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Th(? 6’1"}9(1?15 1071 and intensification of agroecosystems worldwide
has significantly affected the environment at multiple spatial scales (Matson et
al, 1997). Agroecosystem effects on atmospheric constituents have altered local,
regional, and global environmental quality through windblown soil (Zhang et
al,, 2001) and emission of particulate matter, reactive N (e.g., NH, and NO ), vola-
tile organic compounds, hydrogen sulfide, and greenhouse gases (GHGs) (Aneja
et al.,, 2006; Franzluebbers and Follett, 2005). The contribution of agroecosystems
to GHG emission, in particular, has received increased international attention
given the role of carbon dioxide (CO,), methane (CH,), and nitrous oxide (N,O)
to increase radiative forcing of the Earth’s atmosphere (IPCC, 2007), which is the
underlying cause of global climate change (Oreskes, 2004; Brown, 2006). Projected
changes in climate from elevated concentrations of GHGs in the Earth’s atmo-
sphere include increased mean global temperatures of 1.5 to 4.5°C (Mahlman, 1997),
shifts in vegetation zones toward the poles (or disappearance entirely, due to sea
level rise), and a more vigorous hydrological cycle (Rosenzweig and Hillel, 1998).
Such projections do not portend well for agriculture and will require the develop-
ment of resilient agroecosystems to meet future demand for food, feed, and fiber.
Mitigation of GHG emission from agroecosystems requires increasing soil
organic carbon (SOC), decreasing CH, and N,O emissions, or increasing soil CH,
oxidation (Robertson et al, 2000; Mosier et al., 2003). To date, much emphasis
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has been placed on identifying and employing land management practices that
sequester SOC (Lal et al,, 1999; Lal, 2004). While increasing SOC in agricultural
lands is finite in capacity and time, it does provide an important bridge to reduce
CO, emissions from agroecosystems until new technologies to reduce global
dependence on fossil fuels are developed and employed.

The objective of this chapter is to provide a synopsis of management effects
on SOC dynamics within dryland cropping systems of the U.S. Great Plains. This
region possesses significant expanses of land used for agricultural production.
Accordingly, identification and application of dryland cropping systems that
sequester SOC can have a significant impact on the overall GHG balance from
U.S. agriculture.

Climate, Soils, and Land Use

The U.S. Great Plains extends from Canada to Mexico within the middle quar-
ter of the contiguous United States (Fig. 6-1). The region occupies approximately
150 Mha and is delineated by Land Resource Regions F (Northern Great Plains
Spring Wheat Region), G (Western Great Plains Range and Irrigation Region), and
H (Central Great Plains Winter Wheat and Range Region) (Soil Survey Staff, 1981).
States within the region include parts of Montana, North Dakota, South Dakota,
Wyoming, Nebraska, Colorado, Kansas, New Mexico, Oklahoma, and Texas.

Climate within the U.S. Great Plains is classified as semiarid to subhumid
continental, with evaporation exceeding precipitation in most years (Bailey, 1995).
Typically, winters are cold and dry, and summers warm to hot with erratic pre-
cipitation. Annual precipitation ranges from 250 to 750 mm and increases from
west to east. Annual temperature ranges from 4°C in the northwest to 18°C in

Fig. 6-1. Approximate boundaries of
U.S. Great Plains. (Adapted from Aan-
dahl, 1972, and Bailey, 1995.)
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the southeast. Accordingly, the average number of frost-free days is lowest in
the north (100 d) and greatest in the south (240 d) (Bailey, 1995). While averages
for climatic variables provide a general understanding of environmental condi-
tions for agricultural production, the region’s defining climatic characteristic is
its variability, as droughts, wet periods, intense precipitation events, and extreme
temperatures are common (Peterson et al., 1996).

Organic matter accumulation and calcification are the primary pedogenic
processes in the U.S. Great Plains. Soil organic matter tends to increase in surface
depths with increasing precipitation, while large amounts of precipitated calcium
are present at lower depths. Taxonomically, Mollisols are prevalent throughout
the region, with Ustolls as the dominant suborder. Other soil orders found in the
region (by decreasing prevalence) include Entisols, Aridisols, Alfisols, Inceptisols,
and Vertisols (Soil Survey Staff, 1999).

Agriculture is the prevalent land use throughout the region, with rangeland
and cropland occupying over 90% of the total land area (U.S. Census Bureau,
2007). Area of cropland occupies approximately 45 Mha, with >75% under dry-
land (nonirrigated) conditions (National Agricultural Statistics Service, 2007).
Crop distribution under dryland conditions varies considerably in the region. In
the northern part of the region, cereal crops such as hard red spring wheat (Triti-
cum aestivun L), winter wheat, and barley (Hordeum vulgare’L.) are predominant,
but a significant emphasis on crop diversification since the 1980s has expanded
crop portfolios to include oilseed, pulse, and forage crops (Padbury et al., 2002).
Spring and winter wheat are primary crops in the central and southern portion of
the region, with corn (Zea mays L.), sorghum [Sorghum bicolor (L.) Moench], proso
millet (Panicum miliaceum L.), cotton (Gossypium spp.), and sunflower (Helianthus
annuus L) comprising the majority of alternative crops (Westfall et al., 1996). Fal-
low periods are common throughout the region due to absence of consistent
precipitation and may occupy up to 35% of cropland area in any given year (Pad-
bury, 2003). However, advances in weed and residue management technology
have contributed to a decreasing trend in the frequency of fallow throughout the
region (Tanaka et al., 2007).

Historical Effects of Dryland Cropping Systems
on Soil Organic Carbon

Conversion of native vegetation to dryland cropping in the U.S. Great Plains
has resulted in a significant decrease in SOC. Historical studies across multiple
locations in the region indicate a relative SOC loss of 42 + 11% (7.7 + 5.2 g C kg™) for
near-surface (<30.5 cm) depths (Table 6-1). Cropping practices evaluated in these
studies relied heavily on the use of intensive tillage and fallow for the production
of corn and a variety of small grains (Haas et al.,, 1957). This estimate of relative
SOC loss is consistent with other estimates for the region, which range from 23
to 53% (Donigian et al,, 1994; Cihacek and Ulmer, 1995). When scaled to cropland
area in the region, the absolute SOC change from conversion of native vegetation
to cropping reflects a loss of 1100 Tg C; approximately one-fifth of the total SOC
estimated to have been lost in the United States as a result of land use change to
crop production agriculture (Lal et al.,, 1999).

Given the known effect of climate on SOC dynamics (Burke et al., 1989), data
from historical studies were partitioned by subregion. Initial SOC values under
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Table 6-1. Soil organic carbon (SOC) loss following conversion to cropping in the U.S.
Great Plains.

location TetuE 0800 unde | soCloss References
R e depth  cultivation R RN
T -1
cm Relgzwe g Eoki?
Mandan, ND SL 0-15.2 30 31 6.6 1
Dickinson, ND L 0-15.2 40 59 213 1
Havre, MT CL 0-15.2 31 53 9.2 1
Moccasin, MT CL 0-15.2 39 32 105 1
Sheridan, WY L 0-15.2 30 28 47 1
Archer, WY L 0-15.2 34 41 55 1
Akron, CO SiL 0-15.2 39 46 6.5 1
Colby, KS SiL 0-15.2 41 45 8.2 1
Hays, KS SiCL 0-15.2 43 51 126 1
Garden City, KS SL 0-15.2 39 39 44 1
Dalhart, TX L 0-15.2 39 39 28 1
Nebraska Variable 0-30.5 45-60 28 NR§ 2
Hays, KS SiCL 0-17.5 40 25 4.5 3
North central KS  SiL/SiCL 0-17.8 >30 51 6.5 4
South central KS  SiL/SiCL 0-17.8 >30 26 4.1 4
Northeast CO SL 0-15 60 62 6.3 5
TX Panhandle SL 0-30 75 32 24 6
Temple, TX G 0-20 120 47 15.2 7

tC, clay;' CL, clay loam; L, 1bam; SiL, silt loam; SiCL, silty clay Ioa-m; SL, sandy loam.

£1, Haas et al,, 1957; 2, Russel, 1929; 3, Hobbs and Brown, 1965; 4, Hide and Metzger, 1939; 5, Bowman
et al., 1990; 6, Bronson et al., 2004; 7, Potter et al., 1998.

§ NR, not reported.

native vegetation were higher in the north subregion (Montana, North Dakota,
northern Wyoming) than the central (southern Wyoming, Colorado, Nebraska,
Kansas) and south (Oklahoma, New Mexico, Texas) subregions, indicating a
strong climatic effect on SOC content (Fig. 6-2). Relative SOC losses from con-
version to cropping across subregions, however, were relatively constant (39 to
43%), resulting in greater absolute SOC losses from cropland in the north (10.5
g C kg™) relative to the central (6.5 g C kg™) and south (6.8 g C kg™) subregions.
Assuming SOC under native vegetation represents maximal accretion values for
dryland conditions, these historical data suggest a greater capacity to store more
SOC with improved management in northern latitudes of the U.S. Great Plains.

Reversing Soil Organic Carbon Decline through Management

Management factors that affect SOC do so by influencing C input from plant
litter and C loss via soil respiration, the rates of which determine the overall steady
state for SOC (Janzen et al., 1998). Within dryland cropping systems in the Great
Plains, management factors often have subtle effects on SOC on an annual time
scale (Mikha et al., 2006), and it can take years or even decades before an effect of
management on SOC is discernable. Consequently, long-term research sites are
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Fig. 6-2. Historical changes in soil organic carbon from conversion to cropping within

subregions of the U.S. Great Plains.

essential for estimating management impacts on SOC (Richter et al., 2007). Unfor-
tunately, there are few long-term dryland cropping system experiments in the
U.S. Great Plains where SOC assessments have been part of ongoing data collec-
tion efforts (Table 6-2). Furthermore, management factors affecting SOC change
within these experiments have largely been limited to three general categories:
tillage, cropping intensity, and application of crop nutrients.

Table 6-2. A partial list of long-term dryland cropping experiments established since

1960 in the U.S. Great Plains.

- Study location ' Treatments.
Culbertson, MT  Cropping intensity, tillage

Mandan, ND Cropping intensity, tillage, N fertilization
Mandan, ND Cropping intensity, tillage

Sidney, NE Tillage, N fertilization

Akron, CO Tillage

Akron, CO N fertilization

Akron, CO Cropping intensity

Sterling, CO Cropping intensity, landscape position
(low potential evapotranspiration

Stratton, CO Cropping intensity, landscape position
(medium potential evapotranspiration)

Walsh, CO Cropping intensity, landscape position

(high potential evapotranspiration)
Bushland, TX Cropping intensity, tillage, N fertilization
Temple, TX Tillage, N fertilization

S  Yea G
~ initiated

1983
1984+
1993
1967/1970
1967+
1984+
1990
1985

1985
1985

1983
1981

9
9

+1, Pikul and Aase, 1995; 2, Halvorson et al., 2002; 3, Liebig et al,, 2004; 4, Lyon et al., 1997; 5, Halvorson
et al, 1997; 6, Halvarson et al,, 1999; 7, Bowman et al, 1999; 8, Peterson and Westfall, 1997; 9, Pot-

ter et al., 1998.
$ Discontinued.



102 Liebig et al.

Effects of tillage on SOC in the region indicate no-till (NT) is effective at
either increasing SOC or mitigating SOC loss, but under continuous cropping
only (Table 6-3). Change in SOC under NT continuous cropping ranged from
~0.05 to 0.23 Mg C ha™ yr for time-series data (Montana, North Dakota, Colo-
rado), and 0.16 to 0.56 Mg C ha™ yr for data where a tilled treatment was used as
a baseline for comparison (Texas). Continuous cropping systems utilizing mini-
mum tillage (MT) generally resulted in decreased SOC, though a slight (0.03 Mg
C ha™ yr) increase in SOC under MT was observed in North Dakota. At only one
site did a cropping system utilizing conventional tillage (CT) increase SOC in the
region. Potter (2006) observed SOC accrual from 0.13 to 0.16 Mg C ha™ yr” under
CT on a previously degraded clay soil near Temple, Texas.

Intensification of dryland cropping systems through the reduction of fal-
low increases input of above- and belowground biomass to the soil (Varvel et al,
2006). This, in turn, can increase SOC in near-surface depths (McVay et al., 2006;
Mikha et al., 2006). For long-term experimental sites summarized in Table 6-3,
SOC either increased or SOC loss was mitigated when the frequency of fallow was
reduced. Within cropping systems managed under NT, change in SOC was posi-
tively associated with cropping frequency in the region (= 0.75; p = 0.0005; n = 17;
time-series data only). Changes in SOC from converting crop—fallow to continu-
ous cropping under NT increased SOC accrual by 0.28 + 0.16 Mg C ha™ yr (n=>5).
In an evaluation near Akron, Colorado, continuous cropping increased SOC by
0.12 Mg C ha” yr™ compared to cropping systems with fallow, regardless of till-
age system used (Bowman et al., 1999). In Texas, a continuously cropped system
with a 4-yr pasture phase under CT resulted in a slight gain in SOC (0.03 Mg C
ha” yr™) over a similar cropping system without a pasture phase (Potter, 2006).

Climatic factors can influence the effectiveness of management practices
to induce change in SOC (Burke et al., 1989). Peterson and Westfall (1997) estab-
lished three long-term research sites in eastern Colorado representing a potential
evapotranspiration (PET) gradient from north to south to quantify relationships
among climate, soil type, and cropping sequence on agronomic and environmen-
tal attributes. After 12 yr of NT and continuous cropping, SOC increased from
0.05 to 0.12 Mg C ha yr™ across the three sites, with greater SOC accrual at the
low (Sterling) and medium (Stratton) PET sites compared to the high (Walsh) PET
site (Table 6-3). Across the research sites, annualized stover biomass explained
80% of the variation in SOC at 0 to 10 cm (Sherrod et al., 2003).

Long-term experiments evaluating application of crop nutrients in the region
was limited to N fertilization treatments (Table 6-3). In eastern Colorado, Halvor-
son et al. (1999) observed SOC to increase from 0.09 to 0.18 Mg C ha™ yr™ with
increasing N rate under continuous cropping relative to a 0 kg N ha™ treatment.
The effect of N fertilization on SOC in other long-term experiments, however, has
been far from conclusive. Nitrogen fertilization did not affect SOC over 10 yr in
dryland cropping systems near Bushland and Temple, Texas (Potter et al., 1997,
1998), and no difference in SOC was observed after 12 yr in spring wheat-fallow
and spring wheat-winter wheat-sunflower cropping systems fertilized at high
(45-101 kg N ha™ yr™), medium (22-67 kg N ha™ yr), and low (0-34 kg N hayr™)
rates of N fertilization in central North Dakota (Halvorson et al., 2002) (data not
shown). These results contrast to those from the Canadian prairies, where Van-
denBygaart et al. (2003) found application of varying rates of fertilizer N increased
SOC by 0.23 + 013 Mg C ha™ yr™.
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Implications of Improved Management

Agroecosystem Performance

The significance of increased SOC storage extends beyond the role of soil as a
repository for excess atmospheric C. Accrual of SOC in agricultural lands is asso-
ciated with changes in soil physical, chemical, and biological attributes that affect
key soil functions, such as nutrient cycling, filtering and buffering capacity, and
regulation of water flow (Andrews et al,, 2004; Janzen, 2005). Increases in SOC
from improved management are generally regarded to enhance agroecosystem
performance over time (Lal, 2002), though such a relationship is difficult to quan-
tify precisely. The integral nature of SOC as a key contributor of agroecosystem
health has prompted scientists to consider its role as an indicator more broadly,
one in which change in SOC can be used as a surrogate for ecosystem stability
and/or agricultural sustainability (Doran, 2002; Janzen, 2005).

For dryland cropping systems in the U.S. Great Plains, associations between
SOC change and agroecosystem performance are often difficult to detect in the
short term, given the low production levels and high climatic variability. Recent
efforts by Wienhold et al. (2006), however, sought to quantify such associations
using recently developed assessment tools for evaluating the effects of manage-
ment systems on agronomic and environmental soil functions. In their evaluation,
they observed positive correlations (r = 0.70; p < 0.035) between SOC at 0 to 15 cm
and Soil Management Assessment Framework (SMAF) index scores in four of
eight long-term cropping system experiments in the Great Plains. Greater index
scores from SMAF are indicative of improved soil function (Andrews et al., 2004),
which in the evaluation by Wienhold et al. was associated with increased agro-
nomic yield.

The relationship between SOC and crop yield has been inferred since ancient
times in the writings of Roman philosophers (Harrison, 1913). Quantification of
such a relationship is challenging due to the innumerable interactions among
biomass production and management variables, inherent soil attributes, land
use history, and climate. Consequently, few attempts at defining a relationship
between SOC and crop yield in semiarid cropping systems have been conducted.
In a study evaluating the differential effects of SOC on crop productivity in cen-
tral North Dakota, Bauer and Black (1994) found spring wheat grain yield to
increase by 16 kg ha with each 1 Mg ha™ increase in soil organic matter (SOM)
across a range of 64 to 142 Mg SOM ha™. Similarly, Diaz-Zorita et al. (1999) found
the contribution of 1 Mg SOM ha™ to be equivalent to approximately 40 kg wheat
grain ha™ in an evaluation of 134 farmer fields in the semiarid Argentine Pampas.
In their evaluation (Diaz-Zorita et al., 1999) and the evaluations of others (Jan-
zen et al,, 1992), grain and/or dry matter yield increased with increasing SOC
to an upper threshold, after which additional SOC had no affect on crop yield.
These results underscore the important contribution of SOC to agronomic pro-
ductivity in semiarid cropping systems but reflect that the relationship is site
specific and not linear.

Carbon Trading and Exchange Offsets
In addition to potential on-site improvements in soil quality and crop pro-
ductivity from increased SOC storage, agricultural producers can earn additional
income through involvement in carbon trading programs when they follow
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Fig. 6-3. Market value of CO, traded on the Chicago Climate Exchange, December 2003
to May 2007. (Chicago Climate Exchange, 2007.)

prescribed management practices known to sequester SOC. Such programs
provide a framework for multinational corporations, utility and power genera-
tion companies, and other private and public organizations to offset their CO,
emissions by purchasing carbon credits from entities known to achieve net C
storage. The Chicago Climate Exchange (CCX) administers transfer of carbon
credits through an established set of rules allowing GHG benefits from conser-
vation practices to be quantified, credited, and sold. Credits transferred by CCX
are aggregated from multiple agricultural producers and/or landowners to sell
them to CCX members that have made voluntary commitments to reduce their
GHG emissions. The CCX is the world’s first and North America’s only legally
binding rules-based GHG emissions allowance trading program, as well as the
world’s only global system for emissions trading for six GHGs (CO,, CH,, N,O,
sulfur hexafluoride, perfluorocarbons, and hydrofluorocarbons) (Chicago Cli-
mate Exchange, 2007).

The CCX program, while voluntary, has achieved considerable success in
North America. Since CCX began GHG emissions trading in 2003, approximately
six million acres of approved conservation practices have been enrolled in car-
bon credit programs throughout the United States and Canada (Dale Enerson,
personal communication, 2007). In North Dakota alone, more than 323,000 ha of
continuous NT and permanent grass were enrolled in the North Dakota Farmers
Union Carbon Credit Program in 2006 (North Dakota Union Farmer, 2007). Since
2003, the market value of CO, traded on the CCX has increased from $0.90 to $3.30
Mg CO, (Fig. 6-3). Carbon offset rates established by CCX for approved crop-
land practices (continuous conservation tillage) range from 0.49 to 1.48 Mg CO,
ha yr? (0.2 to 0.6 Mg CO, ac™ yr™), providing approximately $1.46 to $4.40 ha™
yr' in additional farm income based on the current market value of CO, (assum-
ing $3.30 Mg™ CO, minus a 10% aggregator service fee). Though remuneration is
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currently modest on a per acre basis, the supplementary income generated from
enrollment in carbon credit programs can provide a significant revenue source
for large landholders.

Carbon trading of agricultural offsets is likely to expand in the future. On
2 Apr. 2007, the U.S. Supreme Court declared the U.S. Environmental Protection
Agency must regulate GHG emissions as pollutants under the Clean Air Act (U.S.
Supreme Court, 2006). Should GHG emissions reductions be mandated by future
legislation, there will be increased demand for emission offsets from agricul-
ture. With this increased demand, carbon offsets will undergo greater scrutiny
to ensure emission reduction benefits are achieved (Schlesinger, 2006). For agro-
ecosystems, this may translate to more inclusive assessments of GHG emissions
when determining appropriate carbon offset values. For instance, instead of
using only estimates of SOC change across tiue to determine offset values (as
currently done), GHG emissions from all sources of production (farm operations,
N fertilizer production, etc.), as well as CH, and N,O flux, will need to be con-
sidered to arrive at an overall assessment of global warming potential (GWP) for
specific management practices. Comprehensive evaluations such as this will not
only alter carbon offset values for agroecosystems, but will change the portfolio
of accepted land management practices in carbon credit programs.

Greenhouse Gas Balance

Mitigation of GHGs from agroecosystems requires adoption of management
practices that minimize the increase in atmospheric radiative forcing. Radiative
forcing refers to the change in the net vertical irradiance at the tropopause due to
an internal change or a change in the external forcing of the climate system, such
as, for example, a change in the concentration of CO, or in the output of the sun
(IPCC, 2007). Appraisals of agroecosystem impacts on radiative forcing require
determinations of not only SOC accrual or loss, but of CH, and N,O flux as well.
Storage of atmospheric CO, into stable forms of SOC can sequester CO,, while
typical crop production practices generate N,O emission and decrease the soil
sink for atmospheric CH, (Mosier et al,, 2003). Collectively, the balance of the net
exchange of CO,, CH,, and N,O from an agroecosystem constitutes its net GWP
(Robertson et al., 2000), which represents the combined effect of these gases to
remain in the atmosphere and absorb outgoing infrared radiation (IPCC, 2007).

Studies in the U.S. Great Plains documenting the effects of dryland crop-
ping systems on GHG flux are lacking. Mosier et al. (2003) presented preliminary
results from a 1-yr evaluation in northeast Colorado, where continuous cropping
treatments possessed a net negative GWP (net CO, uptake), while cropping treat-
ments including fallow possessed a net positive GWP (net CO, loss). Methane
and N,O fluxes did not differ between cropping systems in their evaluation, mak-
ing management impacts on SOC the driving factor in determining net GWP.
Generally, dryland cropping systems are minor sinks for atmospheric CH, and
moderate sources of N,O, depending largely on the amount of N fertilizer applied
(Liebig et al., 2005).

In most agroecosystems, the relationship between SOC change to N,O emis-
sion regulates net GWP (Robertson et al.,, 2000). In this regard, data from Table
6-3 were used to calculate rates of N,O emission from dryland cropping systems
resulting in a neutral net GWP, thereby negating CO, sequestered as SOC after
accounting for CO, uptake and release (expressed as CO, equivalents) associated
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Table 6-4. Calculated rates of N,O emission to achieve neutral net global warming potential
(GWP) for no-till contmuous-croppmg management systems in the IJ S. Great Plains.

Calculated N, O

Location acsc%‘én e M ope':éifﬁnsx ssientoaiers

kg CO, equivalents ha-! yr* —————— g N ha"'d!
Mandan, ND -843 -46 247 85 558 33
Sterling, CO -440 -46 383 85 18 01
Stratton, CO -403 -46 383 85 -18 =
Walsh, CO -183 -46 383 85 -238 =
Bushland, TX ~ -1540 -46 115 85 1386 81
Temple X —587 —46 298 ) 85 250 1 5

tS0C, scnl organic carbon accrual values taken from Table 6—3 after conversion to kg CO equwalents {Mg
Cha™yr? x 1000 x 44/12); negative numbers imply CO, uptake; positive numbers |mply CO, release.

*#CH, uptake rate for dryland cropping systems taken from Liebig et al. (2005); conversion factors to CO,
equwalents for CH, and N,O were 25 and 298, respectively (IPCC, 2007).

§ CO, equivalents for N-fertilizer production based on published rates of N fertilization at experimental
sites and estimated energy use to produce (0.82 kg CO,-C kg™ N) (Follett, 2001) and apply (45.5 kg
CO, ha™') (West and Marland, 2002) fertilizer N.

1 CO, equivalents for farm operations adapted from Mosier et al. (2003).

with farm operations, N fertilizer production, and CH, flux. Only continuous
cropping systems under NT management with documented SOC accrual over
time were considered (i.e, Mandan, Sterling, Stratton, Walsh, Bushland, Temple).
Results from this exercise indicated practices at four sites could emit 0.1 to 8.1
g NJO N ha™ d" and maintain a neutral GWP (Table 6-4). Two sites (Stratton
and Walsh) were estimated to have net positive GWP before accounti ng for N,O
emission, where a net positive GWP implies an increase in atmospheric radiative
forcing. It is important to note, however, that with the possible exception of Bush-
land, all sites would likely possess a net positive GWE, as N,O emission has been
found to average 3.7 g N,O N ha™ d”' for dryland cropping systems with N fertil-
ization levels exceeding 50 kg N ha™ (Liebig et al,, 2005). Though calculations in
this exercise are approximations only, the results underscore the importance of (i)
accounting for all GHG sources and sinks for estimating the impact of agroeco-
systems on radiative forcing and, more specifically, (ii) optimizing N management
in dryland cropping systems to minimize N,O emission. As pointed out by Six et
al. (2004), the effectiveness of NT cropping systems to reduce atmospheric radia-
tive forcing is associated with the adoption of specific management practices that
increase SOC while concurrently minimizing N,O emission.

Conclusions

The purpose of this chapter was to provide a synopsis of management effects
on SOC for dryland cropping systems in the U.S. Great Plains. Data from long-
term experiments in the region indicate management practices capable of either
increasing SOC or mitigating SOC loss included adoption of NT, increased crop-
ping intensity, and improved soil fertility. Cropping systems characterized by
continuous cropping under NT management possessed the greatest potential for
accruing SOC in the region. Concomitant benefits from SOC accrual in dryland
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cropping systems include improvements in soil quality and crop productiv-
ity, and more recently, offset payments from industry to agricultural producers

through involvement in carbon trading programs. Though continuous cropping

NT management systems appear effective at sequestering SOC in the region, pre-
sumptions regarding the capacity of this practice to reduce atmospheric radiative

forcing are tenuous, owing mainly to uncertainties associated with the contribu-
tion of N,O emission on net GWP.
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