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DETECTION OF DEFECTS ON SELECTED APPLE CULTIVARS

USING HYPERSPECTRAL AND MULTISPECTRAL IMAGE ANALYSIS

P. M. Mehl,  K. Chao,  M. Kim,  Y. R. Chen

ABSTRACT.  Apple defects cause food safety concerns touching the general public and strongly affect the commodity market.
Because accumulations of human pathogens are usually observed on surface lesions, detection of lesions is essential for
assuring quality and safety. This article presents the application of hyperspectral image analysis to the development of
multispectral techniques for the detection of defects on three apple cultivars: Golden Delicious, Red Delicious, and Gala.
Two steps were performed: (1) hyperspectral image analysis to characterize spectral features of apples for the specific
selection of filters to design the multispectral imaging system and (2) multispectral imaging for rapid detection of apple
contaminations. Good isolation of scabs, fungal, soil contaminations, and bruises was observed with hyperspectral imaging
using either principal component analysis or the chlorophyll absorption peak. This hyperspectral analysis allowed the
determination of three spectral bands capable of separating normal from contaminated apples. These spectral bands were
implemented in a multispectral imaging system with specific band pass filters to detect apple contaminations. In this
preliminary work with 153 samples, good separation between normal and contaminated apples was obtained for Gala (95%)
and Golden Delicious (85%). However, separations were limited for Red Delicious (76%).

Keywords. Food safety, Fruit, Machine vision, Spectroscopy.

he increasing occurrence of food borne diseases
and the difficulty of treating them makes it
desirable to ensure as close as possible to zero
contamination level. To reach this goal, various

techniques have been proposed and some of them are still
under investigation, such as biosensors, optical sensors, and
biofilms to test the safety and quality of fruits and vegetables.
Apples are one of the most important fruit commodities in the
U.S. markets, with widespread processing applications, such
as cider. Contamination of dropped apples leads to high
incidence of contaminated of non–pasteurized cider resulting
in possible illness outbreaks (Tamblyn et al., 1999; Center
For Disease Control, 1998).

Several techniques have been reviewed for investigating
quality defects on apples (Abbott et al., 1997). One of the
most recent technologies is hyperspectral imaging (Gat and
Subramanian, 1997). The technology combines imaging,
spectrometric,  and radiometric techniques to provide a
spectrum for each pixel of a captured image. Hyperspectral
imaging is capable of showing differences between the
spectra of image pixels associated with the normal or
abnormal parts of the samples (Mehl et al., 2001). However,
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hyperspectral–imaging  technology currently cannot be di-
rectly implemented in an online system for automated
detection of defects, diseases, and contaminations on com-
modities, because the time requirements for online hyper-
spectral image acquisition and analysis are too great.

One of the analytical methods applied to hyperspectral
imaging is the classical multivariate analysis technique of
principal component analysis. This technique is commonly
used for various applications in multivariate analysis or
chemometrics  (Malinowski and Howery, 1980). This tech-
nique has been used in hyperspectral–imaging techniques for
remote sensing analysis (Richards, 1994) and also in food
safety for classification of poultry carcasses (Chen et al.,
1998). Principal component analysis has been shown recent-
ly to be capable of determining the presence of bruises on Red
Delicious apples when utilizing the near infrared spectral
region (Lu et al., 1999). A recently reported analytical
method for image processing of normal and contaminated
apples used an asymmetric second difference method to
provide good visible separations between diseased, bruised,
or contaminated apples and normal apples (Mehl et al.,
2001).

A hyperspectral–imaging system has been developed at
the Instrumentation and Sensing Laboratory (ISL, Agricul-
tural Research Service, United States Department of Agricul-
ture) for detecting defects and contaminations on food
commodities.  The system is utilized for developing multi-
spectral methodologies. Multispectral image analysis is a
faster technique based on a discrete spectral analysis at a few
wavelengths as opposed to the continuous spectral analysis
performed by the hyperspectral–imaging technology. Hyper-
spectral–imaging  analysis is capable, through multivariate
analysis, of identifying the main contributing wavelength
bands while preserving the information of the images and
therefore optimizing theoretically the multispectral method-
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ologies (Chao et al., 2000). However, transferring these
results to multispectral technology is limited to the spectral
range of each channel available in the different cameras. The
present analysis has been directed towards the visible
spectral range for the determination of contaminations,
diseases, and defects on the apples.

The objective of this study was to develop a simple
multispectral  detection system utilizing only three channels
in the visible spectral range. The system utilized an adaptable
red, green, and blue (RGB) camera where the three channels
can be limited with relatively narrow bandpass filters. Three
apple cultivars (Red Delicious, Golden Delicious and Gala)
were chosen for their wide popularity on the market and their
differences in the visible spectral range. Red Delicious apples
present a dominant red color with a yellowish minor color.
Golden Delicious apples are yellow with an occasionally
reddish minor area on their sunny side. Gala apples have a
mixture of yellow, red, and orange colors. These differences
in the visible spectrum are recognized and incorporated
within the multivariate analysis done for the classification of
the normal and contaminated apples. Detection of apple
contaminations  can be implemented at two stages after
harvesting: either before processing (e.g., fungal treatment,
waxing, etc.) or after processing. In this study, the goal was
to detect contaminations at the initial stages of post–harvest
handling, before further processing.

MATERIALS AND METHODS
APPLES

Three apple cultivars were selected for the study due to
their shape and spectral differences: Red Delicious, Golden
Delicious, and Gala. Normal apples (without defects) were
harvested fresh from trees or taken from barrels before any
treatment,  sorting, or processing at the farm or the processing
plant (Rice Fruit Co., Gardners, Pa.). Abnormal apples (with
defects including bruises, diseases, and contaminations)
were also collected from trees or barrels, or from the ground.
Apples were placed on trays, bagged in plastic to avoid
dehydration, and boxed for transport to ISL. Upon reaching
the laboratory, apples were stored in a cold room at 1–4°C
under constant relative humidity. The apples were measured
by the hyperspectral–imaging system after reaching room
temperature.  Approximately 20 normal apples of each
cultivar were randomly selected from a large set of collected
apples without any visible defects. Abnormal apples were
visually categorized for the type of disease, defect, or
contamination.  The inventory of these apples is listed in
table 1 for each cultivar.

HYPERSPECTRAL IMAGE ACQUISITION
Sets of apples were scanned using a hyperspectral–imag-

ing system (Kim et al., 2001). The equipment consisted of a
CCD camera system (SpectraVideoTM, PixelVision Inc.,
Beaverton, Oreg.) equipped with an imaging spectrograph
SPECIM ImSpector version 1.7 (Spectral Imaging Ltd.,
Oulu, Finland). The ImSpector had a fixed–size internal slit
to define the field of view for the spatial line and a
prism/grating/prism system for the separation of the spectra
along the spatial line. The sample was scanned line by line
with an adjustable rate while illuminated by the two line

Table 1. Number of samples and cultivars for 
multispectral image measurement.

Gala Red Delicious Golden Delicious

Bruise 6 7 6
Scab 7 6 14
Side rot 6 6
Fungus 7
Black pox 4
Gloeosporum 7
Sooty blotch 3
Soil contamination 4 6 5
Normal 20 19 20
Total 50 44 59

sources when passing through the field of view for the
camera.

The image acquisition and recording were performed with
a Pentium–based PC using a general purpose imaging
software (PixelViewTM 3.10, PixelVision Inc., Beaverton,
Oreg.). A C–mount set with a focusing lens and an aperture
diaphragm allowed for focusing and aperture adjustments.
For that purpose, the circular aperture was opened at its
maximum and an external slit was adjusted with micrometer
actuators to optimize the light flow and the resolution.

The light source consisted of two 21V, 150W halogen
lamps powered with a regulated DC voltage power supply
(Fiber–Lite A–240P, Dolan–Jenner Industries, Inc., Law-
rence, Mass.). The light was transmitted through two optic
fibers to a line light illuminator. The sample was placed on
a conveyor belt with an adjustable speed AC motor control
(Speedmaster, Leeson Electric Motors, Denver, Colo.).

Spatial and spectral calibration were performed prior to
experiments using, respectively, spatial resolution grids and
an Oriel lamp set with known spectra (Hg–Ne, A, Kr, He, and
Ne lamps). A 256–pixel line was available along the spectral
direction for the spectrograph. Spectral calibration provided
the expression with the pixel number (p): λ� = 3.68 × p +
420.87 nm with R2 = 0.998 and λ� being the wavelength at
the channel p using a two–binning process to shorten the
calculation time. For the present experiments, only the
visible spectrum was considered (75 pixels in the 400– to
700–nm range). The spatial resolution was found to be
between 0.75 and 0.5 mm along the X or Y (scanning) axis.

DETERMINATION OF THE BAND PASS FILTERS

Hyperspectral–imaging  analysis was performed on nor-
mal and defective or contaminated apples of the three chosen
cultivars. Reflectance intensities were calculated using
flat–field correction. White field or 100% reflectance was
obtained by recording the reflected light from a flat shield of
white Teflon (W) and the dark field or 0% reflectance was
obtained by recording the reflected light with the lens of the
camera completely closed (D). The normalized reflectance
(R%) expressed in % corresponding to the recorded reflected
light from the sample image (I) was then defined using the
following expression:

DW
DI

R
−
−×=100%  (1)

The analysis used the product 100 Ü R%, rather than only
R%, to increase the visualization of separation during image
processing. Reflectance spectra for normal and abnormal
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Figure 1. Example reflectance Spectra for parts of apples: 1) normal,
2) bruise, 3) gloeosporum, 4) soil contamination, 5) side rot, 6) scab,
7) black pox, 8) sooty blotch, and 9) insect bite.

surfaces were recorded for comparison and examples are
shown in figure 1. Obvious differences exist in the visible
spectral range, especially for the chlorophyll absorption peak
at around 700 nm.

Principal component analysis was performed utilizing the
hyperspectral imaging of normal and abnormal apples. Each
principal component was an image that consisted of a
weighted sum of the images at 120 wavelengths according to
the formula:

E = ∑
=

120

1i
ii Iw  (2)

where Ii is the image at wavelength number i, and wi is the
weight (E is also called an eigenvector. The different
principal components or eigenvectors have different sets of
weights.). The first 10 principal components were visually
examined, and the one that provided the best visual contrast
between normal and abnormal apples was selected. The
corresponding wavelength weight distribution was deter-
mined. This analysis was performed using ENVI 3.2 software
from Research Systems, Inc. (Boulder, Colo.). Figure 2
shows an example of the weight distribution for the principal
component giving the best discrimination between normal
and bruised Golden Delicious apples. It is obvious that
several band–pass filters can be selected to reconstruct the
principal component in the visible spectral range. Similar
distributions were obtained with the Red Delicious and Gala
apples.

Signal Distribution for Significant Discrimination between
Normal and Damaged Golden Delicious
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Figure 2. Weight distribution factor for the best eigenvector
corresponding to the best discrimination between normal and bruised
“Golden Delicious” apples. The data have been calculated using
hyperspectral–imaging analysis.

The selection of filters must also match the channels of the
RGB camera. The RGB camera described below has its own
restriction within the visible spectral range for the three
channels (red, green and blue) that are defined by the prisms’
hardware along the optical path. The choice of the wave-
length bandpass filters must therefore be in agreement with
the spectral range of each of the channels of the camera. For
each defect, the weight distribution for the principal
component giving the best discrimination was plotted. From
these plots, the three wavelengths that showed the best
potential of discriminating all the defects were chosen. The
first filter chosen had a band pass of 705 ± 40 nm to cover the
last two bands for the eigenvector definition in the red
channel. The other two filters were chosen to be at 575 ±
20 nm and 460 ± 20 nm in the green and the blue channels,
respectively. The ±20 nm bandpasses have been used at ISL
as a good balance between the need for enough light and the
narrowness of the absorbing bands. In the 705–nm region, the
sensitivity of the CCD falls off so a wider band pass allows
more signal. These band–pass filters were installed and
secured in the three–channel common aperture camera for
multispectral  imaging measurement.

MULTISPECTRAL IMAGE ACQUISITION

The multispectral imaging system consisted of a three–
channel common aperture camera (TVC3, Optec, Milano,
Italy), an illumination chamber, and a computer equipped
with a frame grabber (XPG–1000, Dipix, Ontario, Canada).
A darkened chamber was built with a box with a round–open
inlet (7 cm diameter) on the top, through which the camera
was mounted facing downwards. The illumination was
provided using a pair of fiber–optic lights (QDF5048,
Dolan–Jenner Industries, Mass.) equipped with an AC regu-
lated 150W quartz–halogen illuminator (PL841, Dolan–Jen-
ner Industries, Mass.). The dual lights were mounted 12 cm
apart and were covered with plastic light diffusers, 30 cm
from the object. The walls of the chamber were built with
optical grade black acrylic to avoid uncontrolled light
reflections.  Each sample apple was placed on a white Teflon
sheet mounted to a laboratory jack for vertical position
control. Image size was 728 × 572 pixels, with each pixel
representing a sample area of 0.05 mm2.
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The three–channel system was a prism–based system with
three spectral range cut–offs. Three broadband images can be
simultaneously acquired with the following spectral ranges:
blue channel (B) with 430 nm < B < 495 nm, green channel
(G) with 495 nm < G < 605 nm and red channel (R) with
605 nm < R < 900 nm. The three band–pass filters selected
from the hyperspectral–imaging analysis were manually
placed between the prisms and the three CCD’s, respectively,
to obtain the spectral specificity needed to optimize contrast
between normal area and defects on apples.

MULTISPECTRAL ANALYSIS FOR CLASSIFICATION

Multispectral  image reflectance parameters between
normal and abnormal (defects and diseases) apples were
compared based on statistical significance tests. The accom-
panying classification was then used in a SAS 6.12 (SAS
Institute Inc., Cary, N.C.) discriminant analysis procedure
(PROC DISCRIM) using the selected features from the
significance tests. This procedure was done to find a distinct
subset of features that could separate the normal and
abnormal apples. Linear discriminant functions were used
for data with approximately multivariate normal distribu-
tions within classes. The classification accuracy was evaluat-
ed by the cross–validation method (Lachenbruch and
Mickey, 1968).

RESULTS AND DISCUSSION
PRINCIPAL COMPONENTS ANALYSIS (PCA) FOR PROCESSING

MULTISPECTRAL IMAGES

The determination of principal components for normal
Gala apples is reported as an example in figure 3. The images
recorded from the three–channel camera were pre–processed

PC1                    PC2        PC3
Red 0.405                   0.911        0.067
Green0.155 –0.141        0.978
Blue 0.901 –0.386 –0.199

Mean and Standard Deviation of PC1 Eigenvector
Red 0.381 � 0.058211
Green 0.222 � 0.05578
Blue 0.897 � 0.012759

Normalized Projection on Average PC1 Eigenvector:
  [(Red*0.381)+(Green*0.222)+(Blue*0.897)]/Blue

RGB IMAGES

MASK
DEFINITION

MASK
APPLICATION

PRINCIPAL
COMPONENT
   ANALYSIS

CLUSTER
   VECTOR
DEFINITION

LOADING
DEFINITION

FLAT FIELD
CORRECTIONS

Figure 3. Data processing for determination of the principle components
of the normal “Gala” apple images utilizing the three–channel camera.

using flat–field correction as with the hyperspectral–imaging
analysis.

The next step was to define a mask to eliminate the
background and its further contribution during the statistical
analysis. This mask was calculated using the corrected
images in the blue channel followed by segmentation and
morphological  operations such as opening/closing with a
very large window, and erosion to eliminate the edge effects.
After the opening/closing procedure, it was observed that the
stems were eliminated from the edge of the apples. Dougher-
ty (1992) discussed morphological operations in detail.
These morphological operations include erosion and dila-
tion, and combinations of these operations. Erosion removes
pixels from an image. A complementary operation known as
dilation can be used to add pixels. The combination of an
erosion followed by a dilation is called an opening (opens up
spaces between just–touching features). The combination of
a dilation followed by an erosion is called a closing, which
is used to fill missing pixels within narrow gaps between
portions of a feature.

The mask was then applied to each of the three–channel
images after flat–field correction. The principal component
analysis was performed on these three masked images to
calculate the eigenvectors of normal apples. The first
principal component band (PC1) was the one containing the
most information, as shown in figure 3, and was the one to
select. The weight distributions or coordinates of the
eigenvectors in the RGB vector base were then determined
for a random set of normal apples (5 to 10 apples).

The barycentric coordinates were initially defined as the
coordinates equal to the means of the measured coordinates.
The barycentric coordinates of the eigenvectors correspond-
ing to the PC1 of the normal apples were calculated for at
least five apples. These barycentric coordinates were those
that provided the most similar results within the set of normal
apples. The mean and standard deviation corresponding to
these barycentric coordinates were calculated for each
normal set of the apple cultivars and are reported in the
table 2. Assuming that these barycentric eigenvectors were
denoted Eb for each cultivar, the distance (I) of the sample to
these barycentric eigenvectors was then defined as the
projection of the recorded multispectral reflectance images
along these eigenvectors. This projection was mathematical-
ly defined as the scalar product of the eigenvector with the
image vector (Red, Green, Blue) using the expression:
















=

Blue
GreenEbI T
Red

 (3)

Table 2. Principal component analysis: main eigenvector statistics.

Apple Channel
Barycentric
Coordinate (Mean / Std)

Gala Red 0.381 0.0582
Green 0.222 0.0558
Blue 0.897 0.0128

Red Delicious Red 0.591 0.0940
 Green 0.167 0.2140
 Blue 0.724 0.0790

Golden Delicious Red 0.561 0.0072
Green 0.587 0.0073

 Blue 0.583 0.0117



223Vol. 18(2) 219–226

To further analyze the presence of defects or contamina-
tions on the apples, multispectral images of the sample apples
were projected along these barycentric eigenvectors, similar
to estimating the loading of the images along this vector. A
normalization  was simultaneously provided by the most
contributing channel to the images, which in this experiment
was the blue channel image. For each of the apple cultivars,
a distance or loading function was therefore defined by:

Red Delicious: I = [(Red Ü 0.591) +

(Green Ü 0.167) + (Blue Ü 0.724)]/Blue (4)

Golden Delicious: I = [(Red Ü 0.561) +

(Green Ü 0.587) + (Blue Ü 0.583)]/Blue  (5)

Gala: I = [(Red Ü 0.381) +

(Green Ü 0.222) + (Blue Ü 0.897)]/Blue  (6)

where Red, Green, and Blue were the reflectance intensities
of the sample image recorded in the red, green and blue
channels, respectively. The analysis for the classification of
the apples using the multispectral analysis was then ready to
proceed.

ELIMINATION OF APPLES WITH SCABS

Examination of figure 1 suggests that the presence of scab
is expected to be obvious and its detection can be performed
simply, without a highly time–consuming analysis. A direct
segmentation (fig. 4) from the principal component images
(blue channel value between 0.5 and 1) provided a 87, 100,
and 57% determination of scab presence for contaminated
Red Delicious, Golden Delicious, and Gala apples, respec-
tively. The accuracy of the scab detection was improved with
an additional normalization step. The 460–nm image was
used to generate a mask. The 575– and 705–nm masked
images were ratioed to the 460–nm image before further
processing. The new masked 575– and 705–nm images
together with the original masked 460–nm image were called
the “normalized” images. The original principal component
image was then generated from the normalized images.
Proceeding with a subsequent threshold (threshold = 0.9)
method resulted in a 100% separation between normal and
scab–contaminated  Red Delicious, Golden Delicious, and
Gala apples without any misclassification. Application of
these methods allowed us to eliminate the apples with

Normal              Scab            Bruise           Fungus      Soil Contamination         Side Rot

Figure 4. Detection of scab using direct threshold method for “Gala”
apples: the first row illustrates the flat–field images from the blue
channel; the second row illustrates the image result from application of
loading function; the last row illustrates the threshold results for scab
detection.

 scabs from the set of contaminated apples. We will therefore
not consider apples with scab contamination any further
since they can be easily detected without additional analysis.

MULTISPECTRAL IMAGE ANALYSIS FOR 
OTHER CONTAMINATIONS AND DISEASES

Six parameters using the distance functions defined above
in equations 4, 5, and 6 were used: a) minimum and
maximum reading values to define the range of intensity
(range), b) the mean value over the pixels of the sample
(mean), c) the associated standard deviation (std), d) the
coefficient of variation defined as the ratio of standard
deviation/average  intensity (std/mean), e) the normalized
average defined as the ratio of average intensity/range of
intensity (mean/range), and f) the normalized standard
deviation defined as the ratio standard deviation/range of
intensity (std/range). The range was useful for compensating
for the size of the apple. The mean and standard deviation
were obviously needed since the presence of defects,
diseases, or contaminations will lower the reflectance
intensity and therefore lower the mean and increase the
standard deviation over the apple image. These variations of
the mean and standard deviation with the presence of defects,
diseases, or contaminations will be non–linearly amplified
by calculating the coefficient of variation, defined as the ratio
of std/mean. It was therefore expected that this coefficient of
variation would increase from normal to abnormal apples. A
normalization  of the previous statistical functions with the
intensity range also tended to cluster the data more closely for
the normal and for the abnormal apples.

VARIABILITY OF MULTISPECTRAL 
REFLECTANCE PARAMETERS

Table 3 summarizes significance t–test results for compar-
ing mean values of reflectance parameters from the normal
and abnormal conditions, including bruises, side rot, fungus,
and soil contamination of Gala apples. Four of the six
reflectance parameters (mean, std, std/range, std/mean)
allowed separation of the normal apples from all those with
abnormal conditions. Two parameters (range, mean/range)
did not allow separation of normal apples from those with
fungus or soil contamination.

For the Red Delicious apples, significance test results for
comparing mean values of reflectance parameters from the
normal and abnormal conditions including bruises, side rot,
and soil contamination are listed in table 4. In case of
comparison between normal versus side rot and normal
versus soil contamination, the average reflectance intensity
was useful. However, the reflectance parameters of standard
deviation, range, and average/range were not significant for
comparing normal versus side rot and normal versus soil
contamination.  For the comparison between normal versus
bruised and normal versus side rot, the reflectance parame-
ters of standard deviation/range and standard deviation/aver-
age were significant.

For the Golden Delicious apples, only two reflectance
parameters (std and std/average) were significantly different
between normal and all those apples with abnormal condi-
tions (table 5). However, no significant difference was found
between normal and all those apples with abnormal condi-
tions when average reflectance intensity was used. The
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Table 3. Significance test results of normal vs. abnormal conditions of Gala cultivar for six reflectance parameters.

Average Standard Range Average
Standard Deviation

Average
Intensity[a][b]

Standard
Deviation

Range
(max – min)

Average
Range Range Average

Bruise 4.6127****

(0.0001)
–3.1763**

(0.0041)
–2.1037*

(0.0461)
4.3532***

(0.0002)
–5.0461****

(0.0001)
–3.1145**

(0.0047)
Side Rot –7.6661****

(0.0001)
–5.7089****

(0.0001)
–1.8155*

(0.0819)
2.2521*

(0.0337)
–8.6264****

(0.0001)
–6.2521****

(0.0001)
Fungus 7.9336****

(0.0001)
–3.4105**

(0.0022)
0.9846

(0.3343)
–0.0334
(0.9736)

–6.2881****

(0.0001)
–4.1046***

(0.0004)
Soil 9.1043****

(0.0001)
–7.7708****

(0.0001)
–1.4272
(0.1676)

2.2156*

(0.0374)
–9.5509****

(0.0001)
–9.2665****

(0.0001)
[a] H0 : µ1 = µ2 ; Η1 :  µ1 > µ2. ; Values in each column represent t–values and the asterisks indicate the significant levels (0.1 = * , 0.01 = ** , 0.001 = *** , 

0.0001 = ****).
[b] Values in the parentheses are the P values for performing a significant test to reject the null hypothesis (µ1 = µ2).

Table 4. Significance test results of normal vs. abnormal conditions of Red Delicious cultivar for six reflectance parameters.

Average Standard Range Average
Standard Deviation

Average
Intensity[a][b]

Standard
Deviation

Range
(max – min)

Average
Range Range Average

Bruise –0.0888
(0.9299)

–2.5489*

(0.0176)
–2.4421*

(0.0223)
2.6691*

(0.0134)
–1.9598*

(0.0617)
–3.0643**

(0.0053)
Side Rot 2.8004*

(0.0102)
–1.1347
(0.2682)

0.5685
(0.5752)

0.54361
(0.59119

–2.9020**

(0.0080)
–2.4466*

(0.0225)
Soil 2.7924*

(0.0103)
0.5685

(0.5752)
1.1206

(0.2739)
–0.4326
(0.6693)

–0.4275
(0.6729)

–0.0464
(0.9633)

[a] H0 : µ1 = µ2 ; Η1 :  µ1 > µ2. ; Values in each column represent t–values and the asterisks indicate the significant levels (0.1 = * , 0.01 = ** , 
0.001 = *** , 0.0001 = ****).

[b] Values in the parentheses are the P values for performing a significant test to reject the null hypothesis (µ1 = µ2).

Table 5. Significance test results of normal vs. abnormal conditions of Golden Delicious cultivar for six reflectance parameters.
Standard Deviation

Average Intensity[a][b] Standard Deviation Range (max – min) Average Range Range Average

Bruise 0.2050
(0.8393)

–2.9603**

(0.0068)
–0.5611
(0.5799)

0.5736
(0.5715)

–2.4086*

(0.0241)
–2.9317**

(0.0073)
Black Pox –0.5386

(0.5956)
2.2927*

(0.0318)
0.5301

(0.6014)
–0.5159
(0.6111)

2.2758*

(0.0329)
2.5379*

(0.0187)
Gloesporum 0.3921

(0.6983)
1.8160*

(0.0786)
2.6259*

(0.0145)
–2.1678*

(0.0398)
–0.7051
(0.4872)

2.2370*

(0.0275)

Sooty Blotch
0.3504

(0.5602)
3.4513**

(0.0021)
–1.1653
(0.2569)

1.0181
(0.3202)

1.7046
(0.1031)

3.6866**

(0.0098)

Soil
–0.6346
(0.5319

3.4513**

(0.0022)
2.3832*

(0.0258)
–2.1678*

(0.0399)
0.9662

(0.3440)
–3.6315**

(0.0014)
[a] H0 : µ1 = µ2 ; Η1 :  µ1 > µ2. ; Values in each column represent t–values and the asterisks indicate the significant levels (0.1 = * , 0.01 = ** , 

0.001 = *** , 0.0001 = ****).
[b] Values in the parentheses are the P values for performing a significant test to reject the null hypothesis (µ1 = µ2).

reflectance parameters (range and mean/range) allowed
separation of normal from those with gloeosporum and soil
contamination  apples. The reflectance parameter of std/
range was useful to separate normal from bruised and black
pox apples.

ACCURACY OF CROSS–VALIDATION CLASSIFICATION
The cross–validation method was applied for discriminant

analysis to classify apples into normal and abnormal
conditions. Table 6 shows the classification results of Gala
using all six reflectance parameters and using the four chosen
from significance tests. The results of the classification are
presented in the form of a confusion matrix showing the
numbers correctly classified (on the diagonal) and the
numbers misclassified as the other apple type. The accuracy
of the linear discriminant model was 100% to separate

normal and abnormal conditions of Gala apples when six
reflectance parameters were used. It shows only slight
decrease in classification ability (95% for normal and 96%
for abnormal) when four of the six reflectance parameters
were used.

Table 6. Cross–validation results for classification of 
Gala cultivar using all parameters.[a]

Predicted

Normal Abnormal
Percentage
Correct (%)

Actual Normal 20 (19) 0 (1) 100 (95)
Abnormal 0 (1) 23 (22) 100 (96)

[a] Results using the selected four reflectance parameters appear in
parentheses.



225Vol. 18(2) 219–226

Table 7. Cross–validation results for classification 
of Red Delicious cultivar using all parameters.[a]

Predicted

Normal Abnormal
Percentage
Correct (%)

Actual Normal 12 (17) 7 (2) 63 (89)
Abnormal 7 (7) 12 (12) 63 (63)

[a] Results using the selected three reflectance parameters appear in 
parentheses.

Table 7 shows the accuracy of discriminant models for
classifying normal and abnormal Red Delicious apples. The
accuracy was 63% for classifying normal and abnormal
apples when six reflectance parameters were used. Although
using all six reflectance parameters resulted in a low overall
accuracy (63%), using only three reflectance parameters
showed high separability (89%) for classification of normal
apples.

Table 8 shows the accuracy of discriminant models for
classifying normal and abnormal Golden Delicious apples.
Although using all six parameters resulted in limited
classification accuracy (70% for normal and 68% for
abnormal), using only two parameters showed much better
results (85% for normal and 84% for abnormal). This result
indicates that the unused parameters added no significant
information to the discrimination. The situation is similar to
that of adding insignificant terms to a linear regression,
which can result in a lower correlation coefficient.

DISCUSSION OF THE CHOICE OF THE FILTERS

The 705–nm filter was obviously necessary for the
determination  of the attenuation of chlorophyll activity on
the apple due to the presence of defects or contaminations
(fig. 1). This wavelength choice for the red channel was also
supported by previously reported spectrometric studies that
showed the possibility of identifying bruises on apple
surfaces (Upchurch et al., 1990). A more recent study using
filtered imaging techniques extended the possibility to
identifying a wider range of apple surface defects (Aneshans-
ley et al., 1997). The corresponding statistical analysis
showed good surface defect classification at 540, 750, 970,
and 1030 nm, depending on the apple cultivars and their
surface defects (Aneshansley et al., 1997). The Mahalanobis
distance analysis between normal and abnormal areas of the
apples was significant for wavelengths around 750 nm and
also around 540 nm. The next obvious differences existed in
the middle range of the visible spectrum corresponding to the
green channel of the camera. The compromise for the
differences between Golden Delicious, Red Delicious, and
Gala apples led to a choice of 575 nm. Previous reports on the
separation of normal and bruised areas on Red Delicious
apples concluded that the spectral range 720 to 840 nm
provided the best models for discrimination of bruised and
non–bruised apples (Upchurch et al., 1990).

The detection of early frost damage and bruises for
Empire apples was been optimized by spectrometry utilizing
the spectral range of 450 to 490 nm with a normalization
wavelength at around 700 nm (Upchurch et al., 1991).
Empire apples have similar color characteristics to the Gala
apples. They have a red or yellow color combined with
orange stripes. These characteristics have been related to the
Red Delicious and Golden Delicious apples to direct the

Table 8. Cross–validation results for classification of 
Golden Delicious cultivar using all parameters.[a]

Predicted

Normal Abnormal
Percentage
Correct (%)

Actual Normal 14 (17) 6 (3) 70 (85)
Abnormal 8 (4) 17 (21) 68 (84)

[a] Results using the selected two reflectance parameters appear in 
parentheses.

search for optimal wavelengths for analysis and discrimina-
tion of bruised and non–bruised Empire apples. The present
approach is similar with a different development by using a
distance function from normal apples.

Surface defects already have been automatically detected
on Golden Delicious apples using a filter at 550 ± 100 nm
(Davenel et al., 1998). The consideration of such a large
band–pass range suggests that the variation over that range of
the reflectance intensity is sufficient from normal to surface
defective apples to allow the discrimination.

CONCLUSIONS
The first conclusion is that hyperspectral–imaging analy-

sis is a useful tool for the development of less technologically
sophisticated techniques such as multispectral analysis.
Hyperspectral–imaging  technology can provide more details
and more precise determination of the most important
spectral bands that can be utilized for classification or
separation of information.

Despite their color differences, it has been possible to use
the same configuration combined with the same analytical
methodology with distinct distance functions to perform
similar results on different cultivars. This approach is the first
time that simple statistical functions have been used to
achieve good separations between normal and abnormal
apples.

The present RGB camera is limited by its internal prism
organization to spectral ranges in the visible spectrum but our
results support the possibility of using specific visible bands
to detect defects, diseases, and contamination on apples.
Filters at 705 and 460 nm are apparently more essential for
the design of the present system than 575 nm. The present
multispectral  analysis system is actually capable of classify-
ing normal and abnormal apples for the three cultivars. The
classification for normal/abnormal apples is found to be close
to 63 and 70% for Red Delicious and Golden Delicious
apples, respectively. The classification approaches  85 to
89% when choosing fewer statistical parameters. We found
to our own surprise that the multicolor cultivar Gala had the
best classification with a 100% separation between normal
and abnormal apples. We have therefore developed a general
approach to utilize the hyperspectral–imaging analysis to
better design a rapid multispectral analysis system for food
safety and for food quality also. Trying to compromise
between different cultivars may lead to a more complex
approach to the design of multispectral imaging analysis.

This work was a first attempt to use hyperspectral imaging
to guide the selection of wavelengths in a multispectral
camera. In a practical application, a method (such as multiple
images of a rotating apple) would have to be found to bring
the plane of each defect as close as possible to perpendicular-
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ity to the camera–sample axis. In this work, the samples were
oriented manually to provide the most contrast between
normal and abnormal areas. Also, a camera that was not
restricted to three specific wavelength regions would be more
flexible. The RGB camera used in this work was chosen for
its built–in image registration capabilities, and it could
probably be modified to accommodate any set of wave-
lengths in the visible/near–infrared region. Also, mention
should be made of the limitations of the sample set. Many
more apples from a several locations would have to be added
to the calibration before settling on the optimum set of
wavelengths and coefficients. In particular, bruise detection
here was limited to naturally occurring bruises that were
clearly visible. Exploration into the least detectable bruise
size and age is necessary.
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