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Bruise damage on pears is one of the most crucial internal quality factors, which needs to be detected in
postharvest quality sorting processes. Near-infrared imaging techniques (NIR) have effective potentials
for identifying and detecting bruises since bruises result in the rupture of internal cell walls due to
defects on agricultural materials. In this study, a novel NIR technique, hyperspectral imaging with beyond
NIR range of 950-1650 nm, was investigated for detecting bruise damages underneath the pear skin,
which has never been examined in the past. A classification algorithm based on F-value was applied
for analysis of image to find the optimal waveband ratio for the discrimination of bruises against sound
surface. The result demonstrated that the best threshold waveband ratio detected bruises with the accu-
racy of 92%, illustrating that the hyperspectral infra-red imaging technique with the region beyond NIR
could be a potential detection method for pear bruises.
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1. Introduction

Optical sensing and imaging technologies have been an effec-
tive tool for non-destructive inspection and assessment for quality
and safety of agricultural/food products. For fruits, NIR spectral
imaging is one of the most successful methods for detecting dam-
ages in the products, and recent advance in spectroscopic device
allows developing innovative technique collecting information
which cannot be obtained by conventional methods.

Recently, a novel method that integrates two mature technolo-
gies of imaging and spectroscopy, named hyperspectral image, has
been developed and increasingly used for non-destructive evalua-
tion of fruit quality. Hyperspectral sensing technique, also known
as chemical imaging, collects image data at a series of narrow
and contiguous wavelength bands, acquiring both spatial and spec-
tral information simultaneously. The obtained data forms a three
dimensional hyperspectral cube which consists of two dimensional
spatial images with additional spectral information. The spectrum
of each spatial pixel contains fingerprints or signatures of sub-
stances at corresponding spot on the hyperspectral image. As
hyperspectral imaging can report both chemical and physical
information of the material, it provides an opportunity for more
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detail image analysis which makes it possible to discriminate
either visually indistinguishable defects or spectrally similar mate-
rials. This novel technique was initially implemented for remote
sensing applications which utilize satellite imaging data of planets
such as mineral mapping (Clark et al., 1992), soil property detec-
tion (Ben-Dor et al., 2002), and vegetation mapping (Aber and Mar-
tin, 1995), but broaden its application to diverse fields of
agriculture, pharmaceutics and medical science.

Because hyperspectral imaging is applicable for large spatial
sampling areas, it can be used for scanning the whole products,
potentiating it as an effective tool for identifying and detecting
spectral and spatial anomalies on agricultural products. Limita-
tions of manual sorting and classical imaging technique, such as
inefficiency, low accuracy, and labor and time-intensive nature,
have launched the hyperspectral imaging in detecting fruit defects.
Particularly, its high-sensitivity detecting indistinctive defects in
agricultural products is fit for sensing bruise damage on fruits
which deteriorates fruit quality, costing significant economic loses.

One of the earlier studies using NIR hyperspectral imaging tech-
nique was to investigate detection of bruises on Red Delicious and
Golden Delicious apples (Lu, 2003). This study developed a suitable
system for using an extended NIR range. It reports that reflectance
of bruised damages increased over time in the spectral range be-
tween 1000 nm and 1340 nm corresponding to the most appropri-
ate range for bruise detection with 54-94% of correct detection
rate. Other researchers have also used hyperspectral image in the
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400-1000 nm region analyzed by statistical methods to detect
bruises on ‘Jonagold’ apples after 1 day with an accuracy of 77.5%
(Xing and De Baerdemaeker, 2005, 2007), and free formed bruises
on ‘Golden Delicious’ with 86% accuracy (Xing et al., 2007). Similar
application of hyperspectral imaging with the use of three NIR
spectral bands at 750, 820, 960 nm was proposed for successful
discrimination of bruised ‘McIntosh’ apples (EIMasry et al., 2008).
Recently, ‘Fuji’ apples were studied using hyperspectral imaging
technique to discriminate bruises with a classification threshold
calculated by two-band ratio (Cho et al., 2011). Besides apples,
damages on other fruits have been examined. Pits in tart cherries
were optimally identified with spectral region between 692 and
856 nm in hyperspectral imaging (Qin and Lu, 2005), and a porta-
ble hyperspectral imaging device was utilized for detecting canker
lesions on citrus fruit in the wavelength range between 400 and
900 nm (Qin et al., 2008). For detecting invisible bruises on ‘Crys-
tal’ pears, four different classification algorithms were applied into
hyperspectral image data collected with the spectral range of 408-
1117 nm to compare classification accuracies (Zhao et al., 2010).
Recent study on kiwifruit demonstrated that bruises on kiwifruit
are detectable using 5 optimal wavelengths in the Vis/NIR hyper-
spectral image (Lu et al., 2011). Recently, a study has reviewed
hyperspectral imaging technique in evaluating fruit and vegetable
quality (Lorente et al., 2012).

It has been reported that internal quality of fruits is more effec-
tively detected by an extended region beyond Vis/NIR (Lu et al.,
2000; Moons et al., 1998). Nevertheless, few studies have been
used NIR because of the lack of suitable NIR imaging devices cov-
ering the extended NIR region (Lu, 2003). Moreover, to our knowl-
edge, only hyperspectral Vis/NIR imaging have been used to detect
bruises on pears, but the extended range of NIR has not been used
(Zhao et al., 2010), promoting the originality of this study using the
extended range of NIR for pear bruise detection.

In this study, near infrared hyperspectral imaging in the 950-
1650 nm region was firstly used to investigate the feasibility of
multispectral reflectance ratio imaging techniques for detection
of bruise damages on ‘Shingo’ pear. Simple ANOVA classification,
a novel way to analyze hyperspectral imaging, was explored to se-
lect waveband ratio and threshold values for optimal classification
of bruised pears (Cho et al., 2011). Findings in this study is ex-
pected to potentially propose developing low-cost and real-time
multispectral imaging systems for quality sorting of pear in fruit
processing plants.

2. Materials and methods
2.1. Fruits and bruising

‘Shingo’ pears were purchased from a local market in February
2011. For bruise treatments, two bruises spots in the middle area
between stem and calyx on four individual pears were created by
dropping the fruits. Three bruise levels were created using 5, 10
and 15 cm dropping heights. A total of 14 samples, four pears for
each of three levels of bruise treatments, and two pears as control,
were evaluated in this investigation. Hyperspectral images of pears
were acquired before and after bruise treatments — measurements
were conducted 1 h after the initial bruising, followed by 1, 2, 3, 4,
7,9, and 11 days. For the duration of this hyperspectral imaging
study, the sample pears were stored under ambient conditions
(20 °C and 30% RH).

2.2. Hyperspectral imaging system

A schematic diagram of the hyperspectral NIR imaging system
and form of three dimensional hyperspectral data are illustrated

in Fig. 1. It consists of a 320 (spatial) x 256 (spectral) pixel InGaAs
Focal Plane Array (FPA) camera (Xenics, Model XEVA-1.7-320, 14-
bit, Leuven, Belgium), an imaging spectrograph (SWIR Hyperspec,
Headwall photonics, Fitchburg, MA, USA), and a 25-mm focal
length lens (Optec, Model OB-SWIR25/2, Parabiago, Italy) along
with a computer-controlled uniaxial stage (Velmex, Model XN10-
0180-M02-21, Velmex Inc., Bloomfield, NY, USA). The spectrograph
disperses incoming radiation from each spatial location on the line
scan. The sample is scanned line-by-line over a nominal wave-
length range of approximately 950-1650 nm. The use of a pro-
grammable positioning table allows line-by-line sample imaging
for reflectance measurements. For each line scan measurement,
the positioning table was incremented by 0.5 mm at an exposure
time of 15 ms. The full hyperspectral image was acquired in about
110 s with 250 scans for a pear.

[llumination for reflectance imaging is provided by two 150 W
quartz tungsten halogen lamps (Dolan Jenner, Model DC-950,
MA, USA) and the lights are conveyed through low-OH fiber assem-
blies (1 m length, Dolan Jenner), with one end of the assembly cou-
pled to the lamp enclosure and the other end arranged in a thin
line (250 mm) of fibers. Two fiber assemblies are used to illumi-
nate the line of IFOV (instantaneous field of view) of the imaging
system, with the line of fibers positioned 75 mm above the IFOV
at 10° forward and backward angle with respect to the vertical to
illuminate the IFOV. Except for the QTH lamp box, imaging system

InGaAs camera
Imaging spectrograph
Lens

Quartz tungsten
halogen lamp

Positioning table

3D Hypercube

Single pixel spectra

—

Image plane at A,

Fig. 1. Schematic illustration of NIR (950-1650 nm) hyperspectral reflectance
imaging system and hypercube structure; spatial axes x, ¥, and spectral axis /.
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is housed within an aluminum-framed enclosure with black foam
board cladding. Fully-automated data acquisition interface soft-
ware was developed using a Software Development Kit (SDK) pro-
vided by the camera manufacturers on a Microsoft (MS) Visual
Basic (Version 6.0) platform in the MS Windows operating system.

2.3. Image parameters

In the spectral dimension, 256 x 30 pm pixels are available for
the system. For the system with no vertical pixel binning, a total of
150 spectral pixels spanned the effective spectral imaging range
from approximately 950 nm to 1650 nm, with a pixel-to-pixel
wavelength separation of 4.82 nm.

Wavelength calibration for the system was conducted using a
mixture of rare-earth oxides, dysprosium oxide (Dy,03), erbium
oxide (Er,03), and holmium oxide (Ho,03), which exhibit many
discrete absorption minima. The powder mixture, each oxide in
equal weight, was lightly compacted to 0.5 cm thickness in a
3.5 cm diameter circular holder for measurement.

A white diffuse reflectance reference panel and dark current
measurements were used to calculate percent reflectance values
(R). R for a spatial pixel (i) at a given wavelength was calculated
using the following equation:

RS; — RD;

Ri= RR; — RD;

x 100 (1)
where RS, RD, and RR are the raw intensity values of identical pixels

from the sample image, dark current image, and white reference,
respectively.

2.4. Image processing

This study focused on selecting a two-waveband ratio that
could be applied toward developing low-cost and real-time imag-
ing systems. In the two-waveband ratio, denominator played a role

Specular
a
( ) Bruises

for normalization of the spectra to minimize the outside interven-
tion besides the reflectance of bruise and sound surface.

For comparing two groups of interest, a simple statistical com-
parison is sufficient tool for determining the significant difference
between groups (Kutner, 2005). Selection was determined based
on F-values of ANOVA between bruises and sound areas because
our focus was to find an optimal waveband ratio for classifying
those two areas. Following the waveband selection, frequency of
all the waveband ratios for bruises and sound surfaces were re-
corded. Then, the optimal global threshold was determined at the
point of the highest classification accuracy where the two fre-
quency distributions were crossed. Spectra from individual pixels
from the bruise and sound region of interests (ROI) were used in
determining the optimal wavebands and threshold values (Cho
et al., 2009).

MATLAB software (version 7.0.4, The Mathworks, Natick, MA)
was used to process and analyze hyperspectral images.

3. Results and discussion

Representative spectra, extracted from NIR hyperspectral image
of a pear including the bruises, sound areas, lenticels and regions
with specular responses were measured with respect to wave-
length (Fig. 2). Fig. 2(a) showed that original (left) and normalized
hyperspectral images (right) of pear. As shown in the original im-
age reflectance intensity variations of pear surfaces, especially
from the center portion to the edges, were high because of round
geometric shapes of the samples. To neutralize the effect of the
round geometry of the fruits, the hyperspectral image data were
normalized with respect to the peak values of individual spectra
(bruise, sound surface, specular, and lenticel) achieved at around
1074 nm (Fig. 2(b)).

In the spectra, the dominant water absorption features (valleys)
were observed at around 970 nm, 1190 nm, and 1450 nm, corre-
sponding to absorption maxima of water in the NIR region
(Biining-Pfaue, 2003; Zheng et al., 2008). In general, relative reflec-
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Fig. 2. Representative (a) spectral image (1200 nm) and (b) mean spectra of bruised and sound regions of pears before (left) and after (right) spectral normalization.
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tance values of bruise regions are lower than those of other surface
regions, suggesting that defects were detectable by water absorp-
tive characteristics in the spectra. However, bruise regions from
the normal pear surfaces cannot be easily differentiated with the
use of a single spectral band image due to the high spatial varia-
tions. Normalization was able to circumvent this problem, and
clarify that bruised regions exhibited relatively stronger water
absorption compared to the sound regions. The images in Fig. 2
showed representative sample pear with two bruise spot at
1200 nm before and after the spectral normalization. These images
confirmed the advantage of normalization. Compared to the
unprocessed image, the normalized pear image in the lower clearly
shows distinct compartmentalization of bruises caused by the rel-
atively lower intensities of the bruised regions than the surround-
ing normal regions. In addition, the regions with specular
responses were also reduced, minimizing the variations extrinsic
to bruise detection. Consequently, the bruises areas in the normal-
ized image could be more clearly identified than those in the origi-
nal image. This observation suggested that bruises detection might
be feasible with the use of two spectral bands in the NIR region un-
der investigation; one for normalizing the spectra and the other for
optimally detecting the bruises in the hyperspectral image. The
selection of two bands effective for bruise detection was then per-
formed, described in the following.

F-values of one-way ANOVA for all possible two wavebands ratio
for the spectra of the two groups, bruises and sound areas were cal-
culated to find the best waveband ratio pair for discriminating
bruises from the sound surfaces of the entire hyperspectral images
of pears before and after bruise treatments (n = 126). A larger F-va-
lue indicates a more statistically significant mean separation be-
tween the two groups. Because of numerous ANOVA tables
resulted from all the pair of two bands we used a contour plot for
effectively reporting F-values. Fig. 3 showed that the most effective
spectral wave lengths for discriminating bruises and sound surface,
illustrated by contour plot. Contour image was plotted by F-values
obtained from ANOVA for the bruises and sound surface groups of
pears. The result showed that the means of the two groups were
most significantly different (separated) by a two-band ratio at
1016 nm and 1074 nm wavelengths (R1074/R1016) indicated by
white arrows in Fig. 3. Bruising involves chemical changes resulted
from local degradation of the tissue combined with intracellular
water exit and browning by oxidation of phenolic compounds from

1074 nm / 1016 nm

Wavelength 2 (nm)

1200

1100

1000

71000 1100 1200 1300 1400 1500 1600
Wavelength 1 (nm)

Fig. 3. Contour plot of F-value calculated by waveband ratio. The most effective
wave length was searched and contour plot was built using F values for wavelength
pairs (ratio) used for discriminating bruises from sound surface of pear. Color bar in
the right-side of the contour plot shows F-value whose value increases from the
blue to the red. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

released intracellular water (Pajuelo et al., 2003). However,
1016 nm and 1074 nm are not related to any of water and phenolic
compounds, meaning that those bands are statistically significantin
terms of discriminating bruise region from other areas using
spectral image but not chemically interpretable. Similarly,
Kamruzzaman et al. (2011) discriminated 3 types of lamb muscles.
Waveband of 1074 nm was one of the main spectra for the muscle
discrimination, but no chemical interpretation was assigned to
1074 nm, suggesting some waveband is effective for sensing, but
chemically insignificant. An additional analysis for discovering
chemical compounds matching to 1016 nm and 1074 nm may be
interesting future subject.

In Fig. 4, where both distributions are crossed is the optimal
threshold because it simultaneously minimizes erroneous classifi-
cations of bruises into sound surfaces or vice versa. For example, a
ratio below the threshold increases misclassification of bruises to
sound surface, while a larger ratio increases erroneous assign-
ments of sound surface into bruises. To strictly determine the
threshold, frequency distributions of appearance of two-waveband
ratio for bruises and sound surfaces were individually regressed
using Gaussian distribution (Eq. (2)).

-p?

e 22 (2)

1
Y (frequency) T
where p is the mean of the ratio distributions (1.15 for bruises and
1.23 for sound surface), and ¢ is the standard deviation of the ratio
distributions (0.0234 for bruises and 0.0368 for sound surface). x is
the band ratio resulting in the corresponding frequency.

Then, the regression curves for bruises and sound surfaces were
subtracted to find the zero-difference point, corresponding to the
ratio of 1.19 (Eq. (3)).

R
- |— 1 —— 2 =
T | e 5 e 0 (3)
where p; =1.15 and p, = 1.23 which are the means of bruise and
sound surface distributions, respectively, while standard deviations
are o1 =0.0234 and ¢, = 0.0368.

To confirm our analysis, classification accuracy for bruise from
normal surfaces was then calculated for each a specific range of
the band ratio value. The accuracy was determined by the number
of pixels properly classified with comparing the ratio at the corre-
sponding pixel to the threshold value (Cho et al., 2011). The highest
classification accuracy (=92%) was observed at the consistent opti-
mal threshold calculated by the distributions.

The F-value method is a novel algorithm which has been rarely
used (Cho et al., 2011). Despite the method is relatively simple only
requiring a basic statistics, it informs valuable result to find the
optimal waveband for detecting bruises because numerical size
of F-value directly indicates the significance. As the accuracy is pix-
el-based, this F-value method is adequate to distinguish the bruises
with the sound surface on a sample rather than sample-based clas-
sification which tabulates the whole samples either as bruised or
normal fruits. Moreover, with pixel-based classification, quantita-
tive estimation of bruising area is possible and this may be appli-
cable to evaluate the time after bruising or the scale of damage.
Similarly, partial least square (PLS) classifies bruises based on pix-
els, and is effective for detecting early stage of bruising (EIMasry
et al.,, 2008). However, previous apple study reported more than
50% of misclassification of bruises into sound area (Xing et al.,
2007). In addition, PLS requires more complex mathematics than
F-value method. Because of its simplicity, computational load
and time of F-value method are low with comparable accuracy,
suggesting the advantages of the F-value method on analyzing a
large-size image data over complex statistical models. In classify-
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Fig. 4. Classification accuracy as a function of R1074 nm/R1016 band ratio threshold value with frequency histogram for ratio values of bruises and sound surfaces of pear.

1074 nm Masking image

() (f)
] @,

Resultantimage Binary image

(b)
A

1016 nm

Ratio image

Fig. 5. Illustration of image processing sequences: (a) 1074 nm reflectance image; (b) binary mask image for pear surfaces obtained by applying a threshold of 10% reflectance
to the 1074 nm image; (c) 1074 nm and (d) 1016 nm images, (e) two-waveband ratio (R1074/R1016) image, (f) bruised area determined by applying the threshold value of
1.19 to the R1074/R1016 image, and (g) resultant binary image showing the bruise region on the pear surfaces.

ing the whole unknown samples, unsupervised algorithm has been
utilized. In the most sample-based studies, PCA has been the main
analytical tool, informing effective wavebands for detecting
bruised fruits from the total sampling pool (Lu et al., 2011; Lu,
2003; Qin et al., 2008; Xing and De Baerdemaeker, 2005, 2007).
However, the accuracy was variable and relatively lower than
other classifying algorithm, while an algorithm with high accuracy
requires more complicate programming than PCA (Xing et al,
2007; Zhao et al., 2010). Finally, it should be noted that the F-value
is only meaningful when comparing two areas. For detecting mul-
tiple regions, different algorithms such as multiple comparison and
PCA are appropriate.

Compared to our previous study using F-value for selection of
the optimal waveband ratio, this study resulted in higher accuracy
(Cho et al., 2011). This may be because that the current study used
beyond NIR region that partially includes SWIR (Short Wave Infra-
Red) range. NIR has been used in most previous researches regard-
ing fruit bruise detection. However, SWIR has shown relatively

higher accuracy in bruise classification for apples (Lu, 2003), con-
sistent with the report that highlighted effective detection of qual-
ity of fruits by an extended region beyond Vis/NIR (Lu et al., 2000;
Moons et al., 1998). Further investigations are necessary to prove
the advantages of SWIR over NIR in detecting fruit bruises, partic-
ularly with respect to the varieties of fruits.

Fig. 5 illustrates a sequence of image processing procedures
using the selected two-band ratio and threshold for classifying
the bruise spots on the sample pear. Fig. 5(c) and (d) are
1074 nm and 1016 nm images, respectively, after the applications
of pear surface area masking. The mask image for the pear surfaces
in Fig. 5(b) was obtained by applying a threshold of 10% reflectance
to the 1074 nm image, while Fig. 5(e) is a R1074/R1016 band ratio
image, resulting from dividing the reflectance intensity at 1074 nm
by that at 1016 nm. Fig. 5(f) is the binary-classification image
where the optimum threshold value (1.19) was applied to the
R1074/R1016 band ratio image. The resultant image clearly dis-
plays the bruised areas on the pear.
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Fig. 6. Representative photos of (a) sample pear before and after bruising in 1, 2, 4, 7, 11 days and resultant ratio (R1074/R1016) images, and (b) other sample images
processed by F-value ratio method, validating the ability of the determined two band ratio for separating bruise and sound surface.

Fig. 6 shows a sequence of photos and processed images with
respect to storing time after bruising. The bruised areas in the pho-
tos are hardly observed with visual inspection while distinctive re-
gions of the bruise damage could be observed with the two
wavebands ratio method in Fig. 6(a), which was also observed in
other samples (Fig. 6(b)). Most of the pixels in the sound areas
were successfully eliminated; however a few false positive pixels
were observed in the sound areas of the samples. This may have
been emanated from pre-existing damage or other defects. In most
cases, qualitative detection of bruises is fully covered by the F-va-
lue method owing to the size of bruising area that normally has a
diameter larger than 1 cm (Cho et al., 2011).

Preliminary evaluation of the resultant images for entire pear
samples under investigation including the three bruise levels
(dropped at 5, 10, and 15 cm heights) show the evident bruise
damages (figure not shown). Individual pears exhibited variations
in response to the dropping heights as the resultant images did not
clearly exhibited a trend in response to the degrees of bruising lev-
els. However, bruises on the most pears can be detected in 4 days
following the bruising regardless of the dropping heights.

There are a few interesting future tasks stems from this study.
As aforementioned, it would be an interesting to directly compare
SWIR to NIR for detection of bruises on pears and even on other
varieties of fruits. Secondly, we can compare the F-value method
to other widely used classification algorithms, and consider to
orchestrate F-values method with unsupervised method as both
PLS and PCA have used to detect apple bruises by ElMasry and
his colleagues (2008). For example, a study has compared different
pear bruise classification algorithms with NIR (Zhao et al., 2010),
but no publication compares different types of classification algo-
rithms with beyond NIR range, such as SWIR image data.

ST

4. Conclusions

This study highlighted the feasibility of hyperspectral/multi-
spectral NIR reflectance imaging technique for detecting bruise
damages on ‘Shingo’ pears, which has never been tried before. A
simple F-value statistics was sufficient to find the optimal wave-
band ratio and threshold for maximizing the bruise detection accu-
racy. The selected optimal NIR reflectance image ratio (1074 nm
and 1016 nm: R1074/R1016) demonstrated its ability to detect
bruised areas from sound surface on pears. Further studies on
bruised tissues of varieties of pears with larger sample numbers
and longer storage time need to be investigated to develop a com-
plete bruise-detection system for pears. The wavebands explored
in this study could be helpful for developing real-time multispec-
tral systems for discriminating bruised fruits in fruit quality sorting
plants.

Acknowledgement

This work was partially supported by the Technology
Commercialization Support Program, Ministry of Agriculture, Food
and Rural Affairs(MAFRA), Republic of Korea. It was also partially
supported by a grant from the Next-Generation BioGreen 21
Program (Plant Molecular Breeding Center No. PJ009078), Rural
Development Administration, Republic of Korea.

References

Aber, J., Martin, M., 1995. High spectral resolution remote sensing of canopy
chemistry. Summaries of the Fifth Annual JPL Airborne Geosciences Workshop
1, Airborne Earth Science Workshop. JPL Publication 95-4, pp. 1-4.



W.-H. Lee et al./Journal of Food Engineering 130 (2014) 1-7 7

Ben-Dor, E., Patkin, K., Banin, A., Karnieli, A., 2002. Mapping of several soil
properties using DAIS-7915 hyperspectral scanner data - a case study over
clayey soils in Israel. Int. J. Remote Sens. 23, 1043-1062.

Biining-Pfaue, H., 2003. Analysis of water in food by near infrared spectroscopy.
Food Chem. 82, 107-115.

Cho, B., Baek, 1., Lee, N., Mo, C., 2011. Study on bruise detection of ‘fuji’ apple using
hyperspectral reflectance imagery. J. Biosyst. Eng. 36, 484-490.

Cho, B., Kim, M.S., Chao, K., Lawrence, K., Park, B., Kim, K., 2009. Detection of fecal
residue on poultry carcasses by laser-induced fluorescence imaging. J. Food Sci.
74, E154-E1509.

Clark, R., Swayze, G., Gallagher, A., 1992. Mapping the mineralogy and lithology of
Canyonlands, Utah with imaging spectrometer data and the multiple spectral
feature mapping algorithm. Summaries of the Third Annual JPL Airborne
Geosciences Workshop 1, AVIRIS Workshop. JPL Publication 92-14, pp. 60-62.

ElMasry, G., Wang, N., Vigneault, C., Qiao, J., ElSayed, A., 2008. Early detection of
apple bruises on different background colors using hyperspectral imaging. Lwt-
Food Sci. Technol. 41, 337-345.

Kamruzzaman, M., EIMasry, G., Sun, D.-W., Allen, P., 2011. Application of NIR
hyperspectral imaging for discrimination of lamb muscles. ]. Food Eng. 104,
332-340.

Kutner, M.H., 2005. Applied Linear Statistical Models. McGraw-Hill Irwin, Boston,
USA.

Lorente, D., Aleixos, N., Gomez-Sanchis, J., Cubero, S., Garcia-Navarrete, O.L., Blasco,
J., 2012. Recent advances and applications of hyperspectral imaging for fruit and
vegetable quality assessment. Food Bioprocess Technol. 5, 1121-1142.

Lu, Q., Tang, M., Cai, ]J., Zhao, ]., Vittayapadung, S., 2011. Vis/NIR hyperspectral
imaging for detection of hidden bruises on kiwifruits. Czech J. Food Sci. 29, 595-
602.

Lu, R, 2003. Detection of bruises on apples using near-infrared hyperspectral
imaging. Trans. Am. Soc. Agri. Eng. 46, 523-530.

Lu, R,, Guyer, D., Beaudry, R., 2000. Determination of firmness and sugar content of
apples using NIR diffuse reflectance. ]. Texture Stud. 31, 615-630.

Moons, E., Sinnaeve, G., Dardenne, P., 1998. Non-destructive visible and NIR
spectroscopy measurement for the determination of apple internal quality. In:
Proceedings of the XXV International Horticultural Congress. Part 7. Quality of
Horticultural Products: Starting Material, Auxiliary Products, Quality Control,
2-7 August 1998, Brussels, Belgium.

Pajuelo, M., Baldwin, G., Rabal, H., Cap, N., Arizaga, R., Trivi, M., 2003. Bio-speckle
assessment of bruising in fruits. Opt. Lasers Eng. 40, 13-24.

Qin, J., Lu, R., 2005. Detection of pits in tart cherries by hyperspectral transmission
imaging. Trans. Am. Soc. Agri. Eng. 48, 1963-1970.

Qin, J., Burks, T., Kim, M., Chao, K., Ritenour, M., 2008. Citrus canker detection using
hyperspectral reflectance imaging and PCA-based image classification method.
Sens. Instrum. Food Qual. Saf. 2, 168-177.

Xing, J., De Baerdemaeker, ]., 2005. Bruise detection on ‘Jonagold’ apples using
hyperspectral imaging. Postharvest Biol. Technol. 37, 152-162.

Xing, J., De Baerdemaeker, J., 2007. Fresh bruise detection by predicting softening
index of apple tissue using VIS/NIR spectroscopy. Postharvest Biol. Technol. 45,
176-183.

Xing, J., Saeys, W., De Baerdemaeker, ]., 2007. Combination of chemometric tools
and image processing for bruise detection on apples. Comput. Electron. Agri. 56,
1-13.

Zhao, J., Ouyang, Q., Chen, Q., Wang, J., 2010. Detection of bruise on pear by
hyperspectral imaging sensor with different classification algorithms. Sensor
Letters 8, 570-576.

Zheng, Y., Lai, X,, Bruun, S.W., Ipsen, H., Larsen, ].N., Lowenstein, H., Sendergaard, .,
Jacobsen, S., 2008. Determination of moisture content of lyophilized allergen
vaccines by NIR spectroscopy. J. Pharm. Biomed. Anal. 46, 592-596.


http://refhub.elsevier.com/S0260-8774(14)00015-6/h0010
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0010
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0010
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0015
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0015
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0020
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0020
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0025
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0025
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0025
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0035
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0035
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0035
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0040
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0040
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0040
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0045
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0045
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0050
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0050
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0050
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0055
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0055
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0055
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0060
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0060
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0065
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0065
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0075
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0075
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0080
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0080
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0085
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0085
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0085
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0090
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0090
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0095
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0095
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0095
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0100
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0100
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0100
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0105
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0105
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0105
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0110
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0110
http://refhub.elsevier.com/S0260-8774(14)00015-6/h0110

	Hyperspectral near-infrared imaging for the detection of physical damages of pear
	1 Introduction
	2 Materials and methods
	2.1 Fruits and bruising
	2.2 Hyperspectral imaging system
	2.3 Image parameters
	2.4 Image processing

	3 Results and discussion
	4 Conclusions
	Acknowledgement
	References


