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INTRODUCTION

The United States is interested in expanding renewable energy resources to address
the interrelated problems of finite fossil fuels and global climate change by chang-
ing the energy paradigm from one based almost solely on fossil fuels to another that
integrates multiple renewable energy platforms (Johnson et al., 2007d). Plant bio-
mass feedstocks will be among the sources of renewable energy. Ethanol from corn
(maize; Zea mays. L.), grain, and sugarcane (Saccharum officinarum L.) and biod-
iesel fuel from soybeans (Glycine max L.) and other oilseed crops are already used
for transportation fuels. However, alone they are insufficient to replace petroleum
(Perlack et al., 2005). Interest in using non-grain, cellulosic biomass has increased
recently (Perlack et al., 2005). Agricultural and forest products represent potential
non-grain biomass feedstocks for thermochemical (pyrolysis and gasification) and
sugar (fermentation) platforms. Thermochemical technologies can substitute bio-
mass for natural gas or coal and can also be used for producing liguid (pyrolysis oil)
and solid (biochar) fuels (Islam and Ani, 2000; Gercel, 2002; Yaman, 2004),
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2 50il Quality and Biofuel Production

Potential cellulosic biomass feedstocks are numerous and include woody and
herbaceous perennial species, lumber industry wastes, forage crops, industrial and
municipal wastes, animal manure, crop residues, and agricultural wastes or co- prod-
ucts such as bagasses and cannery wistes (FAO, 2004; Perlack et al., 2005: Johnson
etal, 2007d). Corn stover and wheat (Triticum aestivim 1..) straw are grown in suifi-
cient quantities to support commercial-sized cellulosic ethanol production (Dipardo,
2000; Hettenhaus et al., 2000: Nelson, 2002; Graham et al., 2007). The sourcos and
importance of individual feedstocks vary with location. Regional sources such as
sugarcane bagasse and rice (Orvza sativa 1..) may individually make only local con-
tributions, but collectively they significantly help satisty United States energy needs
(Dipardo, 2000).

Several demands compete for non-grain crop biomuass (a term used interchange-
ably with crop residie in this chapter). Small grain straw and corn stover are used for
animal bedding and high-fiber feed. Burning corn cobs and other cellulosic materi-
als for heating or cooking was a relatively common practice less than a century ago.
and still occurs in some locations, Straw is considered viable as a low-cost building
or insulation material (Bainbridge. 1986 Yang et al., 2003). From soil perspec-
tive, keeping non-grain biomass in the field returns essential nutrients for subsequent
crops, maintains soil organic matter (SOM). promotes soil aggregate stability, and
provides groundcover to reduce erosion (Johnson et al., 2006a).

Most estimates of the amounts of crop residues available for harvest are based
on the sole constraint of minimized soil erosion (Lindstrom, 1986; Nelson, 2002:
Perlack et al., 2005; Graham et al.. 2007). Soil loss tolerance (T) was defined in 1997
as the average annual erosion rate (mass per area per year) that can occur and still
permit a high level of crop productivity 1o be sustained economically and indefi-
nitely by the United States Department of Agriculiure (USDA) Natural Resource
Conservation Service (NRCS). Nelson (2002) completed a three-year (1995-1997)
county-level evaluation of residue removal rates that would provide soil erosion rates
less than T. This analysis suggests that an average of 43 million Mg of corn sto-
ver and 8 million Mg of wheat could be removed annually for biofuel production
(Nelson. 2002). Graham et al. (2007) estimated that sufficient stover was available
in central Hlinois. northern lowa. southern Minnesota, and along the Platie River to
support large biorefineries. Harvest rates were limited to amounts that maintained
erosion rates less than T, and the study assumed all lands included were managed
without tillage (Graham ctal., 2007), However, Wilhelm et al. (2007) noted that resi-
due requirements for maintaining soil organic carbon (SOC) exceeded those needed
to limit erosion at or below T for a similar geographic arca. The assessments con-
ducted by Nelson (2002) and Graham et al. (2007) constrained harvest rates only to
limit erosion: however, they provide a basis for more detailed analyses including the
impact of residue removal on C cycling, future crop productivity, and other impor-
tunt considerations raised by Wilhelm et al. (2004 2007).

Harvest of non-grain biomass has the potential to directly and indirectly affect
many soil physical. chemical. and biological processes. Similar issues are raised

) concerning soil quality and sustamability for all proposed bioenergy platforms,
' Understanding the impacts of non-grain biomass harvest on soil processes will aid
in developing harvest management systems including utilization of by-products to
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offset harvest impacts, thus optimizing potential benefits and reducing risks. Harvest
guidelines and BMPs are necessary (o protect soil from degradation. In this chapter,
we discuss soil processes impacted by residue management with emiphasis on non-
grain biomass harvest. Soil processes reviewed include temperature, moisture and
energy balance, C cycling, soil biology, nutrient cyceling, soil aggregation, soil ero-
sion, and watershed hydrology.

TEMPERATURE, MOISTURE, AND ENERGY BALANCE

The impacts of residue management on temperature (McCalla, 1943) and moisture
(Duley and Russel, 1939) have been researched for more than 60 years, especially
in the context of tillage. Surface residues maodify the soil microclimate (moisture
and temperature) primarily by altering the surface energy balance (Enz et al., 1988;
Steiner, 1994; Horton et al., 1996; Wilhelin et al., 2004). Specitically, residue adds a
boundary layer between the soil and atmosphere (Enz et al., 1988) that changes the
corresponding energy inputs into the soil system (Horton et al., 1996). The net radia-
tion for a bare soil is represented by:

Ru.»: = Sd:\- - u(s\h) + L\i_\' = Ln-h’ “”

where R, is the net radiation; Suy 18 the incident short-wave (solar) radiation: a is
the surface albedo (fraction of radiation reflected from the surface); L, is the inci-
dent long-wave sky radiation; and L., is the emitted long-wave radiation from the
soil (Horton et al., 1996; Hillel, 1998). As indicated by Hillel (1998), day and night
energy balances exhibit a major difference (Figure L1). At night, S,,, is negligible
and the soil long-wave radiation is typically larger than the long-wave sky radiation,
resulting in a negative net radiation flux at night and as a result. net energy movement
is from the soil to the atmosphere. For a bare soil, the net radiation is the difference
between the energy absorbed and lost by the soil. The net radiation on a bare soil
can be apportioned as (1) sensible heat. (2) energy to heat the soil, or (3) energy used
to evaporate soil moisture (Figure 1.1). However, the addition of a residue layer pro-
vides additional sources and sinks of energy (Ross et al., 1985; Bristow et al., 1986;
Chung and Horton, 1987: Enz et al., 1988).

In addition to the processes described for a bare soil, the residue layer can (1)
reflect more or less of the incoming radiation, depending on the residue surface
albedo (Table 1.1); (2) utilize some of the incoming radiation to heat the residue
layer; (3) use cnergy to evaporate water from the residue: (4) add increased resistance
to water vapor fluxes from the soil, thereby reducing soil evaporation flux, and (5)
transmit remaining energy to the soil surface (Shen and Tanner, 1990: Horton et al.,
1996). Typically residues are lighter in color than soils, thereby increasing the albedo
of a residue-covered surface compared to bare soil (Sharratt and Campbell, 1994;
Table 1.1). Residues also trap a significant amount of air within the residue layer, thus
significantly reducing the effective thermal conductivity of the material layer and
reducing the amount of heat transmitted through the residue (Pratt, 1969). Thus, the
amount of energy incoming to the soil surface will be less with a residue layer pres-
ent compared to bare soil. Residues can intercept 50% to 80% of incoming radiation
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a) Day
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Evaporation Heat Residue

FIGURE 1.1 Energy fluxes for () bare soil during daytime, (b) hare soil during nighttime,
(€] residue-covered soil during daytime, and (d) residue-covered soil during nighttime con-
ditions. Arrows indicate directions of Cnergy movement. Relative sizes of arrows approxi-
Mmite one potential scenario of dynamics of energy fluxes. Residue cover reduces energy
gained (during daytime) and lost (at night) by dry soil surface. (Sources: Hillel, D. 1998,
Envirommental Soil Physics, Academic Press, San Diego, CA: Horton, R.. K.L. Bristow. G.J.
Kluitenberg, and 1.5, Sauder. 1996, Theor, Appl. Clim. 54:27 .37

(5., keeping the surface soil temperatures within 20°C of ambient. whereas bare
soil temperatures may rise 30°C or more above ambient (Ross et al., 1985).

The residue layer also impacts the aerodynamic boundary layer conditions of the
soil surface (van Bavel and Hillel. 197¢: Hagen. 1996, Residues typically increase
surface roughness and correspondingly impact surface exchanges of heat and wiater
and reduce soil Joss by wind erosion. Residues increase infiltration and decrease
evaporation, generally resulting in a net increase in soil moisture (Smika and Unger,
1986; Blevins and Frye. 1993: Wells et al.. 2003; Govaerts et al., 2007a). In regions
that experience significant amounts of wind-blown snow, surface residues trap
snow, reducing frost penetration depth due to the insulating properties of the snow
pack (Benoit et al., 1986). In addition, the snow surfuce is typically smooth due to
low winter evaporation, producing additional soil moisture in the spring (Sauer et al.,



Soil Processes and Residue Harvest Management 5

TABLE 1.1
Albedo Comparisons for Several Crop Residues and Materials
Material Albedo* Citations
Bare soil 0.04 10 0.40 Labell and Asner. 2002:
Markvart and Castadter, 2003

(ireen grass 0.25 Markvart and Castadier, 2003
Girowing crops 0.10 100,40 Stanhill et al.. 1966;

‘ Al-Yemeni and Grace, 1995
Muize (Zea Mayy 1..) residue 0.3 w046 Tanner and Shen, 1990
Barley (Hordeam vulgare 1) straw 0.42 10 .50 Novik et al,, 2000
Sugarcane (Saccharum officinarum 1..) residue 0.31 Bussitre and Cellier, 1994
Wheat (Triticum aestivam L) Straw 048 to 0.70 Major et al., 1990
Snow 0.70 to (.90 Markvart and Castaiier, 2003

" Albedo values depend on residue moisture content; typically, the higher the moisture content. the lower
the albedo,

1998). Furthermore, trapped snow provides additional soil water recharge during
spring thaws (Benoit et al., 1986).

As shown in Figure 1.1, residues impact the surface energy balance by reducing
diurnal energy gain and loss at the soil surface. The resulting changes in soil tempera-
ture and moisture are functions of the physical properties of the residues and the con-
ditions of the soil (Bristow et al., 1986; Steiner, 1994). In general, most studies agree
that with increased residue cover (i.e., decreased crop residue removal), soil moisture
content is increased (Russel, 1940); soil temperature maximums decrease, and mini-
mums increase ( Blanco-Cangqui et al., 2006a). Consequences of these temperature and
moisture impacts from residue coverage are less clear. All these factors depend on the
interactions of altered soil microclimate conditions with other factors (soil type, cli-
mate, and crop type). Crop emergence has been shown to be sensitive to alterations in
soil microclimate (Ford and Hicks, 1992; Drury et al., 2003). These resulting cffects
can be beneficial (Linden et al., 2000; Dam et al., 2005; Blanco-Canqui et al., 2006a),
detrimental (Munawar et al., 1990; Liu et al., 2004), or negligible (Bristow, 1988;
Swan et al., 1994) for crop emergence, development, and yield. Lower yields observed
with high residue covers are hypothesized to result from slower soil warming during
seed germination, lower pH, nutrient immobilization, and higher incidence of weeds
and pests under residues (Cox et al., 1990; Mann et al., 2002: Drury et al., 2003;
Jiang and Thelen, 2004; Liu et al., 2004). Delayed soil warming may delay planting,
thereby offsetting gains of soil moisture retention (Nafziger et al., 1991). However, in
drought-stressed areas, increased soil moisture can be vital (Power et al., 1986; Power
etal., 1998; Jalota et al., 2001; Kato et al., 2007).

Surface residues insulate the soil surface, reducing diurnal temperature fluctua-
tions in a residue-covered soil compared to a bare soil ( Buerkert, 2000). In Minnesota,
tall (0.6 m) corn stubble reduced frost penetration by (.5 m and increased the mini-
mum soil temperature by 2°C compared to soil with no residue, leading to a 25-day
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decrease to begin spring thaw (Sharratt, 2002, However, these beneficial properties
of reducing frost depth and increasing soil moisture (Sharratt et al., 1998) resulted in
lower spring soil temperatures. This is problematic because these factors may delay
spring field operations und significantly impede early germination (Liu et al., 2004,
Crop residue impacts on soil microclimate affect both Crop emergence and growth
and also the timing of the biological production of N,O (Wagner-Riddle et al., 2008,
weed pressure (Garcia-Huidobro et al., 1982; Shafii and Price, 2001; Duppong et al.,
2004; Dhima et al,, 2006), and C and nutrient cyeling (Bayer et al., 2006).

SOIL ORGANIC MATTER (SOM)

Many physical, chemical. and biological characteristics of high quality soils are
related to SOM (Doran and Parkin, 1994). Soil biota, nutrient cycling, residue
decomposition, humification, and SOM cycling are interrelated. Soijls tend to be
more productive when organic matter is added regularly and allowed to d :compose,
thus stimulating nutrient and C cycling and maintaining or enhancing soil structure
(Albright, 1938; Kumar and Goh, 2000). Soil organic matter enhances aeration, per-
meability, water retention, cation exchunge, and buffer capacity (Stevenson, 1994:
Kumar and Goh, 2000) and reduces soil compactability (Guérif, 1990; Soane, 199():
Diaz-Zorita and Grosso, 2000; Krzic et al., 2004),

Soil compactability is likely to increase if biomass harvest lowers SOM. Within
one year, soil bulk density in the surface 6 cm was related inversely to the amount
of corn stover returned on silt loam and clay loam soils in Ohiu{Blanco“Canqui et
al., 2006b). The highest bulk density was 1.45 Mg m * when all harvestable stover
was removed compared o 1.24 Mg m *with 10 Mg ha ! stover returned. Similarly,
cone index and shear strength measurements also decreased with increasing sur-
tace stover.

C CYCLING

Plant roots and unharvested above-ground biomass provide the raw materials for
building SOM. Photosynthate (organic C) enters the below-ground food web and tra-
verses through multiple trophic levels before returning to the atmosphere with only
asmall fraction humified into stable SOM. Ax reviewed by Wilhelm et al. (2004,
the amount of plant residue C in sojl decreases over time through decomposition;
within two years, less than 20% remains in the soil. These authors suggested that the
small amount of new C converted to stable SOM implied that a large biomass influx
was needed to provide substrate in excess of the respiratory demand of soil fauna,
Soil organic matter is about 56% organic C (Stevenson, 1994). Soi organic C(S0OC)
is frequently used as a proxy to estimate SOM. A simple one-component model of
SOC turnover using first-order kinetics (Equation 1.2) is useful where input for more
complex models is lacking (Bayer et al., 2006):

L

e L3
Ci=Coe + k, (1.2)
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where C, is the SOC stock at time t: C, is the initial SOC at time t = 0: k, is the annual
rate of SOC loss by mineralization and erosion: k, is the annual rate of added C humi-
fied into SOM; and A is annual rate of C addition. The first derivative of Equation 1,2
can be expressed as Equation 1.3 (Bayer et al., 2006; Huggins et al.. 2007):

dC .
“'; —kn‘\-k:(, “3)

Simply stated, the change in SOC over time is a function of the rate of humification
minus the rate of mineralization (inputs minus outputs). At equilibrium, dC/Alt goes
to zero and kKjA = k,C and SOC content reaches dynamic cquilibrium C,, as noted
by Bayer et al. (2006):

. kA

="y (1.4)
Conversely, it is possible to use this simple model to solve for the annual rate of C
addition (Huggins et al., 2007) at C,;

_kG

A= (1.5)

Ik, A exceeds k,C, then SOC should increase; if not, SOC will decrease. If k, and
k, remain constant, the change in soil C is proportional to inputs for a given manage-
ment system. Several studies indicate that the amounts of both SOC and C inputs
increased linearly (Larson et al., 1972; Paustian et al., 1997; Wilhelm et al.. 2004;
Follett et al., 2005; Kong et al., 2005; Bayer et al., 2006; Johnson et al., 2006a).
However, other results reveal that SOC sequestration did not correlate with the
amounts of organic matter inputs (Dexter et al., 1982; Campbell et al., 1991; Johnson
and Chamber, 1996; Nicholson et al., 1997), implying that k,C exceeded k,A or that
the rate coefficients were not constant over the duration of these experiments. The
k; coefticient is a function of C input quality (Franck et al., 1997; Heal et al., 1997;
Wang et al,, 2004; Johnson et al., 2007a). The k, coefficient is affected by tempera-
ture, rainfall, soil texture, mineralogy, and residue management, especially tillage
(Bayer et al., 2006). Although first-order kinetics can provide preliminary informa-
tion, the rates of decomposition and humification slow as more labile materials are
decomposed (Wieder and Lang, 1982; Johnson et al., 2007a).

When ubove-ground biomass is harvested. the quality and quantity of C inputs
change because roots and other plant organs may have different chemical composi-
tions (Johnson et al., 2007a). This has the potential to shift the rate of decomposi-
tion and subsequent humification (k). Carbon originating from root biomass and
rhizodeposition contributes 1.5 to 3.0 times more C to stable SOM compared to C
originating rom above-ground biomass (Balesdent and Balabane, 1996; Allmaras
et al., 2004; Wilts et al., 2004; Hooker et al., 2005). The higher values correspond
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to systems with little or no incorporation of shoot material. Unincorporated residues
decompose more slowly (Ghidey and Alberts, 1993) and have fewer opportunities to
enter the soil. Roots of corn, alfalfa (Medicago sativa 1..), and switchgrass (Panicum
virgatum L.) decompose more slowly than corresponding leaves or stems, but this is
not the case for soybean or cuphea (Cuphea viscisissima Jacq. and Cuphea lanceo-
lata W.T. Aiton) (Johnson et al., 2007a). Although roots contribute more C 1o SOC,
they comprise less plant biomass than above-ground biomass for most annual spe-
cies (Amos and Walters, 2006; Johnson et al.. 2006a),

Using empirical data and linear regression of C inputs and SOC, Johnson et al.
(2006a) proposed minimum source C (MSC) as a term to describe annual C inputs
necessary for dC/dt (Equation 1.3) to equal zero, implying no net change in SOC
content. For many agronomic crops, grain is harvested and not returned to the soil,
and thus is not included in caleulating MSC. Since the Johnson et al. (20064a) review,
several other studies allowing MSC estimates revealed similar above-ground MSC
estimates (Table 1.2). Using above-ground non-grain C inputs, MSC was 2.5 + 1.7
Mg Cha 'yr! (n = 28) for different crops and tillage practices at several experimen-
tal sites—slightly higher than the mean MSC of 22+ 1.1 Mg C ha! yo'(n=2])
cited by Johnson et al. (2006a).

Moldboard plowed systems had higher MSC reguirements than those with no till-
age: this result was also reported by Bayer et al. (2006). In general, wheat systems
have lower MSC than corn-based systems (Kong et al., 2005; Sainju et al., 2006;
Kundu et al., 2007). When rhizodeposition is included, MSC values are larger (Clay
etal,, 2006; Huggins et al., 2007).

Herbaceous perennial species (e.g., switchgrass) have extensive and deep rooting
systems (Ma et al., 2000), and thus may exhibit low above-ground MSC relative to
annual species so long as sufficient cover is provided to minimize erosion. Several
authors reported increases in SOC under perennial grasses. After six years, SOC
under tall fescue (Festuca arundinacea) was 3 Mg ha-' greater than under corn in
Ohio (Lal et al., 1998). After four years, SOC under switchgrass stands in south-
western Quebec increased by 3 Mg ha ! compared to corn (Zan et al., 2001). In a
three-year study, SOC increased at 10 Mg C ha'yr' (0 t0 0.9 m depth) in central
North Dakota under switchgrass harvested annually (Frank et al., 2004), The very
low initial s0il C content of the North Dakota soil was thought to contribute to the
very high SOC accrual rate.

The MSC is a useful guideline for determining the amount of allowable biomass
harvest for a management system (Johnson et al., 2006a: Johnson et al., 2006b;
Wilhelm et al., 2007), Clearly, given the range of MSC values reported, using an aver-
age value is unlikely to provide accurate local harvest rates. Improved understanding
of SOM dynamics is critical to developing sustainable biomass harvest guidelines.
In the short term, use of process or mechanistic models such as CENTURY (Parton,
1996) or CQSTR (Rickman et al., 2002) may be useful to estimate site- and system-
specitic biomass harvest rates.
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TABLE 1.2
Empirical Estimates of Annual Above-Ground Non-Grain Carbon Inputs
Required to Maintain Soil Organic Carbon Levels

Location
MN

5D

Wi

MI

W1l

IN

1A

MN

MN

MN

MN
SD
KS
KS
WA

KS

OR

WA

WA

MT
MT

CA
Sweden
Mexico
India
Brazil
Brazil
Average

Crop*
M

M. §
M. S
M. S
S, Sr
S, Sr

£

Primary
Tillage**
TP
cp

NT

MBP
MBp
MBP
MBP
MBP

MBP
MBP

D

NT

NT or ST
CP

NT

NR

NR

MBP
NR
NR
NT

T
HT
MBP. NT
NR
CT
NT

Soil Type®

Sil.
k:

Sil.
Sal.
Sil.
Sil
21
Cl.

Cl SiCL,
Sil.
CL

SiL
CL
CL, L., SiCL
SiL
SiL

SiL
SiL
Sil
CL
SaL
SiL, SiCL
SaCL
C
Sal
SaCL
SaCL

MSC
Mg Cha'yr"
26
321
20
1.6
23
=400
24
10

1.3
3.0

24

2.1
2.0
4.0
0.82
0.3
2.6
1.5
1.5
0.032
6.2
2.7
253+ )7

Citation
Allmaras et al., 2004
Pikul et al., 2008
Kucharik et al., 2001
Vitosh et al,, 1997
Vunotti et al., 1997
Harber, 1979
Larson et al., 1972
Crookston et al., 1991
Huggins et al., 1998
Reicosky et al,, 2002
Wilts et al., 2004
Crookston et al,, 199]
Huggins ¢t al., 1998
Varvel and Wilhelm, 2008
Huggins et ul., 2007
Clay et al., 2001; 2006
Havlin and Kissel, 1997
Havlin and Kissel, 1997
Horner et al., 1960
Rasmussen et al,, 1980
Hobbs and Brown, 1965;
Rasmussen, 1980
Rasmussen, 1980
Paustian et al., 1997
Yaustian et al,, 1997
Sainju et al., 2006
Black, 1973
Kong et al., 2005
Paustian et al., 1992
Follett et al., 2005
Kundu et al., 2007
Bayer et al., 2006
Bayer et al., 2006
N=28

" Crops: Ba = barley (Hordewm vulgare L.). C = cowpea (Vigna unguiculta (1..) Walp.). M = maize (Zea
Mays L.). O = vat (Avena strigoas Schreb.). § = soybean (Glyeine max (1..) Merr.). Sr = surghum
(Sorghum bicolor L.). T = tomato (Lycopersicon escudentum Mill.). V = vetch {Vicia sativa L.). W =

wheat (Triticum aestivin 1..),
" Primary tillage: CP = chisel plow. CT = conventional tillage, details not provided. D = disk. HT = hand till-
ige. MBP = moldboard plow. NR = not reported. RT = ridge till. ST = strip tillage. V = V-blade, 9 to12 ¢,

Soil type: Si = silt. Sa = sandy. L = loum. C = clay.
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SOIL BIOLOGY AND NUTRIENT CYCLING

Plant biomass provides a complex matrix of organic materials that interact with
SOM. This complexity can influence the diversity of the soi microbial community
and related physiological and CnZymatic processes, thus affecting nutrient mineral-
ization and N ;|\=;|ilahility{Bcnding etal, 2002), In &eneral, harvesting Crop residucs
reduces indicators of soil biology activity. Based on g compendium of worldwide
studies, harvesting residues reduced the concentrations of microhia| biomass C by
25% and microbig] biomass N by 294, (Tables 1.3 and 1.4, In some cases, the impac
of residue harvest wa Mmeasured as early as two years after biomass harvest, Of the
25 observations, only three cases indicated that residue removal had no effect or
exerted a positive impact on microbial biomass C concentration relative to freqr-
ments that retained residue (Table 1.3). Microbial biomass C increased proportion-
ally to the amount of biomass returned when harvest rates were varied (Karlen et ..
1994; Cookson et al.. 1998: Debosz et al., 1999: Salinas-Garcia e al, 2001; Limon-
Ortega et al., 2006).

Earthworms are macroscopic indicators of g healthy soil and provide beneficial
functions related 1o nutrient cycling, soil structure, hydrology, and root growth, A
reduction in earthworm activity caused o decrease in saturated hydraulic conductiv-
ity to a depth of 20 cm (Blzmcn—(‘anqui et al, 2007). Numerous studies have noted
that reducing or eliminating tillage increases earthworm biomass (Nuutinen, 1992,
and abundance (Edwards e al., 199(): Nuutinen, 1992: Kladivko, 2001). Elimination
of burning crop residue also increased carthworm abundance (Fraser et al., 1996:
Wuest et al., 2005). Therefore. it wis expected that retaining non-grain biomass
would reveal greater carthworm populations than areas from which the biomass
was removed (Table 1.5), Similar to microbial biomass C, earthworm abundance
increased with the amount of biomass returned when harvest rates varied such that
atleast 25% of corn stover decreased midden numbers,

Crop residue Mmanagement may influence plant diseases, Retention of residues can
result in net changes in soil microbiota by retaining inoculum or creating an environ-
ment more conducive (o pathogens (Cook et al., 1978). For example, corn stover and
small grain straws are the principal inoculum sources of Fusaripm SPp. that cause
head blight in wheat, especially in no-til systems ( Maiorano et al.. 2008), Population
counts of Fusarium were highest in continuous corn with residue retention and lowest
under continuous whey orcorn-wheat rotation, also with residue retained (Govaerts
clal., 2008). The same study indicated (hat residue retention increased populations
of disc;lsc-supprcssing microorganisms including fluorescent Pseudomonay that pro-
vide biological control of Fusarium and other fungal pathogens,

Greater incidence of root rot in corn was associated with stover retention relative
Lo stover harvest without tillage; however. root rot did not reduce yield (Govaerts
etal.. 20074). Govaerts of al. (2008) proposed that no tillage and residue retention
have potential for hiological control by promoting plant growth and suppressing dis-
case, but climinating tillage alone did no improve soil health. Discase response o
repeated burning of whea stubble was variable, depending on precipitation and N
Mmanagement (Smiley er al, 1996). Crown ro incidents were positively correlated
with SOC, while roof rof incidents were negatively correluted 1o microbial biomass
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20 Soil Quality and Biofuel Productio

4 (Smiley et al., 1996). Effects of residue harvest on microbial species are difficul

"2 to predict; negative, neutral, and positive responses have been reported along witt
y interactions of tillage, climate, and nutrient management.

Harvesting Lrop non-grain biomass affects nutrient cycling by removing plant

{ macronutrients (N, P, K, Ca. and Mg) (Mubarak et al., 2002) and micronutrients

PR

31 (Fageria, 2004), The concentration of nutrient in non-grain biomass averaged 9.0
*| S5TgNkg! 1.1 +0.52 gPkg 'l and50+ 13 £ K kg ' based on results from several
1i common annual crops and likely perennial biomass crops (Table 1.6). The amouni«
k| of nutrients removed vary among plant species, organs harvested (cob versus entir.
= Stover), physiological stage, and amount of biomass harvested (Lindstrom, 1986
i Burgess et al., 2002: Mubarak et al., 2002; Fageria, 2004: Johnson et al., 2007a),
Y The amount of nutrient removed can be calculated from the concentration and
] biomass harvest rates. Bransby et al. (1998) indicated that harvest of above-ground
& switchgrass biomass has the potential to remove 126 1o 28] kg N ha ' or more under
"4 fertilized conditions and 38 kg N ha ' under unfertilized conditions. From a nutrien
+ management view, harvesting biomass after senescence removes the least amount
a3 of mineral nutrient. In Washington state, the amount of N removed by harvesting
{g switchgrass varied by cultivar and harvest date more than by the amount of N fertj]-
{ '3;‘ izer applied:; early harvesting prior to N translocation below ground removed more
;q N than harvcsring in October (personal communication, Hal Collins, USDA ARS,
3. Prosser, WA). Continued removal of nutrient without replacement by applying fertil-

.-d‘
R

izer, manure, or compost depletes soil fertility, in turn reducing soi productivity.
Harvesting non-crop biomass affects soil microbial processes that impact N avail-
ability. For example, the activity of N-atcclyl~b-D-glumsaminidase was reduced by
harvesting corn stover for 10 years in a continuous corn system, suggesting a reduc-
tion in N mineralization (Ekenler and Tabatabai, 2003). In Kenya. corn stover har-
vest for 18 years in a corn-bean (Phaseolus vilgaris L) rotation reduced N stocks (0
to 15 cm depth) that corresponded to declines in total N. particulate matter N, min-
eral N, microbial biomass N. and potentially mineralizable N ( Kapkiyai ét al., 1999),
Corn and soybeans took up more N where stover was retained than where stover was
removed, possibly because stover maintained a soil environment more conducive to
biological activity that increased N availability (Power ¢t al.. 1986). In India. more N
was available (010 30 ¢m depth) with residue retained and incorporated compared to
residue removal in wheat-groundnut (Archis hypogea L..) rotation (Bhatnagar et al..
1983). These studies indicate increased plant-available N with Stover retention and
suggest that harvesting non-grain biomass may impact soil fertility adversely,

SOIL AGGREGATION

Inagricultural systems, maintenance of SOM has long been recognized as a Stralegy
' to improve soil structure and reduce soil degradation, Soil structure is an important
property that mediutes many physical and biological processes and controls SOM

and residue decomposition (Van Veen and Kuikman, 1990). Soil aggrepates are

' the basic units of soil structure and consist of pri mary particles and binding agents
1 (Figure 1.2; Edwards and Bremner, 1967 Tisdall and Oades, 1982; Tisdall, 199¢:
. Jastrow and Miller. 1997). Water stability of soil aggregates depends on organic
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TABLE 1.6
Plant Concentration + Standard Deviations Based on Literature Reports of
N, P, and K in Non-Grain Above-Ground Portions of Potential Non-Grain
Biomass Feedstocks
Crop N (g/kg) P (g/kg) K (g/kg) Citations*
Annuals
Barley (Hordeum vidgare 1) 05+ 1.1 £ NA? 12.5 £ NA i
N 6 ! |
Maize (Zea mavy 1.y 7530 1.3+ 0.5 1I8+62 h
N 16 3} 5
Millet (Panicum miliaceawm 1) 8956 (L85 0.2 128 = NA ¢
N 3 2 1
Rice (Oryza sativa 1.0 Y372 071 £0.24 19.3 + 14.1 d
N 9 4 3
Sorghum (Sorghum bicolor 1..) 12094 0.5 £ NA NR?* e
N 4 |
Soybean tGlveine max (1) RS 1.85 £ 0.5 128+ 33 I
N 11 2 2
Wheat (Triticum aestivian 1..). 6822 LI =06 TRx27 I
N 10 2 2
Perennials
Miscanthus ( Miscanthuy x gigantens) KO£53 0.25 £0.21 145 210.21 h
N f 2 2
Switchgrass (Punicton virgatum L) 6.8+4.2 .62 £0.23 2+33 i
N 17 7 6
Other grass! 9.0 +5.1 I.O8 £ 01,52 50+1.3 i
N 5 5 5
Annuals U8+75 .1 +0.5 11 £7.6
N nl) 18 14
Perennials 75+45 073 £ 0.5 19£2.4
N 28 14 13

“Citations:

4 = Christensen, 1986; Lindstrom, 1986: Andren and Paustian, 1987: Cookson et al., 1998: Mitchell et
al., 2001; Velthof et al., 2002: Halvorson and Reule, 2007.
b = Lindstrom, 1986; Breakwell and Turco, 1989 Tian et al.. 1992; Burgess et al., 2002; Manlay et al.,
2002; Velthot et al.. 2002; Fageria, 2004; Al-Kaisi et al.. 2005; Hoskinson et al., 2007: Yu et al.

2008; Halvarson and Johnson, in press.

¢ =Manlay et al., 2002; Fatondji et al., 2006; Sarr et al., 2008.
d="Tian etal, 1992; Ying et al., 1998; Manlay et al., 2002; Abiven et al, 2005; Tirol-Padre of al.. 2005
Linguist et al., 2007: Kaewpradit ¢t al., 2008

¢ = Satfigna et al.. 1989 Franzlucbhers et al., 1995, Abiven et al.. 2005, Monti et al.. 2008,
"

= Lindstrom. 1986: Franzluebbers etal., 1995; Fageria, 200:4: Abiven etal.. 2005: AL-Kaisi et al . 2005

Rio et al . 2003: Johnson et al., 20074,
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TABLE 1.6 (CONTINUED)

Plant Concentration + Standard Deviations Based on Literature Reports of
N, P, and K in Non-Grain Above-Ground Portions of Potential Non-Grain
Biomass Feedstocks

‘Citations {continued):

£ = Jawson and Elliot, 1980; Lindstrom, 1986; Franzluebbers et al., 1995; Cookson et al., 1998: Mitchell
etal., 2001 Borie et al., 2002; Velthot et al., 2002: Abiven et al.. 2005: Tirol-Padre et al., 2005,

h = Clitton-Brown and Lewandowski, 2002; Monti et al.. 2008,

i = Bransby et al.. 1998; Madakadze et al., 1999; Reynolds et al., 2000; Dulfty and Nanhou, 2001; Lemus
etal., 2002; Vogel et al.. 2002: Cassida et al.. 2005; Adler et al., 2006; Lemus et al.. 2008; Monti et al..
2008.

1= Katterer et al.. 1998; Monti et al., 2008,

NA = not appropriate,

NR = not reported.

1 Other grasses include cardoon (Cynara Carduncilus 1..). giant reed (Arunde donax 1), and reed caniry

grass { Phalaris arundinacea 1.,),

materials such as polysaccharides, roots, fungal hyphae, and aromatic compounds
(Tisdall and Oades. 1982).

SOM is considered a major bonding agent responsible for the formation and sta-
bilization of soil aggregates (Tisdall and Oades, 1982 Dormaar. 1983: Chaney and
Swift, 1984; Miller and Jastrow, 1990; Haynes et al.. 199]; Degens, 1997 Angers.
1998). In addition, improvement of soil aggregate stability results from the microbial
utilization of carbohydrates and from plant phenolics released during decomposition

E Plant root
G Microaggregate < 250 mm

Plant and fungal debris
Silt-size microaggregate 2-20 mm
Clay microstructures

Particulate vrganic matter

Jr‘
s
L]
%
Mycorrhizal hyphae
Macroaggregate ~ 250 mm

F~_4 Pore space: binding agents

FIGURE 1.2 Soil macroaggregate formation. (Source: Jastrow and Miller, 1997, In Lal. R. et
al., Eds., Soil Processes and the Carbon Cyele, CRC Press, Boca Raton, FL. pp. 207-223,)
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of structural components such as lignin (Martens, 2000). Plant root and fungal
hyphae form a network in soil that entangles microaggregates to form macroaggre-
gates that are then stabilized by extracellular polysaccharides that confer increased
resilience to aggregates in the presence of water (Elliott and Coleman, 1988: Tisdall,
1994). The length of fungal hyphae can be reduced by harvesting residue (Cookson
et al., 1998), which may contribute to a reduction in aggregate stability.

The addition of fresh organic residue induces the formation and stabilization of
macroaggregates by the addition of a C source for microbial activity (Golchin et
al., 1994b; Justrow, 1996; Six ct al, 1999; Mikha and Rice, 2004; Johnson et al,,
2007¢). In a conceptual model proposed by Golchin et al. (1994a), plant residues
are colonized by microorganisms as they enter the soil. Plant fragments also can be
encrusted by mineral particles that become the centers of water-stable aggregates
(Figure 1.2). Since these plant fragments are rich in readily decomposable carbohy-
drates, microbial metabolites permeite the coatings of mineral particles and stabilize
the aggregates (Golchin et al., 1994a). In addition, soil conditions can cause increased
solubility of some polyvalent cations such as Fe and Mn. thereby contributing to the
formation of soil microaggregates and the stabilization of SOM (Figure 1.3) through
formation of cation bridges (Elliott and Coleman, 1988). Thus, the addition of
organic residues high in available C can promote the stabilization of soil aggregates;
conversely, insufficient C inputs can lead to losses of stable aggregates.

Different management practices affect formation and stabilization of soil aggre-
gates through their effects on SOM level and soil biota (Tisdall and Oades, [982;
O’Halloran et al., 1986; Beare and Bruce, 1993; Edwards et al., 1993; Frey et al,,
1999: Six et al., 2000a). Cultivation affects soil structure due to the destruction of
soil aggregates and the loss of SOM (Low, 1972; Van Veen and Paul, 1981; Tisdall

Strongly sorbed polymer Cation bridges

Organic matter

FIGURE 1.3 Soil microaggregate formation {<250 pm) and SOM stabilization. Note cation
bridges that connect SOM and clay particles. (Source: Tisdall, .M. and J.M. Oades. 1982. /.
Soil Sci. 33:141-163.)
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and Qades, 1982; Elliot, 1986; Angers et al., 1992; Six et al., 1998; Six et al.. 1999).
Losses of SOM from cultivation of grassland have been attributed at least partly to
the mineralization of organic materials that bind microaggregates into macroaggre-
gates (Elliott, 1986: Gupta and Germida, 1988).

McVay et al. (2006) observed that aggregate stability was greatest in treatments
with the highest SOC in several long-term studies in Kansas. De Gryze et al. (2003)
observed that aggregate formation increased linearly with increasing residue amounts
at arate of 12.0 £ 1.24 g aggregate g ' residue added. They also observed that mac-
roaggregates (> 2000 pm) increased from 3% to 40% as the amount of residue added
was increased from 0 g to 3 g per 100 g soil. Water-stable aggregation index was
significantly greater in a tillage-plus-straw-retained treatment (0.97) compared to
tillage without straw treatment (0.68) (Singh et al., 1994). In another study. addi-
tion of a high-lignin organic material and corn stover increased water-stable aggre-
gates (Johnson et al., 2007¢). These results are indicative of the beneficial effects of
organic matter addition on the aggregation process.

Soil aggregation affects soil water and aeration, which are important factors in
crop production. The size, shape. and stability of soil aggregates impact pore size
distribution (Lynch and Bragg, 1985). Soil structural stability depends on the ability
of aggregates to remain intact when subjected to stress such as rapid wetting (Tisdall,
1996). Lynch and Bragg (1985) reported that unstable aggregates slake when wetted.
Sluaking occurs when aggregates are too unstable to withstand pressures resulting
from entrapped air inside air-dried aggregates during rapid rewetting (Elliott, 1986;
Giith and Frede, 1995; Six et al., 2000b). Resistance to sluking is associated with
large pieces of organic debris from plant roots, surface litter, and fungal hyphae
(Oades. 1984). When air-dried soils are slowly rewetted, changes in aggregates are
minimal (Six et al.. 2000b). Under field conditions, aggregates near the surface are
subjected to more slaking compared to aggregates below the surface layer that are
protected from air drying and rapid wetting (Lynch and Bragg, 1985).

Soil aggregation is important for increasing water infiltration. Residue cover pro-
tects the soil surface from direct raindrop impact and minimizes aggregate staking
from fast rewetting. thus maintaining soil aggregates and reducing surface crusting
compared with bare soil. Unstable aggregates at the surface can lead to the formation
of crusts that inhibit water mfiltration and air movement into the soil (Tisdall and
Oades, 1982: Lynch and Bragg, 1985). Within 24 hours of the formation of surface
crusts. the O, diffusion rate is reduced by 50% (Rathore et al.. 1982). Not tilling and
retaining crop stubble increased infiltration rate 3.7-fold compared with conventional
tillage (three cultivation passes) and burnt stubble in a 24-year study (Zhang et al .
2007). Water-stable macroaggregates were positively correlated to hydraulic con-
ductivity and negatively correlated to bulk density under dryland crop production
in eastern Colorado (Benjamin et al., 2008). Govaerts et al. (2007a) reported that
retaining wheat and maize residue improved water infiltration dramatically in both
no-till and conventionally tilled plots. Harvest of non-grain biomass has the poten-
tial to increase water runoff and soil erosion by impairing soil structure through
decreased aggregate stability and macroporosity of the soil surface.
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SOIL EROSION

Soil erosion is a two-step process in which sotl particles are detached in response
to an energy input and then transported. Eroding soil can be moved by wind. water,
ice. or gravity. These erosion processes redistribute soil within a fandscape and can
remove soil under some conditions. Soil loss by erosion removes topsoil from a soil
profile. Areas subject 1o soil foss by crosion are typically less productive because
of Tower water-holding capacity and decreased fertility. Blowing soil can damage
crop plants and soil deposition can bury small plants. From 1994 through 1996, soil
crosion caused an annual productivity loss of at least $40 km = throughout most of
the United States Corn Belt: large areas experienced annual losses in excess of $380)
km * (Magleby, 2003). In addition to decreasing productivity, crosion causes off-
site impairment of surface water and air quality, property damage. and detrimental
effects on human and animal health, Damage caused by soil erosion in the United
States has been estimated at $2 billion to $8 billion annually (Magleby. 2003).

The agricultural community recognizes that returning crop residues to the soil
is essential to avoid large declines in SOM that adversely impact soil fertility. soil
strength, aggregation, and other properties and thus negatively influence crop pro-
duction. While crop residues affect determinants of soil erodibility (c.g., water-stable
aggregates), this section will focus on the physical role of crop residues in reducing
soil lost by erosion.

Years of water erosion research consistently indicate for a given soil type, loss
rates by water erosion increase with increasing slope gradient. slope length, and rain-
fall intensity. Soil cover and production practices also influence soil loss via erosion.
Crop residue decreases the detachment and transport of soil by water by intercept-
ing raindrops before they impact the soil. by slowing the flow of water over the soil
surface, increasing the depth of water on the surface, and by providing small areas
of ponded water where sediment can be deposited (Cogo et al., 1982). Soil cover
decreases soil loss by water erosion, but the relationship is not linear (Figure 1.4
Lindstrom, 1986: Erenstein, 2002; Merrill et al., 2006). Typically, the ratio of soil
foss with a groundeover relative to loss incurred without groundeover decreases
exponentially with increasing cover (Figure 1.4). For example, on the same soil type,
the amount of soil lost due to water erosion was similar with 100% groundeover and
with 60% corn stover or wheat straw cover (Cogo et al., 1982).

Soil loss rates through wind erosion are atfected by surface roughness, field dimen-
sions, and wind characteristics. Similar to water erosion, soil cover can decrease soil
loss by wind erosion, The effect of soil cover on loss from wind erosion is a com-
plex function of crop type, residue orientation, and other factors. Generally, standing
stubble is more effective at reducing wind erosion than Qattened residue, and stubble
oriented in rows perpendicular to the wind direction is more eftective than stubble
in rows parallel to the wind direction (Skidmore, 1988). Bilbro and Fryrear (1994)
summarized the relationship of soil cover to soil loss by wind erosion. The ratio of
the amount of soil lost from protected soil to that lost from flat, bare soil decreased
exponentially with increasing groundceover (Soil loss ratio = ¢t 10407 malenen) “This
relutionship indicates that when soil is at least 50% covered with residue, loss by
wind erosion is expected to be 109 or less of losses from flat, bare soil. Wind tunnel
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———— Water crosion

— == Wind erosion
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FIGURE 1.4 Soil luss ratios predicted by the revised universal soil loss equation (RUSLFE)
and revised wind erosion equation (RWEQ) with varying amounts of soil cover. Soil luss
ratios include specified amount of residue cover for bare soil under high erodibility condi-
tions. (Source: Merrill, 8.D, et al, 2006, J. Soil Water Conserv. 61:7-13)

and field studies suggest even low fractions of residue cover can drastically decrease
wind erosion (Bilbro and Fryrear, 1994),

For both wind and water erosion, the relationship between soil cover and loss
is a non-lincar function where >50% groundcover can virtually eliminate erosion
(Figure 1.4). Generally. rescarchers have observed that the amount of crop residue
can be estimated from grain yield. For example. linear relationships between the
amount of crop residue and grain yield have been reported for small grains (McCool
et al.. 2006) and corn (Linden et al., 2000), such that grain yield has been used to
predict residue yield (Johnson et al.. 2006a).

The relationship between residue amount and groundeover varies with crop.
Gregory (1982) presents a method to estimate the fraction of groundcover from the
mass of residue per area of ground, using coefficients determined from field studies.
For each crop, Gregory reported that the fraction of soil covered increased expo-
nentially with increasing residue amount. with the lowest rate of increase for cotton
(Gossypin sp.y and the highest rate of increase for oats (Avend sativa 1..). Thus. the
amount of soil cover generally increases exponentially with grain yield. This expo-
nential relationship indicates that harvesting residue will not result in a proportional
decrease in groundeover. For example, under most circumstances, harvesting 25% of
the crop residue mass will decrease the amount of groundeover by less than 25%.

Roots and growing plant materials also effectively reduce wind and water erosion
and show trends similar to crop residues. Soil loss rates by water erosion decrease
exponentially with increasing vegetative cover; soil loss is approximately the same
for 60% and 100% vegetation cover (Stocking. 1988). Research also has shown
exponential decreases in soil loss rates by water erosion with increasing root mass
(Gyssels et al., 2005).
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Cover crops and perennials also may reduce soil erosion drastically by keeping
the soil covered. The amount of soil cover provided by growing plants. their height,
structure, orientation, rooting characteristics, position, and other factors are impor-
tant in determining their effectiveness at reducing crosion. For example, erosion
from land planted to woody species can be comparable to traditional row-cropped
land it no cover crop is present (Malik et al.. 2000), and erosion rates can be very
high m mature forests (Stocking, 1988). Positioning of plants plays a role in their
ability to reduce erosion. In a tield study. measured soil loss exceeded the predicted
wind crosion soil loss because plants were sited between soil ridges, limiting their
ability to reduce erosion (Van Donk and Skidmore, 2003).

For residue to be eftective for decreasing erosion, it must cover the soil surface
during the erosive event. Thus. residue must remain on the soil surface until the next
crop is established. Tillage, seeding. and other soil disruptions decrease crop residue
present on soil surface. Extensive rescarch has been conducted to determine soil
crosion rates under ditfering conditions of cover following tillage. Eck et al. (2001
reported that cach tillage operation can decrease the crop residue cover by 10% 1o
20% (for mild disturbance caused by some drills or planters) to 95% or more (for
aggressive tillage such as a moldboard plow). Tillage incorporates residue into the
soil, where it can still contribute to C cycling and nutrient cycling, but harvesting
residue removes soil cover along with C and other nutrients.

Soils with poor aggregate structures exhibit less resilience against erosive forces
such as wind and water. In both tilled and not-tilled soils, residue harvest increased
the number of small aggregates susceptible to wind erosion (Singh et al., 1994: Malhi
et al., 2006; Singh and Malhi, 2006; Malhi and Kultcher, 2007; Malhi and Lemke,
2007). Blanco-Canqui and Lal (2007) also reported that removing wheat straw
reduced soil aggregate strength compared to mulching. Tillage can increase erosion
through decreased aggregate stability and increased soil detachment. Conversely,
under some conditions, tillage can decrease soil loss by wind and water due to
increased water infiltration and soil surface roughness (Dabney et al., 2004).

The effect of interaction between tillage and crop residue on soil loss by erosion is
complex and varies with soil properties such as moisture (Cogo et al., 1982; Dabney
et al., 2004). Reduced tillage can provide more soil cover (Guy and Cox, 2002),
but residue removal can negate some of the benefits of reduced tillage. In both the
northern and southern U.S., removing corn residue from reduced-till or no-till plots
can result in soil loss rates by water erosion similar to those for conventionally tilled
soil with no residue removed (Lindstrom. 1986: Dabney et al.. 2004). In no-till soils,
the portion of standing residue relative to flat residue changes with time (Steiner et
al, 2000), and this is expected to alter the effectiveness of remaining residues in
reducing wind and water erosion. McCool et al. (2006) noted that for small grains,
stems are the most important components for reducing erosion because they are
more resistant to degradation and relocation than leaves, Some studies suggest that
decomposition of corn residue over winter reduces cover by 209 to 30% ( Van Donk
and SKidmore, 2003; Wilson et al., 2008). Residue decomposition rates vary with the
chemical composition of plant materials, temperature. moisture, soil characteristics,
and placement (Paul, 1991).
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The highly non-linear nature of the erosion process and the simultancous interac-
tions of numerous processes make soil loss by erosion very difficult to predict. The
amount of soil lost by erosion is a complex function of macro- and microtopog-
raphy, the energy of the wind or water impacting the soil, erodibility, and other
factors. Current madels based on years of research indicate soil cover is a critical
determinant of soil loss by wind and water erosion (Figure 1.4) that varies with soil
types (Lindstrom, 1986; Erenstein, 2002). Additional research is needed to more
completely characterize the implications of biomass harvest on long-term and epi-
sodic soil erosion in relation to biofuel production.

WATERSHED HYDROLOGICAL IMPACTS

Generally. much of the preceding material is based on studies of residue cover as
affected by tillage practices (i.e., incorporation) rather than removal. Most of the
work was done at plot scale. Extending this knowledge to include effects on waier-
shed hydrology is difficult. Uhlenbrook (2007) stated that no research had been pub-
lished on the impacts of biofuel development on watershed hydrology. It is critical
to develop an understanding of these impacts as soon as possible and more clearly
appreciate the differences between residue incorporation and removal in terms of
their relative effects on interacting C, nutrient, and water cycles.

As more land becomes dedicated to producing biotuel crops, environmental
impacts of associated land use conversions will depend on the nature and extent
of changes in land cover and vegetation management. Any change in land use will
influence the partitioning of precipitation into canopy interception, overland flow.
evaporation, transpiration, and deep percolation, along with accompanying hydro-
logical consequences. In the tropics, land use may shift toward clearing of forests
and expansion of agricultural areas with hydrological consequences that are dif-
ficult to model due to limited datasets covering hydrology of tropical watersheds
(Uhlenbrook, 2007).

In temperate zones, land use conversion for biofuel crops may expand perennial
cover at the expense of annual crop cover. Short-rotation tree crops (Poplar or Saliv)
or tall prairie grass species (switchgrass) can be highly productive in semi-arid to
humid temperate climates, and probubly require fewer nutrient inputs than annual
crops (Johnson et al., 2007d). Land cover conversions to these perennial crops would
increase transpiration and reduce overland flow (Rachman et al.. 2004; Updegraffa
etak. 2004). and have been shown to sequester more soil C than corn in highly fertile
soils (Zan et al., 2001). This would benefit the hydrologic regimens of Midwestern
streams and rivers based on recent trends of increasing precipitation amounts and
intensities that are predicted to continue (Nearing et al., 2004: Hodgkins et al..
2007).

To the extent that bioenergy feedstocks are derived from residues of annual crops
such as corn, potential hydrologic impacts may lean toward greater fractions of pre-
cipitation lost via overland flow and less near-surface soil moisture (Rhoton et al..
2002: Montgomery. 2007), Tillage practices that incorporate residue were shown to
increase the overland flow component of stream discharge from small watersheds by
nearly 50% in one long-term (25-year) study (Tomer et al. 2005). The differences
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occurred during large raintall events (up to 100 mm d ") and intermediate and small
runoff-producing events, At the same time, watersheds with conservation tillage sys-
tems like ridge tills yielded greater basetlow and total discharge, and showed more
ripid recovery from drought. The increase in discharge was about 3% of the total
hydrologic budget. accompanied by less variation in streamlow. Conservation tillage
resulted in lower bulk densities, greater SOM, and under wet soil conditions, greater
water contents than conventional tillage CTomer ctal., 2006). Differences in hydrology
likely result from the direct impacts of soil cover on water How and changes in aggre-
gate stability and infiltration capacity. Stover removal reduced saturated conductivity
on three Ohio soils (Blanco-Cangui et al, 2007), and is expected to result in greater
overland flow and decreased baseflow. Ensuring adequate ground cover following
residue harvest may be critical o inerease infiltration and reduce surface runoff,
espectally it climate change increases amounts and intensities of precipitation.

INTEGRATION OF CARBON, NUTRIENT, AND WATER CYCLES

Remaoval of non-grain biomass simultancously interacts with C, nutrient, micro-
climate, and hydrological cycles (Figure 1.5). Harvesting residue in excess of
MSC will reduce SOC. Excess harvesting limits the orgunic material needed
for soil aggregation, making soil more susceptible to erosive forces, Removal
of biomass can lead to surface sealing of soil, reducing infiltration and increas-
ing surtace runoff. Surface runoff across unprotected soils removes top soil and
the nutrients it contains. An influx of P and K into surface water promotes algal
hlooms, cutrophication, and hypoxia (Kim and Dale, 2005). Over time, soil ero-
sion can result in exposed subsoil that typically is less fertile with less SOM
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compared 1o surface soil, thus mmpeding soil nutrient cycling and decreising
nutrient-holding capacity. As a result, additional nutrients are required 1o stp-
port production,

The Tack of biomass inputs decreases soil fiauna tTables 1.3 through 1.5) and can
interlere with nutriem eyeling. Retaining biomass on the surlice can promote intil-
tration. reducing surface runoft, but can increase the putential for leaching nutrients
such as nitrates into ground water. Surface residue keeps the soil surface cooler,
slowing evaporation and promaoting denitrilying conditions by extending the duration
of anaerobic soil conditions (Ball et al., 1999 Aulakh et al, 2001y, Cooler surface
soil can delay germination and retard carly scason growth in regions with cool. wet
springs (Swan ct al.. 1994). In warmer drier climates., the lack of surface cover pro-
motes water stress and decreases yield (Power et al.. 1986: Wilhelm ctal, 1986). The
mteractions of residue management with biological. chemical and physical processes
are complicated by climatic factors and Mmanagement practices. The key is finding
balanced non-grain biomass harvest approach that supports soil processes and con-
trols erosion o minimize potential negative effects of non-grain biomass removal,

BIOMASS HARVEST: COMPENSATION STRATEGIES

Several strategies can avoid or reduce loss of SOM and solve related problems arising
from biomass harvest, Harvest rates should be limited to those that maintain SOM
and do not exacerbate erosion, Reducing or eliminating tillage utilizes remaining
residue as ground cover to reduce erosion. 11 harvest rates exceed the amount needed
W provide adequate inputs for SOM. alternative inputs such as manure should he
applied. In general. manures tend o increase SOC under a wide range of manage-
ment and climatic conditions (Johnson et al.. 2007b). Animal manures contain 4004
10 60% C on a dry weight basis and can promote SOC sequestration and provide
nutrient inputs (CAST, 1992). Another strategy s planting cover crops and fiving
mulches where crop residues are harvested to prevent erosion and replace C and N
removed the residues (Zemenchik et al., 2000: Drinkwater and Snapp. 2007,

Other amendments such as application of by-products of cellulosic fermentation
containing high lignin concentrations improved soil quality characteristios in labo.
ratory studies tohnson et al. 2004; Johnson et al.. 2007¢), Another by-product is
biochar from pyrolysis or gasitication, Biochar has the potential to enhance plam
growth by supplying and retaining nutrients and improving soil physical and chem
ical properties, Biochar may also remove pesticides or other pollutants Trom <ol
water (Glaser et al.. 20020 Lehmann et al., 2003 1ehmann o al. 2000: Lehmann
and Rondon. 20061, Compensation strategies will vary by management systent. chr-
matic regime. and suitability of strtegy (o farming systems,

SUMMARY

Harvesting crop non-gram biomass initiates a viscade of interrelated biologicul,
chemical, and physical soil events. Biomass harsest has the patential 1o disrupt soil
nutrient dynamics, water relations. and other inportant sail processes, Considerable
Anowledge exists about ways to minimize the risks ol harvesting non-grain hiomsiss,
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s essential that regional and site-specific guidelines be developed as quickly as
pussible, Clearly. non-grain biomass harvest must be Timited 10 avoid Joss ol SOM
and prevent excessive soil erosion,

Management strategies that enhance soil quality such as reduced or no tillage.
inclusion of perennial species, use of cover crops and living mulehes. and apply-
ing amendments such as biochar or manure may compensate for non-grain bio-
mass removal. Soil quality huilding strategies reduce the risk of Crosion, improve
Cand nutrient eyeling, and increase aggregate stabilization. In develaping a biotuel
coonomy. it is paramount that soil resources be protected o secure our nation’s :hil-

ity to provide adequate [ood, feed. fiber, and fuel tfor g arowing world,
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