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ABSTRACT

Variation of the empirical drag coefficient, in Seginer’s
water drop ballistics equation as a function of drop size and
velocity, increased the accuracy of predicted velocities
when compared to measured values. The velocity
exponent, n, used to calculate the drag coefficient in
Seginer’s equation increases not only with increasing drop
size but also increases with increasing fall velocity. Using
falling water drop terminal velocities from a
meteorological model enables the calculation of water drop
ballistics for any air density. The throw distance of drops
from an impact sprinkler were simulated with the drag
coefficient dependent on drop size and velocity, and show
that simulated throw distances are greater for small drops
than if the velocity exponent has a typically used constant
value of two. KEYWORDS. Droplets, Velocity, Water,
Simulation, Sprinkler, Aerodynamics.

INTRODUCTION

alling water drop velocities can be measured
F experimentally or calculated numerically using finite

difference solutions of theoretical differential
equations. Velocities can be measured using photographic,
electrostatic, and laser techniques. However, if velocities
can be predicted accurately using numerical methods, time
could be saved conducting water drop impact experiments.

A differential equation developed by Seginer (1965) has

been used extensively for predicting the velocity of falling
water drops. Wang and Pruppacher (1977) developed a
computer model to predict falling water drop velocities.
Velocities predicted by these two methods were used to
prove that the velocity exponent n, used to calculate an
empirical drag coefficient in Seginer’s equation, increases
not only with increasing drop size as Seginer has shown
but also with increasing fall velocity. The objective of this
article is to define n as a function of drop size and velocity,
and to more accurately predict, using Seginer’s equation,
the subterminal velocity of freely falling water drops, as
determined from comparisons to measured velocities.

DYNAMICS OF WATER DROP MOTION
A water drop traveling through air has two significant
forces acting upon it, a gravitational force acting vertically
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downward and aerodynamic drag forces acting opposite the
direction of motion. Drag forces increase with increasing
velocity, and are directly related by a drag coefficient, Cp:

Cp = 2F (D
2
pV'A
where
Cp = drag coefficient (nondimensional),
F = drag force (ML/T2),
p = airdensity (M/L3),
V = velocity (L/T), and
A = cross-sectional area perpendicular to the

direction of motion (L2).

For rigid bodies, this drag coefficient is a function of the
Reynolds number only. For water drops, the drag
coefficient can be greater than that for a rigid sphere
because of deformation (flattening) of the leading surface
of the drop causing greater drag forces. Gunn and Kinzer
(1949) showed that water drops larger than approximately
1 mm (0.04 in.) diameter falling vertically at terminal
velocity have drag coefficients greater than that of rigid
spheres.

EMPIRICAL DRAG COEFFICIENT

Seginer (1965) developed the following differential
equation describing water drop ballistics using an empirical
drag coefficient, C;:

-4V -
8- c V' (2)
where
g = acceleration of gravity (L/T2),
dV/dt= resultant acceleration on the drop (L/T2),
C, = empirical drag coefficient (L1-"T"2),
V = velocity (L/T),
n = numerical exponent (nondimensional).

Equation 2 can be solved by finite difference numerical
techniques to predict velocity and, subsequently, distance
traveled for small time intervals. Seginer used data from
Laws (1941) to determine the variation of both n and C,
with drop size. The n value increased from approximately
1.6 to 2.87 as drop diameter increased from 1.0 to 6.0 mm
(0.04 t0 0.24 in.). Seginer (1965) stated that a value of n =2
should be suitable for predicting the velocity of raindrops
and sprinkler drops.
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FALLING WATER DrOP VELOCITY MODEL

Wang and Pruppacher (1977) developed a computer
model to predict the velocity of freely falling water drops.
The model uses equations developed by Beard (1976) that
predict terminal velocity for any air temperature and
atmospheric pressure and are a function of the Reynolds,
Bond and Davies Numbers, and also a Physical Property
Number defined as:

3 2
Physical Property Number, P = p 0P,
mipy-pe
where
o = surface tension of water (M/T2),
p, = density of the air (M/L?),
1 = dynamic viscosity of air (M/LT),
Pw= density of water (M/L3), and
g = acceleration of gravity (L/T2).

Beard’s equations are used to compute the Reynolds
Number at terminal velocity as a function of the Davies
Number for 0.019 to 1.07 mm (7.5E-4 to 0.04 in.) diameter
drops, and the Bond and Physical Property Numbers for
1.07 to 7.0 mm (0.04 to 0.28 in.) drops. Terminal velocity
is determined from the Reynolds number as follows:

Y=by+bX+bX +bX +bX +bX +bX (3)

0.019 to 1.07 mm 1.07 to 7.0 mm
(1.5E-4 t0 0.04 in.) (0.04 t0 0.28 in.)
= In(D) X = In(BP")
= -3.18657 b, = -5.00015
= 0.992696 b, = 523778
= -0.153196E-2 b, = -2.04914 (4)
= -0.987059E-3 b, = 0475294
= -(.578878E-3 b, = -0.0542819
= 0.885176E4 b; = 0.00238449
= -0.327815E-5 b= 0
Ry = exp |1 +232 1 1Py T/T,) "
P (5)
R, = Puaey
nd subsequently, Vp = pR./pd (6)
where
D = Davies Number (nondimensional),
B = Bond Number (nondimensional),
P = Physical Property Number (nondimensional),
Rt= Reynolds Number at terminal velocity
(nondimensional),
1, = 6.62E-8 m (2.6E-6 in.), the mean free path of
air molecules at 20° C (68° F) and 101.3 kPa
(14.7 psi),
Po = 1.205 kg/m3 (0.075 Ibm/ft3), the air density at
20° C (68° F) and 101.3 kPa (14.7 psi),
U, = 1.81E-5 Pa-sec (3.8E-7 Ib-sec/ft2), dynamic

viscosity of air at 20° C (68° F) and 101.3 kPa
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(14.7 psi),
T = absolute air temperature,
T,= 293.15° K (527.67° R), and
V= water drop terminal velocity (L/T).

Using these relationships, Wang and Pruppacher’s
model determines water drop velocities and fall distances
for increasing incremental values of the Reynolds Number.
A key assumption in their model is that the aerodynamic
resistance on an accelerating drop is the same as the
resistance on a smaller drop at terminal velocity with the
same Reynolds number. They measured water drop
velocities for 0.5 to 20 m (1.6 to 65.6 ft) fall heights at air
conditions of 20° C and 100.0 kPa (68° F and 14.5 psi) and
verified that the model was accurate except for 2 to 8 m
(6.6 to 26 ft) fall heights where it may slightly (1%)
underpredict velocity. Hinkle et al. (1987) compared the
model to water drop velocities measured at 20° C, 84.1 kPa
(68° F, 12.2 psi) and 0.5 to 5 m (1.6 to 16.4 ft) fall heights
and also showed this slight underprediction for fall heights
greater than 2 m (6.6 ft).

ANALYSES AND DISCUSSION .
COMPARISON OF VELOCITIES PREDICTED USING THE
EMPIRICAL COEFFICIENT WITH MEASURED VELOCITIES

Velocities predicted by equation 2 forn =2, n as a
function of drop diameter as determined by Seginer, and n
as a function of both drop diameter and velocity were
compared to velocities measured by Laws (1941) near sea
level and by Hinkle et al. (1987) at 1570 m (5150 ft)
elevation. A fourth-order Runge-Kutta method was used to
solve equation 2 numerically with finite time differences.
The empirical coefficient, C,, was determined using
equation 2 and terminal velocities predicted by the Wang
and Pruppacher model. At terminal velocity, dV/dt = 0 and
equation 2 is solved for C, as:

C, = g/Vp (7

The differences between velocities predicted using n =2
and measured velocities by Laws (1941) and Hinkle et al.
(1987) are shown in Tables 1 and 2, respectively. Laws’
measured velocities over a range of air temperatures (20.7

TABLE 1. Differences between falling water drop velocities predicted by Seginer’s
(1965) differential equation (n=2) and velocities measured by Laws (1941) near sea level

Water drop velocity difference (%)

--------------------------------- Drop di
Fall Height 1.5 20 3.0 4.0 50 6.0 mn
(m) (f 0.06 0.08 0.12 0.16 0.20 0.24 in.
0.5 1.6 47 24 0.6 -04 - 1.6 -1.8
1.0 33 4.0 36 07 - 1.0 -21 -29
20 6.6 36 30 1.2 -13 -4 -5.1
30 9.8 1.2 19 1.5 -13 - 4.0 -6.2
40 13.1 -0.1 14 13 -1.7 -49 -7.1
50 164 -10 0.8 0.7 -21 -50 -7.1
60 197 - 1.5 0.5 03 -23 - 5.0 -6.8
80 26.2 - 1.6 -1 -04 -26 -50 -6.3
Terminal
velocity 5.44 6.54 8.09 8.87 9.14 9.19 m/s
from W-P 17.8 21.5 26.5 29.1 30.0 30.1 ft/sec
maodel
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TABLE 2, Differences between falling water drop velocities predicted by Seginer’s
(1965) differentlal equation (n=2) and velocities measured by Hinkle et al. (1987) at

1570 m (5150 ft) elevation
Water drop velocity difference (%)
Drop di
Fall Height 25 30 35 40 45 50 55 mm
{m) ) 0.10 0.12 0.14 0.16 0.18 020 022 in.
0.5 1.6 1.5 1.1 1.1 1.0 08 08 0.8
1.0 33 0.7 0.2 -0.1 -04 -04 -05 -05
20 6.6 08 0.6 0.0 .10 -19 -26 -28
3.0 9.8 03 0.1 -07 -7 -23 -34 -35
40 131 -05 0.1 -0.7 -9 -3l -41  -47
50 164 - 1.0 -04 -1.0 -23 -35 -48 -57
Terminal
velocity 798 8.72 9.25 9.60 982 994 999 m/s
from W-P 26.2 28.6 30.3 315 322 326 328 fifsec
model

to 25.0° C [69.3 to 77.0° F]) and atmospheric pressures
[99.2 to 101.2 kPa [14.39 to 14.68 psi]). Laws drew
smooth curves through these data and interpolated the
curves to define velocities for specific drop sizes and fall
heights. Since these data represent the average conditions
of his experimental conditions, average values of 22.8° C
and 100.5 kPa (73 F and 14.58 psi) were used in Wang and
Pruppacher’s (1977) model to determine terminal
velocities. Hinkle et al’s (1987) data are for 20° C and 84.1
kPa (68°F and 12.2 psi). Predicted velocities using n = 2
tended to be greater for small drops and low fall heights,
and lesser for large drops and greater fall heights. For very
great fall heights, the velocity differences should approach
zero, since the finite difference solution approaches
terminal velocity.

If n is allowed to vary with drop diameter as suggested
by Seginer (1965), the differences between computed and
measured velocities are less for larger drops but greater for
the smaller drops than when n = 2. The differences between
velocities predicted by equation 2 with n dependent on
drop diameter, n = f(d) from Seginer (1965) and those
measured by Hinkle et al (1987), are shown in Table 3.
Velocities predicted by equation 2 and n = f(d) cannot be
verified with Laws’ (1941) data because those data were
used to determine n = f(d).

COMPARISON OF VELOCITIES PREDICTED USING THE
EMPIRICAL COEFFICIENTS TO VELOCITIES PREDICTED BY
WANG AND PRUPPACHER’S MODEL

Velocities were calculated using Seginer’s (1965)

TABLE 3. Differences between falling water drop velocities predicted by Seginer’s
(1965) differential equation with n = f (diameter) and velocities measured by Hinkle et
al. (1987) at 1570 m (5150 ft) elevation

Water drop velocity difference (%)
Drop di
Fall Height 25 3.0 35 40 45 50 55 mm
(m) (ft) 0.10 0.12 0.14 0.16 0.8 020 0.22 in,
0.5 1.6 - 0.1 0.1 0.7 1.2 14 20 20
1.0 33 - 15 -1.2 -06 -0.1 0.6 1.2 1.9
20 6.6 - 19 -1 -08 -07 -05 -0.1 0.7
3.0 9.8 -24 - 1.7 -15 -3 -1l -05 0.5
40 1341 -30 -1.8 -15 -5 -14 1.1 04
50 164 -32 -2.1 - 1.8 -9 -19 -19 -16
n value 1.70 1.79 1.90 205 222 242 2.66
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equation with n = 2 and Wang and Pruppacher’s (1977)
model, all at 20° C and 101.3 kPa (68° F and 14.7 psi). The
velocity differences are illustrated in figure 1 and are
similar to those in Tables 1 and 2. If n varies with drop
diameter as defined by Seginer, the velocity differences are
similar to those in figure 1 but ranging +2% instead of
+5%. An n value <2 for the smaller drops and >2 for the
larger drops reduces the velocity differences. These
observations further establish that n should increase with
increasing drop diameter just as Seginer (1965) had shown.

The velocity differences in figure 1 suggest that n values
should increase with increasing fall height (velocity). The
velocity differences for 3 to 5 mm (0.12 to 0.20 in.) drops
are positive initially (velocity predicted by Seginer’s
equation are greater than velocities predicted by Wang and
Pruppacher’s model), they then become negative with
increasing fall velocity. Decreasing the n value causes the
velocity differences to be less positive and increasing the n
value causes the velocity differences to be less negative.
The velocity differences can be further reduced if n is less
than n = f(d) initially and increases with increasing fall
velocity.

The variation of n with fall velocity is apparent in
Seginer’s (1965) linear regression of Laws’ (1941) data
from which was determined n-f(d). However, these data are
not linear for the lower velocities. If smooth curves are
drawn through Laws’ data (Seginer, 1965), the slope (n
value) increases as velocity increases for the lower fall
velocities. Unfortunately, Laws (1941) would have had to
measure velocity over much smaller fall height intervals at
the lower velocities to quantify n as a function of velocity.

DETERMINATION OF N AS A FUNCTION OF DROP DIAMETER
AND VELOCITY

The value of n was determined as a function of drop
diameter and fall velocity by iterating the value of n within
the finite difference solution of equation 2 to predict
velocities that matched those predicted by Wang and
Pruppacher’s (1977) model, all at 20° C and 101.3 kPa (68°
F and 14.7 psi). The n values computed from this iteration
are shown in figure 2 for 1, 2, 3, 4, 5, and 6 mm (0.04,
0.08, 0.12, 0.16, 0.2, 0.24 in.) diameter drops. The n values
are plotted against velocity divided by terminal velocity,
v/vy so that equations to predict n will be independent of

d=1.0 mm

Note: 1 mm = 0.04 inches
1 m = 3.28 feet

VEL. DIFF., (Seg. — W&P), %

FALL HEIGHT, m
Figure 1-The differences between velocities predicted by Seginer's

differential equation with n=2 and velocities predicted by Wang and
Pruppacher's computer model.
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Figure 2-The variation of n with fall velocity (as determined from
iteration of n in Seginer's differential equation to match Wang and
Pruppacher's computer model velocities).

atmospheric conditions. Air temperature and atmospheric
pressure are needed only to calculate B, D, P and
subsequently, terminal velocity. Seginer (1965) also
proposed using v/vy to yield nondimensional velocities.

The value of n is nearly linear with v/vy for
0.3<v/v;<0.98, which represents most of a water drop’s
initial fall distance. One to 6 mm (0.04 to 0.24 in.)
diameter water drops attain three-tenths of their terminal
velocity before falling 0.4 m (1.3 ft), and 1, 1.5, and 2 mm
(0.04, 0.06, and 0.08 in.) drops reach 98% of terminal
velocity after 3.5, 5.5, and 8 m (11.5, 18, and 26 ft) of fall,
respectively. Water drops of 2.5 to 6 mm (0.10 to 0.24 in.)
diameter reach 98% of terminal velocity after 10 to 12 m
(33 to 39 ft) of fall.

Numerous curve-fitting attempts were applied to the n
value and velocity data. The resulting n = f(d,v/vq)
functions were used in the finite difference solution of
equation 2 to predict falling water drop velocities which
were compared to Laws’ (1941) and Hinkle's et al. (1987)
measured velocities. A linear relationship between n and
v/vr had correlation coefficients equal to or greater than
polynomial, exponential or logarithmic regressions. The
slope, intercept and correlation coefficients for the linear

TABLE 4, Linear regression results for n value as a function of fall
velocity divided by terminal velocity*

n = Intercept + Slope (velocity/ terminal velocity)

Drop
diameter Correlation
coefficient
(mm) (in.) Intercept Slope )
1.0 0.04 1.467 0.118 0.944
1.5 0.06 1.596 0.209 0.922
2.0 0.08 1.718 0.142 0.946
2.5 0.10 1.756 0.203 0.976
3.0 0.12 1.772 0.330 0.995
35 0.14 1.797 0.472 0.995
4.0 0.16 1.825 0.631 0.996
45 0.18 1.850 0.796 0.997
5.0 0.20 1.905 0.917 0.996
55 0.22 1.954 1.016 0.993
6.0 0.24 2.024 1.058 0.992

*  As determined by iterating n in Seginer's equation to predicted
velocities to match those from Wang and Pruppacher's model.
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Figure 3-Linear regressions of n as a function of fall velocity for
different drop diameters.

regressions of n to v/vy for 0.3<v/v;<0.98 are shown in
Table 4. The linear equations are plotted in figure 3.

The differences between velocities predicted using these
linear equations with equation 2, and the measured
velocities by Laws (1941) and Hinkle et al. (1987) are
shown in Tables 5 and 6, respectively. The empirical drag
coefficient, C, was calculated by equation 7 for each step
of the finite difference solution of equation 2. As in
previous comparisons, the velocity differences were less
than if n = 2. The differences also were generally less than
those computed with n as a function only of drop diameter.
The differences between velocities predicted with equation
2 using n = f(d,v/vy) and Hinkle et al.’s (1987) velocity
data were overall within 1.7%.

Most of the velocity differences in Table 6 were
negative and occurred at the intermediate (>2m, >6.5 ft)
fall distances. Since Wang and Pruppacher’s (1977) model
slightly underpredicts in this range of fall distances and the
n = f(d,v/vy) relationships were determined using their
model, the solution of equation 2 with the n = f(d,v/vy)
equations will underpredict velocities for this intermediate
range of fall heights, also.

SIMULATED SPRINKLER WATER DROP BALLISTICS WITH N
AS FUNCTION OF DROP DIAMETER AND VELOCITY

The values of n and C, in Seginer’s (1965) equation
have a significant effect on simulated throw distances of
sprinkler drops. The ballistics of water drops from an
agricultural impact sprinkler were simulated by finite
difference solution of equation 2 separated into vertical and

TABLE 5. Differences between falling water drop velocitles predicted by Seginer’s
(1965) differential equation with n = f (d, v/vy) and velocities measured by Laws
(1941) near sea level

Water drop velocity difference (%)

Drop di
Fall Height L5 20 30 40 50 60 o
m fy 0.06 0.08 0.12 0.16 0.20 0.24 in
05 16 2.1 09 -0.1 -05 -11 -0.9
1.0 33 1.3 1.7 0.0 -0.7 -0.9 -L1
20 6.6 1.3 13 0.7 -03 -1 -1.9
30 9.8 -03 04 13 0.2 -1.0 -22
40 131 -12 03 1.2 0.0 -1.6 -26
50 164 - L6 0.0 0.8 -03 -1.6 -2.6
60 197 -20 -02 04 -05 -1.6 -2.5
8.0 262 - 1.8 -1.5 -03 - 1.0 -22 -2.7
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TABLE 6. Differences between falling water drop velocities predldéd by Seginer’s
(1965) differential equation with n = f (d, v/vy) and velocities measured by Hinkle et al.
(1987) at 1570 m (5150 ft) elevation

Water drop velocity difference (%)
Drop di
Fall Height 25 30 35 40 4.5 5.0 55 mm
(m) (¢ 0.10 0.12 0.14 0.16 0.18 0.20 0.22 in.
0.5 1.6 0.5 0.5 0.8 09 09 1.3 1.1
1.0 33 - 0.5 -0.5 -03 <02 - 0.2 04 0.8
20 6.6 -04 0.1 0.1 -02  -06 -06 -04
30 9.8 -08 -0.2 -0.2 -04  -07 -0.7  -0.2
40 131 - 14 -0.1 0.0 -0.3 -0.7 -09 -09
50 16.4 - 1.6 -04 -0.2 -05 -09 -14 -17

horizontal components. The acceleration on a drop is
determined from:

dVy -1
¥ =g
o gt CV Vy (8)
dv .
—x = cv"v )
dt nr X
where
V.= resultant water drop velocity (L/T),
t = time (T),

V.= vertical component of water drop velocity (L/T),
Vy= horizontal component of water drop velocity

*wm.

Equations 8 and 9 are similar to equations given by von
Bernuth and Gilley (1984). A fourth-order Runge-Kutta
technique was used to solve equations 8 and 9. Equations
3,4, 5, and 6 were used to determine terminal velocity for
any air density. Equations 7 and n = f(d,v/vy) as given in
Table 4 were used to calculate n and Cy, respectively.

The exit velocity of water from an impact sprinkler is
typically far greater than free falling terminal velocities.
The value of n is not defined by n = f(d,v/vy) as shown in
figure 3 for velocities greater than terminal. The value of n
may not continue to increase for velocities greater than the
terminal velocity. Therefore, the relative differences in
horizontal travel distance of sprinkler drops were simulated
for n = 2 and for n = f(d,v/vy) but with n limited to that
which would be relevant at terminal velocity. Simulated

results for a typical impact sprinkler mounted on a center
pivot are shown in Table 7. The initial conditions are:

« The sprinkler is mounted 4 m (13 ft) above the
impact surface.

« The exit angle above horizontal of the water from the
sprinkler is 23°.

» The exit velocity of the water from the sprinkler is 25
m/s (82 ft/s), typical of a sprinkler with a nozzle
pressure of 330 kPa (48 psi).

Simulated throw distances with n = f(d,v/vy) and n
limited. to n at terminal velocity, are greater for the smaller
drops and less for the larger drops than if n = 2. Velocities
of the drops range from 25 m/s (82 ft/sec) to approximately
80% of terminal velocity. The small drops have n values <2
which increases throw distances. The large drops have n
values >2. which decreases throw distances. Greater n
values simulate greater air resistance on the drop. However,
simulated throw distances for the 5 and 6 mm (0.20 to 0.24
in.) drops are less than the throw distance for the 4 mm
(0.16 in.) drop. Maximum n values are too great for the
larger drops. In figure 3, the computed n values are less
than the regression lines near terminal velocity and appear
to be asymptotic to some finite value suggesting a
maximum value less than that calculated by the linear
equations of Table 4.

The larger drops are the last drops to form from the
water stream exiting an impact sprinkler. This fact
increases the throw radii of the larger drops, a condition not
included in the ballistics of drops using only Seginer’s
(1965) equation. Additional techniques would be needed to
simulate the break up of drops from the water jet and of the
air stream flowing next to the water jet. Water emitted from
spray nozzles with impingement plates typically forms
drops within a short distance of the plate and with
velocities much less than that of impact sprinklers.
Consequently, this improved ballistics technique will work
better for spray nozzles than for impact sprinklers.

CONCLUSIONS

The velocities of water drops falling freely and
vertically can be calculated more accurately with Seginer’s
(1965) differential equation by using linear functions of n,
which are dependent upon fall velocity and drop diameter,
than by using a typically used constant value of 2 for n.
The differences between velocities predicted with Seginer’s

TABLE 7. Simulated horizontal throw distances and impact velocities of water drops from an impact sprinkler
using Seginer's differential equation with n = 2 and n calculated with the linear n = f (v, v/vy) equations

n=2 n=f(v/vr)n<fivy)
Throw Impact Throw Impact Min. Max.
Drop diameter distance velocity distance velocity n n
(mm)  (in.) m) () (ms)  (fifs) m m/fs)  (fifs)
0.04 4.54 149 4.00 13.1 5.81 19.1 3.99 13.1 1.56 1.58
0.08 9.40 30.8 6.22 20.4 9.87 324 6.20 20.3 1.83 1.86
0.12 12.50 41.0 7.38 24.2 12.15 399 7.38 24.2 2.03 2.10

0.16 14.02 46.0 791 259
0.20 1455 477 8.09 265
0.24 1463 480 8.12 266

1270 417 8.00 262 231 2.46
1245 408 827 271 2.60 2.82
12.07 39.6 835 274 2.83 3.08

b -

sec).

VoOL. 7(1): JANUARY 1991

The sprinkler height is 4 m (13.3 ft), nozzle angle is 23°, and the exit velocity of the water is 25 m/s (82 ft/
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(1965) equation and velocities measured at sea level and at
1570 m (5150 ft) elevation were less than if n were
assumed a constant (2) or a function of drop diameter only.
Using n = f(d,v/vy) should also predict more accurately the
horizontal throw distances of water drop from spray
nozzles and the smaller drops from impact sprinklers for
any air temperature and pressure.

The results of this study have the following
experimental and practical significance.

1. The value of the empirical drag coefficient is a
function of water drop size and velocity, just as the
physically-based drag coefficient used for rigid bodies (eq.
1) is a function of the Reynolds number and, consequently,
a function of drop size and velocity.

2. Wang and Pruppacher’s (1977) model can be used to
directly calculate raindrop velocities for any air
temperature and pressure.

3. Because the linear equations used to calculate n are a
function of velocity nondimensionalized by terminal
velocity, the ballistics of sprinkler drops can be predicted
with Seginer’s (1965) equation for any air temperature and
pressure because terminal velocities can be determined
with Wang and Pruppacher’s (1977) model. Subsequent
differences in sprinkler distribution can then be
determined.

4. Potential differences in runoff for different air
pressures (i.e., elevations) and temperatures can be
determined with this modified ballistics procedure and an
infiltration model.
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