especially in probing the
spectral responses and improving the response of the indices to
residue density. Meanwhile, definite relationships berween percent
cover and residue density exist and could be computed separately.
Estimaring percent residue cover on a regional scale wich fields
harvested with both conventional and stripper-head methods could
pose additional prediction uncertainty. Thus, spot validation of
residue levels on representative fields should accompany such remote
sensing activitics to reduce the inaccuracies brought about by the dif-
terences in the position and placement of crop residues. The extent
of disparity in index values is affected by many factors other than
residue placement and position, but being aware of these possible
complications is valuable informarion for resource management.
Result of this study showed that multispectral remore sensing
show some capability of quantifying crop residuc cover, but not
density, in the field with varying harvest and stubble conditions.
Hyperspectral images could deliver better estimates, but the short-
age of platforms and sensors inhibit the use of such daraser. Broad
Landsat TM and Aster bands could be used in some instances.
‘There are minimal significant developments in putting into orbit
sensors that address this need. The use of two or more datasets
could possibly improve the accuracy of estimation. Future research
on this area should focus on developing other indices primarily
aimed at quantifying the amount of crop residue. These data are
needed in many emerging and existing studies in C, agroecosys-
tem, and earch systems modeling, but data acquisition programs
are minimal to nonexistent (Nowak, 2009; Horowitz et al., 2010).
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