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Fallow Effects on Soil

David C. Nielsen and Francisco J. Calderén

Fallow has been defined as a farming practice wherein no crop is grown and all plant growth is
controlled by cultivation or chemicals during a season when a crop might normally be grown.
(Haas et al,, 1974). Fallow as a practice, associated with crop rotation, had its origins in Mediterra-
nean agriculture (Karlen et al, 1994) and continues to be used throughout the semiarid and arid
regions of West Asia and North Africa (Ryan et al., 2008). Additionally, summer fallow has been
practiced widely across the 15 western states of the United States and the farmed areas of the prai-
rie provinces of Canada in response to widely varying precipitation from year to year. For example,
precipitation in any given year for a specific site in the central Great Plains region of the United
States may range from double to less than half of the long-term average (Greb et al., 1974).

The primary reason for summer fallow is to stabilize crop production by forfeiting produc-
tion in one season in anticipation that there will be at least partial compensation by increased
crop production the next season. Summer fallow was almost universally adopted in the semi-
arid U.S. Great Plains in response to the 1930s dust bowl, higher wartime prices, and much
improved tractor power systems and implements needed to control weeds during fallow (Greb,
1979). Other objectives of fallowing are to maximize soil water storage through improved water
intake, snow trapping, and decreased evaporation; maximize plant nutrient availability; mini-
mize soil erosion hazards; and minimize energy and economic inputs (Greb, 1979). Soil texture
determines water holding capacity, thereby influencing how well fallow can buffer the influence
of variable growing season precipitation on crop yield.

Fallow systems in semiarid regions can vary in fallow frequency (one crop in 2 yr, two crops in
3yr, three crops in 4 yr, etc)), with the more frequently cropped systems generally producing more
surface crop residues (Cantero-Martinez et al,, 2006). Crop residue produced degrades over the fal-
low period at varying rates depending on the weed control methods used and climatic conditions.
Fallow systems vary in intensity of tillage needed to control weeds during the noncrop period, and
include maximum tillage (plowing and harrowing), conventional bare fallow (shallow disking and
rod-weeding), stubble mulch (undercutting), minimum tillage (combinations of residual and con-
tact herbicides with subsequent tillage), and no-tillage (use of only herbicides to control fallow weed
growth). Tillage knocks down, cuts up, and incorporates standing and flat crop residue, facilitating
organic matter mineralization by bringing together substrates, microbes, water, and oxygen. The
various combinations of fallow frequency, tillage, and chemical weed control have effects on sut-
face soil residue quantity, orientation, and duration, which subsequently affect surface soil organic
matter content, soil physical structure, precipitation storage, nutrient availability, microorganisms,
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erosion potential, and ultimately, crop pro-
duction. This chapter reviews results of some
of the past research conducted to determine
the effects of varying methods of fallow on
these parameters.

Effects on Organic Matter
Soil organic matter (OM) is a key indica-
tor of soil quality as it influences biological
activity, serves as a nutrient reservoir, and
impacts soil aggregation (Doran and Par-
kin, 1996; Wienhold et al., 2006; Ryan et al,,
2008). Rasmussen and Collins (1991) stated
that soil OM assumes a pivotal role in
semiarid rainfed areas because of its dispro-
portionate influence on water and nutrient
availability and on yield stability. Cropping
systems that employ fallow generally have
negative impacts on soil OM due both to
decreased crop residue production and due
to tillage used for weed control during the
fallow period (Biederbeck et al., 1984; Camp-
bell and Souster, 1982; Campbell et al,, 2000;
Mikha et al., 2006; Rasmussen and Collins,
1991; Rasmussen and Parton, 1994; Peterson
et al, 1998; Ryan and Pala, 2007; Williams,
2004). When sod was broken and placed into
a wheat (Triticum aestivum L.)-fallow rota-
tion at Sidney, Nebraska, OM declined by
20% for no-till, 25% for mulch till, and 37%
for plow till in just 16 yr (Follett and Schimel,
1989). Golchin and Asgari (2008) concluded
that frequent tillage and use of a summer
fallow—small grain system in northeast Iran
caused soil quality to deteriorate through
decreased soil organic C and increased
erosion as structural stability declined.
However, Williams (2008) showed that the
typical decline in soil organic C in a tilled
winter wheat—fallow system in north-cen-
tral Oregon did not occur with applications
of manure containing 145 kg N ha™ per crop.

Annual cropping produces more crop
residues than systems employing fal-
low and can gradually restore some of the
organic matter lost in fallow systems. Bow-
man et al. (1999) and Ortega et al. (2002)
reported increases in total soil organic C
and N in the 0- to 5-cm depth, as fallow
frequency decreased for dryland cropping
systems in northeast Colorado. Similar
increases in total organic C and N were
reported by Campbell et al. (1999) for the
0- to 7.5-cm layer due to increased cropping

intensity after 12 yr when comparing spring
wheat-fallow to continuous spring wheat
in southwestern Saskatchewan. Addi-
tionally, Bowman et al. (1999) found that
particulate OM-C doubled and particulate
OM-N and soluble organic C increased by
one-third when a cropping system moved
from wheat-fallow to continuous cropping,.
Pikul and Aase (1995) also reported signif-
icantly greater soil organic C in the 0- to
12-cm layer in an annual spring wheat sys-
tem compared with a wheat-fallow system
in Montana, and attributed the difference to
40% less crop residues returned annually to
the soil in the wheat—fallow system. Mikha
et al. (2006) found that tillage reduction
and elimination of fallow increased total
soil organic C in the 0- to 7.5-cm depth at
four Great Plains locations extending from
Bushland, Texas to Swift Current, Saskatch-
ewan. Wood et al. (1991) reported a similar
increase in soil organic C in response to a
reduction in tillage and elimination of fal-
low. Ryan et al. (2008) found that soil OM
levels in Syria were increased when fallow
in a wheat-fallow cropping system was
replaced with a crop (particularly a legume)
and when N fertilizer was added, presum-
ably in response to increased amounts of
biomass produced.

Reducing tillage can likewise result
in higher OM levels (Havlin et al, 1990).
Halvorson et al. (1997) found 9% higher total
C and 19% higher total N in the 0- to 2.5-cm
soil layer of a no-till wheat-fallow system
in northeastern Colorado compared with
a conventional till wheat—fallow system 22
yr after implementation of the two systems.
In a wheat—sorghum [Sorghum bicolor (L.)
Moench]-fallow study in the Texas Panhan-
dle, Unger (1991) reported a nonsignificant
tendency for the no-till system to have
higher OM levels than the stubble mulch till-
age system 6 to 8 yr after the systems were
established. Doran et al. (1998) reported that
fallow tillage management practices greatly
influenced the content and distribution of
OM in the soil, with both organic C and N
declining by 35 to 40% in the 0- to 7.6-cm
layer following plowing of a native sod site
in western Nebraska. They attributed the
changes to (i) redistribution, mixing, and
dilution with depth due to tillage; (ii) biolog-
ical oxidation of soil OM (Doran and Smith,
1987); (iii) reductions in C and N inputs to
soil due to changes in plant inputs due to
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crop and fallow management; and (iv) ero-
sion loss from and deposition on surface
soil. Losses of surface soil C and N are gen-
erally greatest during the first 8 to 10 yr after
sod is cultivated, although losses continue
to occur at a slower rate thereafter (Peterson
and Vetter, 1971; Campbell et al.,, 1976). The
generally moist, warm late spring and early
summer periods in the central Great Plains
create favorable conditions to decompose
soil OM (Bowman et al., 1999), and those
favorable conditions are enhanced by tillage
operations (Doran et al,, 1998).

Effects on Soil
Physical Structure

Tillage for weed control during the fallow
period is reported to have varying effects
on the soil bulk density in the surface layer.
The lack of a consistent response of bulk
density to tillage in fallow systems may be
attributable to amount of time and precip-
itation between tillage and sampling, type
of tillage (disk vs. sweep vs. plow), depth
of tillage, and soil type (Mikha et al., 2006).
Results also vary with sampling depth. Gen-
erally, tillage will decrease bulk density in
the tilled soil layer. However, tilled soil may
eventually reconsolidate due to gravity, pre-
cipitation, and traffic. Mielke and Wilhelm
(1998) found a bulk density of 1.19 Mg m™
in the 0- to 7.6-cm layer of a silt loam soil
in western Nebraska that had been plowed
during the fallow period of a wheat-fallow
system compared with a bulk density of 1.27
Mg m™ for the system under no-till man-
agement. Halvorson et al. (1997) reported
greater bulk densities in no-till vs. conven-
tional till wheat-fallow after a 15-yr study
comparing the two systems in northeastern
Colorado. Those differences were seen at all
sampling depths from 0 to 20 cm, with the
greatest difference (17% higher bulk den-
sity in no-till) occurring in the 2.5- to 5.0-cm
depth interval. Mielke et al. (1986) reported
no difference in bulk density in the 0- to
7.5-cm layer of an Alliance silt loam (Aridic
Argiustolls) in western Nebraska due to till-
age in a wheat—fallow system 8 mo after the
tillage occurred. On the other hand, they
reported lower bulk density under no-till for
a Duroc loam (Pachic Haplustolls). Mielke et
al. (1984) and Unger (1991) reported no effect
of tillage treatments on bulk density, while

Unger and Fulton (1990) found greater bulk
density under conventional stubble mulch
tillage than under no-till in the 4- to 7-cm
depth. Pikul and Aase (1995) analyzed the
combined effects of tillage and cropping
intensity on bulk density in northeast-
ern Montana. They found that after 9 yr of
cropping, the spring wheat—fallow conven-
tional till system had higher bulk density
in the surface to 12-cm layer than in either
the annual spring wheat no-till system or the
annual spring wheat system with fall and
spring tillage. Pikul et al. (1997) found no dif-
ference in bulk density in the 0- to 0.08-cm,
0.08- to 0.15-cm, and 0.15- to 0.30-cm surface
soil layers of a Williams loam (fine-loamy,
mixed Typic Agriboroll) in eastern Montana
when comparing wheat-fallow no-till and
conventional till systems and continuously
cropped systems over a 5-yr period.

Pikul et al. (2006) reported greater
water-filled pore space for systems employ-
ing fallow compared with continuously
cropped systems at two northern Great
Plains locations, but mixed results regard-
ing the effects of tillage on water-filled pore
space. The mixed results are likely to be a
result of variations that occur with time of
sampling and the large seasonal fluctua-
tions that occur in water-filled pore space
during different rotational phases. Mielke
et al. (1986) found greater water-filled pore
space in both the Duroc loam and Alliance
silt loam mentioned above under no-till
management, and lower air permeability
and hydraulic conductivity under no-till,

Tillage for weed control during fallow
periods can also create soil conditions that
can restrict root growth and development.
Results of a study conducted at Tribune,
Kansas, where a sweep plow was used in
a conventional till wheat-fallow system,
showed increased bulk densities (compared
with sod and no-till) at 30 to 40 cm (McVay
et al,, 2006). Many tillage operations at a con-
sistent depth can lead to destruction of plant
roots, and without plant roots to reinforce
the soil, machine-induced compaction can
occur (Ess et al,, 1998). Pikul and Aase (1995)
also identified a bulk density maximum
occurring at about 10 cm in a wheat—fallow
conventional tillage system, coinciding with
the depth of the shallow sweep tillage oper-
ation conducted during the fallow periods.

Changes to the soil physical condition
by reducing the frequency of fallow in a




cropping system may take many years.
After 15 yr of no-till management in dry-
land wheat systems varying in fallow
frequency (which can conversely be seen
as cropping intensity) from wheat—fallow
to continuously cropped wheat-corn (Zes
mays L.)-millet (Panicum miliaceum L.), Ben-
jamin et al. (2007) found no effects of fallow
frequency on bulk density, pore size distri-
bution, water holding capacity, or saturated
hydraulic conductivity in northeastern
Colorado.

No-till fallow can affect soil aggregation
through decreased tillage frequency and
soil disruption. Unger and Fulton (1990)
reported lower mean weight diameter of
water-stable aggregates and lower porosity
in the 4- to 7-cm layer under conventional
stubble mulch tillage than under no-till.
Pikul et al. (2006) showed that mean weight
diameter was greater in a continuously
cropped winter wheat system at Bushland,
Texas than in a wheat-sorghum-fallow sys-
tem leading to improved soil structure and
greater resistance to erosion. Similarly, Blair
et al. (2006) reported greater mean weight
diameter under continuously cropped wheat
compared with wheat-fallow for two Verti-
sol soils in northeastern New South Wales,
Australia. They suggested that the poorer
structural stability as well as less cover in
fallow systems could result in increased ero-
sion risk.

Effects on Soil Water

As stated earlier, one of the primary driving
factors for the implementation of cropping
systems that employ fallow periods is to
store water in the soil profile to mitigate
the effects of widely varying precipitation
amounts in semiarid environments. Stud-
ies conducted over many years and at many
locations confirm the increases in stored soil
water at planting that occur in systems that
employ fallow compared with continuously
cropped systems.

Differences in amount of water stored
in the soil over the fallow period vary due
to differences in precipitation storage effi-
ciency that occur with varying methods of
weed control used during the fallow period
and the variability in timing and amount of
fallow period precipitation. As tillage inten-
sity decreases through the use of minimum

disturbance tillage implements such as rod-
weeders and sweep plows and the use of
herbicides, more crop residues remain on
the soil surface for longer periods of time
during the fallow period. Those increased
residues are responsible for decreased run-
off, decreased evaporation, and increased
infiltration, resulting in greater precipita-
tion storage efficiency (Unger, 1978).

Several studies have shown that crop
residue management during fallow is
important to reduce runoff and evaporation.
Russel (1939) quantified the effects of win-
ter wheat residues on runoff and soil water
evaporation during the second summer
of fallow in a winter wheat-fallow system
in eastern Nebraska. He reported runoff
decreasing from 60 to 0 mm as quantity
of wheat residue on the soil surface went
from 0 to 9 Mg ha™, and evaporation declin-
ing from 255 mm to 182 mm, respectively.
Results from a study conducted on clay
soils in southeastern Queensland, Austra-
lia, showed 22 to 35% greater runoff during
the fallow period of a winter wheat-fallow
system managed as bare fallow (5% soil
surface cover by residue) compared with
no-till management (64% surface cover)
(Freebairn and Wockner, 1986). In another
study from southeastern Queensland, Tull-
berg et al. (2001) investigated both tillage
and controlled traffic effects on runoff in
a dryland cropping system with periods
of fallow between production of corn, sor-
ghum, and wheat. They reported mean
runoff over a 3-yr period to be 63 mm per
year greater in a wheel-tracked area vs. a
controlled traffic area and 38 mm per year
greater under stubble mulch tillage vs. no-
till. Decreased runoff in response to greater
surface crop residues has been attributed
to reduced soil crust formation and slowed
flow rate across the surface due to greater
flow path tortuosity and greater resistance
to flow (Steiner, 1994).

In northern Mississippi where fallow is
not a common production practice, Wilson
et al. (2008) found shredded corn residues
on the soil surface and disk-incorporated in
the fallow year following corn production
resulted in very little reduction in runoff
compared with a bare soil surface, but soil
losses were 54% lower with corn residues on
the soil surface compared with bare soil. A
laboratory study by Gilley et al. (1986) with
corn residues also showed that residues

Fallow Effects on Scil [ David C. Nielsen and Francisco J. Calderén




were less effective for reducing runoff than
for reducing soil loss. In the semiarid area of
north-central Oregon, runoff was reduced
during fallow periods of a conventional till
winter wheat-fallow system receiving 145
kg N ha™ per crop as manure for the previ-
ous 67 yr compared with the same system
receiving 90 kg N ha™ per crop as commer-
cial fertilizer (Williams, 2004). Williams
(2004) concluded that using manure amend-
ments and not burning residue from the
previous crop maintained soil organic C
levels that reduced or retarded runoff. That
same data set provided evidence of reduced
soil erosion with the use of manure and
maintenance of wheat residue on the soil
surface (Williams, 2008).

Small grain harvest methods can greatly
influence residue amount and orientation,
and subsequently soil water evaporation dur-
ing the fallow period. McMaster et al. (2000)
showed that soil water evaporation could be
reduced by 20 to 50% as wheat harvest cutting
height increased from 0.1 m to 0.5 m, with the
amount of evaporation reduction during the
fallow period being dependent on standing
residue stem population. Under very low
stem population conditions (a result of poor
seedling emergence andfor poor growing
season rainfall), the use of a stripper-header
(Fig. 1911) (Henry et al,, 2008) was advised to
increase standing residue mass and height to
minimize soil water evaporation over the fal-
low period.

The combined effects of decreased
runoff and evaporation through
reduced tillage and increased sur-
face residues during the fallow
period lead to increased infiltra-
tion. Baumhardt and Lascano (1996)
measured cumulative infiltration
in winter wheat residue increas-
ing from 29 mm with 0 Mg ha of
residue to 47 mm with 2.5 Mg ha™
of residue in response to 65 mm
of simulated rainfall applied over
an hour. They noted the ability of
surface residues to absorb rain-
drop impact and retard runoff. In
a study on a sandy clay loam in
southwestern Queensland, Thomas
et al. (2008) reported increased sur-
face residue resulted in increases in
time to runoff, final infiltration rate,
and cumulative infiltration follow-
ing 100 mm of simulated rainfall

hagement Practices

to wheat residues at the end of a 6-mo fal-
low period. Pikul and Aase (1995) reported
greater infiltration in an annual wheat
no-till system than in a wheat-fallow con-
ventional till system during the first hour
of the first day in which measurements
were taken, but that this difference disap-
peared over the course of the infiltration
run. They concluded that the sandy loam
soil of the experimental area settled firmly
following rainfall, with textural size com-
ponents that effectively filled the available
void spaces of the soil with solids causing
surface sealing. Pikul et al. (2006) found
no significant cropping system effects on
infiltration for locations that had the same
tillage system but differing cropping inten-
sity or crop species in the cropping system.
However, where no tillage was compared
with tillage, infiltration was greater follow-
ing tillage and declined over time in tilled
systems. They cautioned that conclusions
regarding cropping system effects on infil-
tration should be made carefully due to the
significant temporal variation in infiltration
rate measurements.

No-tillage, however, does not always
result in the most infiltration from a given
precipitation event (Unger, 1992; Jones and
Popham, 1997). Infiltration may be greater
into a tillage-loosened than a no-tillage soil
when precipitation amounts do not exceed
the temporary storage capacity of the loos-
ened soil layer. Also, infiltration into a
tillage-loosened soil may be greater when

Fig. 19]1. Fallow wheat stubble following harvest
with a stripper-header.




the water content of no-tillage soil is rela-
tively high following precipitation, thereby
resulting in slow infiltration and limited
opportunity for additional water storage,
which was the case on a Pullman clay loam
(fine, mixed, thermic Torrertic Paleustoll) at
Bushland, Texas (Jones and Popham, 1997).
An important fraction of the precipitation
in parts of the central and northern Great
Plains falls as snow (Fig. 1912). Standing
crop residues are more effective at reduc-
ing wind speed near the soil surface than
flat residues (Siddoway et al,, 1965; Bilbro
and Fryrear, 1994) and therefore trap more
snow during the winter period. Nielsen
(1998) measured about 20 cm more stored
soil water after winter in standing sun-
flower (Helianthus annuus L.) residue with a
silhouette area index (residue height x diam-
eter x population) of 0.07 m?> m™ than where
the sunflower stalks were lying flat on the
soil surface. This was in response to greater
snow catch by the standing sunflower stalks.
The final effect of decreased runoff,
decreased evaporation, and increased infil-
tration in response to more surface residues
during the fallow period is greater pre-
cipitation storage efficiency and increased
available soil water at the end of the fallow
period. Peterson et al. (1996) summarized
data from several Great Plains studies that
showed the inefficiency of precipitation
storage in no-till fallow systems during the
late portion of the summer fallow period,
a time when the soil profile is at or near
field capacity, daily weather conditions
are hot and dry, and little surface residue
remains. During the 11-mo fallow period
between winter wheat harvest and grain

sorghum planting in the Texas Panhandle,
Baumhardt et al. (1985) measured precipi-
tation storage efficiency increasing from
22% under disk tillage to 31% under no-till
management, which they attributed to evap-
oration suppression due to greater surface
crop residues under no-till. Similar results
have been reported at other Great Plains
locations (Peterson et al., 1996; Smika, 1990;
Smika and Wicks, 1968; Tanaka and Aase,
1987; Unger and Wiese, 1979; Lyon et al,, 1998;
Nielsen and Vigil, 2010). Available water at
sorghum planting, following an 11-mo fal-
low period following after wheat harvest in
Texas, was nearly 50 mm greater with 4 Mg
ha? of wheat residues on the surface com-
pared with 0 Mg ha™ of surface residues
(Unger, 1978). The 9-yr average available
soil water at wheat planting at Akron, Col-
orado was 227 mm for no-till wheat-fallow
systems and 156 mm for conventional till
wheat-fallow systems (Nielsen et al., 2002).
These results clearly indicate the effects of
surface residue destruction and soil stirring
on enhancing evaporation and decreasing
precipitation storage efficiency when sweep
plow tillage was used for weed control dur-
ing the fallow period.

The effect of the fallow period frequency
in a cropping system on available soil water
was quantified by Nielsen et al. (2002) for
winter wheat systems in northeastern Col-
orado. The 9-yr average available water
content at wheat planting was 227 mm for a
wheat-fallow system, but only 108 mm for
the continuously cropped wheat-corn-mil-
let system. Jones and Popham (1997) similarly
reported a 10-yr average plant available soil
water content at wheat planting at Bushland,
Texas of 212 mm for wheat—fallow,
205 mm for wheat-sorghum-fallow,
and 156 mm for continuous wheat.

The increased precipitation
storage efficiency from the use of
reduced and no-till systems for
weed control during the fallow
period of wheat—fallow systems
in the central Great Plains has led
to the implementation of more
intensive cropping systems that
reduce the frequency of fallow
(Peterson et al, 1993; Anderson et
al.,, 1999; Nielsen et al., 2002). If the
increased soil water is not used by
more intensive cropping systems
that reduce the frequency of fallow,
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water can move below the active root zone,
taking with it N and potentially affecting
groundwater quality. O'Connell et al. (2003)
measured increased drainage below the root
zone in a fallow system (fallow—wheat-pea
[Pisum sativum 1.]) compared with a system
without fallow (mustard [Brassica juncea (L.)
Czern]-wheat-pea) in southeastern Aus-
tralia. Introduction of fallow production
methods in the semiarid areas of the Great
Plains has sometimes led to the formation
of saline seeps (Halvorson and Black, 1974)
as water percolated below the root zone.
This problem can be alleviated with the use
of flexible crop rotations involving small
grains, grasses, deep-rooted crops, and a
minimum amount of summer fallow as
crops are grown when sufficient soil water
is present at planting to indicate likely suc-
cessful crop production.

Effects on
Nutrient Availability

Fallow enhances accumulation of nitrate
through mineralization of organic mat-
ter (Smika, 1983a; Campbell et al, 1990).
Cochran et al. (2006) stated that during the
early years of crop production in the north-
ern Great Plains, relatively high levels of
organic matter supplied adequate nutrition
as N mineralization was enhanced by aer-
ation with tillage in conjunction with high
soil moisture content during the fallow
period. Prolonged cropping of these prai-
rie soils depleted soil N such that fertilizer
N is now required. Unger (1991) reported a
nonsignificant tendency for a no-till wheat-
sorghum-fallow system in Texas to have
higher levels of N, NO,-N, P, and K at the
soil surface than the stubble mulch tillage
system 6 to 8 yr after the systems were estab-
lished. Mikha et al. (2006) found total soil N
was significantly increased in the 0- to 7.5-
cm depth by decreasing tillage and fallow
frequency at several central and northern
Great Plains locations. The effect of fallow
tillage intensity on total N in the 0- to 7.6-
cm depth in a wheat-fallow system in Texas
was reported by Unger (1968). After 24 yr of
management, 36% higher total N was found
in the system where six to ten sweep tillage
operations were delayed until the spring
and summer following wheat harvest com-
pared with the system where up to ten

fallow-period one-way disk operations were
used to control weeds throughout the entire
fallow period.

Fallow no-till systems can also increase P
and other micronutrients in the upper layers
of soil. Unger (1991) also reported approxi-
mately 60% higher extractable P in the 0- to
4-cm soil layer from a wheat-sorghum-fal-
low system under no-till management
compared with stubble mulch management
in Texas. Follett and Peterson (1988) showed
tillage intensity effects on several nutrients
from a loam soil in western Nebraska that
had been in wheat-fallow production for 16
yr. They found that total F, organic T, K, Zn,
and Fe in the 0- to 5-cm layer declined with
increasing tillage intensity (no-till > stubble
mulch > moldboard plow). They attributed
these results mainly to cycling of nutrients
to the soil surface in plant parts and sub-
sequent residue that was then mixed and
diluted with soil from lower depths as till-
age intensity increased.

Bowman and Halvorson (1997) con-
ducted a detailed study of the effect of
fallow frequency on P in the 0- to 5-cm
soil layer in northeastern Colorado. As fal-
low frequency was reduced from one crop
in 2 yr to two crops in 3 yr to three crops
in 4 yr to continuous cropping, water-sol-
uble F, anion-exchange resin P, total soil
organic P, phosphatase activity, soil bicar-
bonate-extractable organic P, and total P
all increased. They attributed the increase
primarily to greater residue production in
systems with less fallow. The P uptake from
deeper in the soil profile was deposited at
the soil surface through greater residue and
litter production and subsequent leaching
of P from the residue and decomposition of
the residue in contact with soil. Additionally,
there was probably enhanced P protection
from wind erosion as summer fallow was
eliminated. Decreasing fallow frequency
similarly increased levels of Zn, Mn, and Fe
in the 0- to 5-cm layer but did not affect Cu
or SO,-S levels (Bowman and Vigil, 2000).

Because crop water use generally exceeds
precipitation in the semiarid regions that
employ fallow systems, leaching of N
beyond the root zone through downward
water movement is rarely a loss mechanism
for N (Ryan and Monem, 1998). In compar-
ing fallow tillage systems in Queensland,
Australia, Standley et al. (1990) found greater
losses of N, P, 5, and K in the surface 10 cm




of a vertisol after 7 yr of conventional till-
age compared with no-till. They attributed
the N losses to greater losses of NO,” leached
below the 0.6-m sampling zone and greater
denitrification with conventional tillage.

Effects on Soil Microbial
Activity and Diversity

Soil microbes are important for the function-
ing of agroecosystems because they serve as
catalysts of essential nutrient cycling con-
versions and are an important part of the
labile C and N pools in soil (Paul, 2007).
Because of this, reducing plant residue
inputs through the use of fallow causes a
decline in soil OM that starves soil microbes,
which in turn limits the metabolic capacity
and biological function of the soil. Steenw-
erth et al. (2002) showed that soil microbial
biomass, measured by phospholipid fatty
acid content, declined sharply in soils under
conventional till fallow for 2 yr compared
with adjacent cropped and grassland soils
in California coastal valleys. Experiments
at the Ultuna Long Term Soil Organic Mat-
ter Experiment in Uppsala, Sweden (clay
loam soils, Typic Eutrochrept) showed that
important soil microbial variables such as
potential denitrification and basal soil respi-
ration rate were reduced in conventional till
fallow soils relative to cropped soils (Enwall
et al, 2005). The conventional till fallow had
less total soil C and N content compared with
the cropped soils, and the lowest microbial
biomass as measured by substrate induced
respiration (Enwall et al, 2007). Enwall et
al. (2007) found that bare fallow had low
potential ammonia oxidation and a different
ammonia oxidizer diversity relative to the
cropped soils, possibly due to the reduced
N mineralization and lack of N fertilizer in
the fallow soil, showing that bare fallow can
also affect soil microbial activity indirectly
through changes in soil properties such as
N availability and pH, brought about by the
presence or absence of N fertilizer.

Liebig et al. (2006) summarized the find-
ings of several Great Plains studies by stating
that cropping systems with intensive crop
sequences (reduced fallow frequency) and/
or reduced tillage possess more soil micro-
bial biomass, potentially mineralizable N,
and total glomalin. Glomalin is a gel-like
substance produced by mycorrihzal fungi
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that has been linked to higher soil C and bet-
ter soil structure (Wright et al., 1999). Those
trends were attributed to greater crop resi-
due, root mass, and soil OM accumulation
in the soil surface of these systems. They
also stated that in the Great Plains, no-till
management during fallow compared with
conventional tillage resulted in increased
fungal abundance, higher populations of
denitrifying bacteria, and greater ester- and
phospholipid-linked fatty acid methyl esters,
resulting in conditions favoring growth and
activity of soil microorganisms that improve
soil structure, but also increasing gaseous N
loss by denitrification.

Residue management can have long-last-
ingeffects onsoil microbiology. Biederbeck et
al. (2005) conducted a 6-yr study comparing
the effects of green fallow-wheat rotations,
bare fallow-wheat, and continuous wheat
in a Canadian silt loam (Aridic Haploboroll).
Bare fallow-wheat had 34% less residue dry
matter inputs and 48% less residue N inputs
than the continuous wheat system, resulting
in a lasting negative effect of the bare fal-
low on soil microbes. Soil bacterial counts,
microbial biomass, mineralizable C, and the
soil enzymes dehydrogenase, phosphatase,
arylsulfatase, and urease were lowest in the
bare fallow-wheat relative to the rest of the
treatments, even though the soils were sam-
pled after the wheat phase of the rotation. In
contrast, the green-fallow systems, in which
the legumes were grown to full bloom and
then incorporated, had a positive effect on
microbial counts, microbial biomass, and
enzymes relative to bare fallow-wheat and
continuous wheat.

Agricultural practices can affect the soil
microbiological abundance and diversity
indirectly by altering physical and chemi-
cal properties, which in turn can alter the
immediate environment of soil microbes
and cause shifts in microbial community
composition (Paul, 2007). Steenwerth et al.
(2002) studied soil microbial community
composition on loam soils in California
under irrigated and dryland management,
annual and perennial grassland, and bare
fallow. The fallow sites were previously
annual grasslands that were tilled and
then kept bare for 2 yr using herbicides.
Total soil C and N (0- to 6-cm depth) suf-
fered losses of 20 and 34% respectively due
to the lack of C inputs and mineralization
of soil OM during fallow. Phospholipid
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fatty acid analysis indicated that microbial
community structure diverged from that
of the adjacent grassland sites, partly due
to increased abundance of Gram-negative
bacterial markers.

Exceptions do occur, showing that not all
microbial functions are equally sensitive to
fallow. Enwall et al. (2005) showed that bare-
fallow soils had similar genetic fingerprints
as unfertilized cropped plots, indicating
that fertilizer addition and pH may be more
important drivers of microbial diversity
than the presence or absence of plants in the
soils studied.

The reduced C inputs in bare fallow
can have negative effects on soil function
through the reduction of microbial enzymes.
Pankhurst et al. (2005) compared three
crop break treatments—pasture, alternate
crops, and bare fallow—as alternatives to
continuous sugarcane in Queensland, Aus-
tralia. The microbial biomass C decreased
up to 43% and total free-living nematodes
decreased up to 14% under bare fallow rela-
tive to continuous sugarcane. Interestingly,
the soil microbial community of the bare-fal-
low break had a reduced capacity to utilize
different C substrates than the soil microbial
community under sugarcane, indicating a
clear effect on soil microbial function in the
absence of plant cover.

Weigand et al. (1995) investigated micro-
bial C, catalase activity, and earthworm
abundance in soils from different sites in
Bavaria maintained under bare fallow for
6 yr. Microbial C was strongly correlated
with soil organic C and with soil catalase
(an important enzyme for aerobic metabo-
lism). The soils under bare fallow, with no
rhizodeposition or residue input, had less
microbial biomass and lowered efficiency
of microbial C metabolism as measured by
substrate induced respiration.

Acosta-Martinez et al. (2007) showed that
cropping intensity affected soil microbial
composition and enzyme activity in long-
term plots in northeastern Colorado. The
study aimed to find more efficient alter-
natives to the traditional wheat-fallow
common in the region. Increased fallow fre-
quency coupled with conventional tillage
was associated with reduced soil microbial
biomass and soil enzymatic activity. Fatty
acid methyl ester analysis indicated that the
plots under the more intense rotations also
had a different soil microbial community

structure than the wheat-fallow plots, as
well as reduced fungal abundance in the
wheat-fallow treatment.

Bare fallow can have a direct effect on
obligately symbiotic organisms such as
arbuscular mycorrhizal fungi that depend
entirely on certain plant roots for their
energy. The long-fallow disorder occurs
when mycorrhizal fungal inoculum declines
during a bare-fallow period because of the
absence of active crop roots (Thompson,
1987; Hulugalle et al., 1998; Pankhurst et al.,
2005). Mycorrhizae can benefit row crops by
increasing P and water uptake, so the bare
fallow can potentially result in reduced per-
formance in subsequent crops. However, P
and Zn fertilizer help alleviate the long-fal-
low effect by reducing nutrient deficiency
and promoting mycorrhiza formation.
Oliveira and Sanders (1999) observed the
long-fallow effect on low-P soils in Leeds,
England. As expected, fallow soils had
lower mycorrhizal infectivity than recently
cropped soils. Interestingly, prior cropping
with a strongly mycorrhizal plant (Zea mays
L.) increased infectivity relative to a wheat
pre-crop, suggesting a strategy to minimize
the negative effect of the fallow on mycor-
rhizal infection.

Bare fallow can also affect soil patho-
genic microorganisms by removing the host
crops, reducing crop residues, and changing
the soil physical environment in such a way
that the pathogen life cycles are disrupted.
Hulugalle et al. (1998) compared long-fal-
low cotton (Gossypium L) with continuous
cotton in New South Wales, Australia. The
long-fallow cotton affected the soil physi-
cal properties by reducing soil strength and
plastic limit, and black root rot was lower
during the cotton phase after long fallow.
Fusarium fungi can cause important eco-
nomic losses in crops because Fusaria can
infect the xylem of the plant and cause head
blight, root rot, crown rot, and seedling
blight in several crop species. Contaminated
crop residues are an important source of
Fusarium propagules (Dill-Macky and Jones,
2000), so crop rotations and residue man-
agement are important options to control
disease. Sturz and Johnston (1985) found
that pathogenic Fusaria are found on stub-
ble in soil, and tend to be in higher amounts
in soils under continuous cropping than in
bare-fallow soils due to the differences in
crop residue. Because of this, they suggest




fallowing as a strategy to control Fusarium
in barley (Hordeum vulgare L) and wheat in
Canada.

Rhizoctonia fungi are root pathogens that
can cause important economic losses due
to root infection and seedling damping-off.
Like Fusarium, Rhizoctonia normally sur-
vives saprophytically in plant debris and
plant tissues before it infects a crop. How-
ever, Bell and Sumner (1987) demonstrated
that Rhizoctonia sclerotia can survive for
more than 40 wk in fallow soils without
plant cover or fresh residues, and remain
viable to infect corn afterward. The authors
suggest that a bare fallow alone will not be
effective in controlling Rhizoctonia, and that
tillage or mulching with polyethylene will
be required in addition to fallow for effec-
tive control. It is not surprising, then, that
chemical fallow periods of up to 66 d were
not effective in the control of Rhizoctonia in
wheat grown in Western Australia (Mac-
Nish and Fang, 1987). In a study about carrot
(Daucus carota L) damage in the Central Val-
ley of California, populations of Rhizoctonia
and Pythium were similar following fallow,
onion (Allium cepa L)), or carrots (Davis and
Nunez, 1999). Like Rhizoctonia, other fun-
gal pathogens such as Sclerotium rolfsii Sacc.
produce resistant sclerotia, giving them the
capacity to survive for prolonged periods of
time in soil (Coley-Smith and Cooke, 1971),
and it is possible that a fallow period will
not be completely effective for their control.

Rotations with resistant crops and resi-
due removal can be better than fallow for
the control of root pathogens under some
conditions. Johnson et al. (1997) studied
the effectiveness of bare fallow and sod to
suppress nematodes, Pythium, and Rhizoc-
tonia on vegetable crops in a Tifton loamy
sand (fine-loamy, siliceous, thermic Plinthic
Paleudults). The plant parasitic nematode,
Rhizoctonia, and Pythium numbers as well as
Fusarium damage, were lower on vegetable
crops preceded by sod than on plantings
after fallow. Smiley et al. (1996) studied
wheat diseases in wheat—fallow, wheat—pea,
and continuous wheat in a Walla Walla
silt loam (coarse-silty, mixed, mesic Typic
Haploxeroll) near Pendleton, Oregon. Rhi-
zoctonia root rot, Pythium root rot, eyespot,
and take-all were suppressed by burning
crop residues following harvest. These dis-
eases can survive on infected crop residues,
so removing the residue via burning lowers

the incidence of disease in subsequent crops.
Furthermore, crown rot increased with sur-
face residue. Eyespot and crown rot were
exacerbated by soil N and declined with
soil pH. In this case, rotating crops was a
good disease management strategy. In gen-
eral, diseases were less damaging on the
wheat-pea rotation relative to the continu-
ous wheat and the wheat-fallow. Replacing
chemical fertilizers with green manure and
animal manure was also beneficial in sup-
pressing soil-borne diseases.

Effects on Erosion

As stated earlier, standing residue is more
effective than flat residue for decreasing wind
speed near the soil surface, and consequently
in controlling wind erosion. The standing
residue absorbs more of the wind’s energy
and raises the zero-velocity point above the
soil, thereby preventing much of the nor-
mal avalanching of soil material downwind
(Woodruff et al,, 1972; van de Ven et al., 1989).
Smika (1983b) measured a 74% reduction in
wind speed at the soil surface when standing
wheat residue height was increased from 30
to 61 cm. Consequently, there may be signifi-
cant differences in soil erosion during fallow
periods depending on residue amount, type,
quality, and orientation.

Nielsen and Aiken (1998) showed that a
silhouette area index of 0.035 to 0.045 m> m?,
achievable through leaving sunflower stalks
standing during the fallow period follow-
ing harvest (Fig. 1913), can reduce saltation
discharge to less than 5% of that predicted
for bare surfaces. A silhouette area index of
0.04 m? m? would be achieved with a stem
population of 40,000 stems ha™, stem diam-
eter of 1.75 cm, and stem height of 57 cm.
Typical values of silhouette area index for
standing wheat (0.54 m? m; McMaster et al.,,
2000) and proso millet (0.08 m? m™ Henry
et al,, 2008) residues following harvest are
well above the 0.04 m* m™ value, indicating
that those small grain residues left stand-
ing will reduce erosion potential to nearly
zero as they remain standing during the
fallow period. The use of a stripper-header
for the harvest of small grains leaves sig-
nificantly more standing crop residues that
will be retained longer than residues follow-
ing grain harvest conventionally cut with a
sickle-bar header (Henry et al, 2008). The
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result is more protection of the soil from
wind erosion and greater precipitation stor-
age efficiency during fallow periods.

Sharratt et al. (2007) quantified soil loss
from conventionally tilled silt loam fallow
fields (winter wheat-fallow system) in the
Columbia Plateau of eastern Washington.
Six high wind events occurred over a 2-yr
period resulting in soil loss ranging from
43 to 2320 kg ha™ per wind event and PM10
loss ranging from 5 to 210 kg ha™ per wind
event. The PM10 loss comprised 9 to 12 per
cent of the total soil loss. They concluded
that alternative tillage practices or crop-
ping systems were needed for minimizing
PM10 emissions and improving air quality
in that region. Similar magnitudes of soil
losses through wind erosion have been
reported for silt loam soils in Colorado (Van
Donk and Skidmore, 2003) and in Washing-
ton (Zobeck et al., 2001), but much higher
losses (12,000 to 56,000 kg ha™) have been
reported for sand and sandy loam soils in
other locations (Zobeck et al, 2001; Lar-
ney et al,, 1995). The higher soil losses may
also be related to differences in wind event
speed and duration, surface roughness, or
surface cover. Using the wind erosion pre-
diction system (WEPS; Hagen, 1991), Feng
and Sharratt (2007) estimated an annual
soil loss of 14,250 kg ha™ from summer fal-
low fields in eastern Washington.

Soil loss under fallow management due
to water erosion can also be significant.
Boellstorff and Benito (2005) described the
increase in bare (unseeded) fallow area in
Europe that occurred following the adoption
of the 1992 MacSharry reforms to the Euro-
pean Union’s Common Agricultural Policy
that included a set-aside program requiring
farmers to take certain percentages of ara-
ble land out of production. In central Spain,
even areas with sufficient precipitation to
support seeded fallow with a cover crop
were being put into traditional unseeded fal-
low with tillage. A study involving the use
of the revised universal soil loss equation
(RUSLE; Renard et al, 1991) indicated the
use of seeded fallow in central Spain would
cut the area estimated to have greater than
6 t ha™ soil loss to one-third the area under
that risk when in unseeded fallow (Boell-
storff and Benito, 2005). In central Croatia,
Basic et al. (2004) measured a 5-yr average
soil loss of 87 t ha” from standard bare fal-

Fig. 19|3. Anemometers in fallow sun-
flower stalks.

low USLE protocol plots (Wischmeier and
Smith, 1978) on a 9% slope.

Summary

Fallow production systems continue to be
used throughout various regions of the
world, but particularly in semiarid regions
where precipitation is highly variable in
timing and amount. Systems that reduce
or limit fallow frequency and tillage inten-
sity generally result in greater amounts of
surface crop residues remaining during
fallow periods. Those residue increases
generally produce positive effects on soil
quality for crop production, including
increases in soil OM, nutrients, physical
structure, water content, and microorgan—
isms, as well as reductions in soil loss by
wind and water erosion.
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