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A B S T R A C T

In-field estimation of alfalfa (Medicago sativa L.) yield and nutritive value can inform management decisions to
optimize forage quality and production. However, acquisition of timely information at the field scale is limited
using traditional measurements such as destructive sampling and assessment of plant maturity. Remote sensing
technologies (e.g., measurement of canopy reflectance) have the potential to enable rapid measurements at the
field scale. Canopy reflectance (350–2500 nm) and Light Detection and Ranging (LiDAR)-estimated canopy
height were measured in conjunction with destructive sampling of alfalfa across a range of maturities at
Rosemount, MN in 2014 and 2015. Sets of specific spectral wavebands were determined via stepwise regression
to predict alfalfa yield and nutritive value and models were reduced by spectral range to improve utility.
Cumulative growing degree units (GDUs) and canopy height were tested as model covariates. An alternative
GDU calculation (GDUALT) using a temporally graduating base temperature was also tested against the tradi-
tional static base temperature. The inclusion of GDUALT increased prediction accuracy for all response variables
by 9–17%. Models using a common set of seven wavebands, combined with GDUALT, explained 81–90% of the
variability in yield, crude protein (CP), neutral detergent fiber (NDF), and NDF digestibility (NDFd; 48-h in-
vitro), respectively. This research establishes potential for remote sensing measurements to be integrated with
air temperature information to achieve rapid and accurate predictions of alfalfa yield and nutritive value at the
field scale for optimized harvest management.

1. Introduction

Alfalfa is the most valuable and intensively produced perennial
forage crop in the United States, and precise management to achieve
forage yield and quality goals is critical to optimize profitability
(Bouton, 2007). Indices of nutritive value such as relative forage quality
(RFQ) can decline up to 5 index points per day (Undersander et al.,
2010), which equates to an economic loss of 4–8 USD Mg alfalfa−1 d−1

in hay value (Szafranski and Martens, 2017), or a dairy productivity
loss of approximately 25 kg milk Mg−1 d−1 (Undersander et al., 2016).
These implications on economic value and animal productivity

necessitate accurate in situ estimations of alfalfa yield and nutritive
parameters. Furthermore, pre-harvest insight to nutritive value and
yield can enable real-time management responses to fluctuating market
conditions or feed needs. Therefore, methods capable of rapid and ac-
curate predictions at the field-scale are needed to improve the economic
efficiency and resilience of alfalfa production.

Several methods have been reported for in situ estimations of alfalfa
yield and nutritive value. These include estimations based on 1) air
temperature quantified as Growing Degree Units (GDUs), 2) alfalfa
morphological development, and 3) remote sensing measurements.
Maturity-based estimations are seldom representative of an entire field;
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whereas remote measurement of canopy reflectance can achieve rapid,
direct assessment of a crop at field scale. However, the costs of these
technologies are currently prohibitive in on-farm applications. The cost
of spectral measurement technology increases with greater spectral
range and resolution of the instrument. Therefore, applications may be
developed that use fewer wavebands at lower spectral resolution, and
may be combined with environmental data such as air temperature to
improve the affordability and utility of these technologies.

Cumulative GDUs have been used previously to estimate both alfalfa
yield (Smeal et al., 1991) and nutritive value (Kratchunov and
Naydenov, 1995; Sulc et al., 1999). Traditional GDU calculations for
alfalfa use a static base temperature (Tb) of 5 °C; however, Sharratt et al.
(1989) reported that the optimum Tb for alfalfa may change throughout
the growing season from 3.5 °C early in the growing season to 10 °C
later in the summer. Predictions of nutritive value based only on cu-
mulative GDUs have limited accuracy (Sulc et al., 1999), but the use of
a modified GDU scale has not been investigated for predictions of al-
falfa nutritive value. Advantages of using air temperature are that it is
generally free and easily accessible, and that applications can be au-
tomated to use real-time information.

Visual estimations of morphological development were traditionally
used to decide timing of harvest. For example, the decision to harvest
alfalfa may be made when a visual assessment determines that 10% of
the plants are flowering. To improve the accuracy of these estimations,
Kalu and Fick (1981) assigned a numeric scale to distinct growth stages.
Indices are calculated as the average growth stage weighted by number
of stems [mean growth stage by count (MSC)] or plant mass within each
maturity group [mean growth stage by weight (MSW)]. Kalu and Fick
(1983) found that MSW provided accurate predictions of alfalfa CP,
NDF, acid detergent fiber (ADF), and lignin with R2 ranging 0.84–0.95.
Hintz and Albrecht (1991) showed that predictions based on node
number and plant height can provide more rapid predictions with ac-
curacy similar to or greater than MSC and MS Owens et al. (1995) re-
ported that using the PEAQ (Predictive Equations for Alfalfa Quality)
system based on maturity of the most mature stem, along with the
height of the tallest stem, provided accurate estimates of NDF and ADF
(R2= 0.72), but are less predictive for CP (R2= 0.37). Additionally,
Lyons et al. (2016) showed potential for alfalfa height to predict yield
(R2= 0.66). These methods have been consistently demonstrated as
valuable indicators, although it is difficult to accurately represent an
entire field using contact measurements, considering time and labor
requirements. Furthermore, the accuracy of these methods may vary
across environmental conditions (Sanderson, 1992) and may not be
applicable to new reduced-lignin alfalfa cultivars.

Remote sensing technologies include measurement of canopy re-
flectance, infrared measurement of canopy temperature, and LiDAR- or
SONAR-based estimates of height. Precision crop management tools
such as remote sensing are being developed and implemented in many
crops as technology becomes more affordable and specific applications
are developed (Mulla, 2013). Spectral vegetative indices (SVIs) are
functions of canopy reflectance developed to assess ground cover, crop
health, drought stress, and nutrient deficiencies in several major crops.
These remote sensing tools can be integrated into Unmanned Aerial
Vehicle (UAV) platforms to enable real-time assessments of crop nu-
tritive value parameters at the field scale (Zhang and Kovacs, 2012).
Recent research has demonstrated the potential for measurement of
canopy reflectance to predict nutritive value in alfalfa monocultures
(Starks et al., 2016) and perennial forage grasses (Starks et al., 2006).
Starks et al. (2016) report predictions based on canopy reflectance to
explain 77–83% of variation in CP, NDF, and ADF. In addition to
measurement of canopy reflectance, ultra-sonic or LiDAR technology
can enable remote measurement of crop height and facilitate improved
estimations of crop biomass (Pittman et al., 2015). Additionally, crop
height is related to alfalfa nutritive value (Owens et al., 1995). How-
ever, these technologies have not been integrated into applications to
inform harvest decisions and their efficacy has not been compared to

predictions based on morphological development or GDUs.
These methods of in situ crop assessment vary in accuracy and

utility. The development and efficacy of models using simplified remote
measurements requires further investigation, and these remote sensing
approaches have not been tested in combination with temperature-
based estimations. This research explores the potential for simplified
remote sensing tools integrated with environmental data for more af-
fordable applications. The objectives were to 1) develop a method for
selecting specific canopy reflectance wavebands to estimate alfalfa
yield and nutritive value, 2) determine the predictive value of reduced
models that use fewer parameters, 3) compare utility of remote esti-
mations to traditional assessment methods based on phenological stage
and GDU accumulation, and 4) test the value of integrating environ-
mental information such as air temperature with canopy reflectance
and remotely-estimated canopy height. Our hypotheses were that 1) a
set of specific wavebands of easily measureable range and resolution
can be identified and used to predict alfalfa yield and nutritive value in
situ, 2) the accuracy of these remote estimations will be comparable to
traditional assessment methods, and 3) the integration of environ-
mental growth indicators (cumulative GDUs) with remote measure-
ments can provide greater prediction accuracy than these methods used
alone.

2. Materials and methods

2.1. Field experiments

Field experiments were conducted in 2014 and 2015 at the
University of Minnesota Research and Outreach Center in Rosemount,
MN (44°42′37.34″N 93°06′10.61″W) on a Waukegan silt loam (fine-silty
over sandy or sandy-skeletal, mixed, superactive, mesic Typic
Hapludolls). Sites were fertilized with potassium (K) and sulfur (S)
according to soil requirements for alfalfa production (Kaiser et al.,
2011), and irrigated to meet monthly average precipitation levels. Air
temperature and precipitation data were obtained from a weather sta-
tion located within<1 km of the experiments.

Data were collected from three different fields of alfalfa at varying
times throughout the study (Table 1). Each alfalfa stand had sufficient
plant density for optimum production (> 50 plants m−2) (Sheaffer
et al., 1988) which was determined by counting plants in a m2 quadrant
at four random locations from each of the sites. In 2014, all alfalfa was
cut at a height of 5 cm above the soil and removed from the plot areas
(30×38m) on 31 July. Each site was divided into a completely ran-
domized design with four replications and 16 plots (1.8× 4.6 m) per
replication. Measurements of canopy reflectance were recorded in
conjunction with destructive sampling on 3- to 4-d intervals. At each
sampling event, one plot in each replication was sampled and each plot
was sampled only once, resulting in 16 sampling dates.

The experimental design was modified in 2015 to include 12 re-
plications with 10 plots (1.8× 1.8 m) per replication. All alfalfa was cut
at a height of 5 cm above the soil and removed from one plot per re-
plication on 3- to 4-d intervals for 10 harvest dates, resulting in a range

Table 1
Experimental site descriptions and sampling timeline.

Year Growth period
sampled

Alfalfa
variety

Year
planted

Site ID Replications per
site

2014 15 Aug–15 Oct Dekalb
‘4401-RR’

2013 1 4

15 Aug–15 Oct Pioneer
‘55V12′

2012 2 4

2015 15 Apr–16 Jun Dekalb
‘4401-RR’

2013 1 12

3 Jul–20 Aug Dekalb
‘4401-RR’

2013 3 12
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of phenological stages represented simultaneously in the experiment.
Approximately 1 wk following the final cutting date, remote sensing
measurements and destructive samples were taken from all plots in six
of the 12 replications. Remote sensing measurements and samples were
collected from the remaining six replications approximately 10 d later.
This process resulted in measurements from 20 discrete levels of re-
growth ranging from 9 to 62 d since cutting, and was carried out at one
field site during the spring, and at a different field site during the
summer (Table 1).

Canopy reflectance spectra (350–2500 nm) were collected using a
backpack spectroradiometer (ASD FieldSpec 4, Analytical Spectral
Devices, Inc., Boulder, CO) with 1-nm spectral resolution at each
sampling date prior to destructive sampling. All reflectance data were
collected between 10:00 and 14:00. Conditions were overcast during six
of the 16 sampling events in 2014; otherwise, conditions were clear and
sunny during the remaining events in 2014 and during all sampling
events in 2015. Fifteen reflectance readings were collected from each
plot with the fiber optic cable (12.5° viewing aperture) oriented at 90°
(nadir) approximately 1.0m above the canopy to sample a 0.2-m dia-
meter viewing area with each reading. The instrument was optimized
and calibrated using a barium sulfate white reference at approximately
5-min intervals throughout each sampling event. Solar irradiance at the
time of calibration was assumed to be representative of irradiance
during the subsequent canopy reflectance readings during each in-
terval. Reflectance spectra were used to identify novel indices based on
the response variables, and to test a series of standard vegetative in-
dices, selected to represent a range of spectral resolution requirements,
number of wavebands, and intended applications (Table 2). Spectral
indices of interest included the Normalized Difference Vegetation Index
(NDVI), the Green Normalized Difference Vegetation Index (GNDVI),
Red Edge Inflection Point (REIP), MERIS Terrestrial Chlorophyll Index
(MTCI), Photochemical Reflectance Index (PRI), Chlorophyll Absorp-
tion Ratio Index (CARI), Normalized Difference Lignin Index (NDLI),
and the Normalized Difference Nitrogen Index (NDNI). In addition to
standard vegetative indices, analyses also included wavebands pre-
viously shown to be informative of herbage chemical composition in
sainfoin (Onobrychis sativa Lam.) (Albayrak, 2008).

A single-beam LiDAR sensor (Lidar Lite, Pulsed Light Inc., Meridian,
ID) was also used to remotely predict alfalfa canopy height prior to
sampling in 2015. The LiDAR unit was mounted on a horizontal
swinging arm attached to a tripod. The tripod was leveled at the edge of
each plot with the arm extending over the plot at a constant height to
measure distance from the sensor to the canopy (Fig. 1). Measurements
were continuously recorded at a rate of 24 readings s−1 as the unit was
manually moved across the center of each plot by rotating the arm at a
constant rate, resulting in a minimum of 280 readings per plot. Pre-
dicted canopy height was calculated as the difference between LiDAR-
estimated distance to the canopy and sensor height above the soil
surface. Some plots with the greatest maturity had lodged at the time of
sampling. Considering the intended application of this technology,
these plots exceeded the practical range for harvest; therefore, LiDAR

measurements from lodged plots were excluded from the analysis.
To quantify alfalfa maturity (MSW and MSC), a strip

(7.6 cm×3.0m) was harvested from the center of each plot at 5.0-cm
height using handheld electric clippers. Maturity samples were sorted
according to the growth staging scale described by Kalu and Fick
(1981). All stems within each growth stage were counted to calculate
MSC, dried at 60 °C in a forced-air oven until constant mass, and
weighed to calculate MSW. Bulk forage samples for measurement of
yield and nutritive value were hand-harvested from 1.0 m2 (four
0.25m2 areas) per plot, and dried at 60 °C in a forced-air oven until
constant mass. Dry alfalfa biomass samples were ground to pass
through a 6.0-mm screen using a Thomas Wiley Mill (Thomas Scientific,
Swedesboro, NJ). The coarse ground samples were mixed, subsampled
(30 g), and ground to pass through a 1.0-mm screen using a Cyclotec
Sample Mill (FOSS North America, Eden Prairie, MN). Alfalfa sub-
samples were mixed thoroughly and scanned with a Perten NIRS
(Model DA 7200, Perten Instruments, Springfield, IL) to estimate forage
CP, NDF, and 48-h in-vitro NDFd according to equations calibrated with
laboratory analyses.

2.2. Statistical analyses

Statistical analyses consisted of testing a group of previously pub-
lished vegetative indices (Table 2), as well as the construction, vali-
dation, and comparison of new models to estimate alfalfa biomass, CP,
NDF, and NDFd. Analyses were performed in the R statistical pro-
gramming environment (R Development Core Team, 2017) using
packages ‘zoo’ (Zeileis and Grothendieck, 2005) W. for data pre-
processing and ‘car′ (Fox et al., 2017) for regression analyses. Only
measurements collected under clear conditions with no obstruction
from cloud cover (n=254) were used for model construction and va-
lidation since the spectroradiometer used was a passive sensor. In
practice, readings from active spectral sensors would not be affected by
ambient light conditions.

Two methods were used to calculate cumulative GDUs. The first
method (GDUbase-5) used a static base temperature (Tb) of 5 °C. The
second method (GDUALT) used a modified scale informed by Sharratt
et al. (1989) with Tb graduating continuously from 3.5 °C on 1 April to
10 °C on 31 July, then remaining at 10 °C throughout the remainder of
the growing season. The cumulative GDU values used as model pre-
dictors and covariates were calculated for the specific growth period of
each plot from the time of initial mowing to the time of sampling and
harvest. Models were fit via linear regression to test both GDU calcu-
lations, MSW, and MSC as predictors of alfalfa biomass and nutritive
value.

All canopy reflectance values were smoothed based on a moving
average with 21-nm spacing, so that each value was replaced with the
average reflectance of a 21-nm band centered on that wavelength. This
served to smooth the spectral data and to simulate instrument outputs
with spectral resolution that could feasibly be obtained with a UAV-
compatible multi-spectral sensor. From the entire dataset, 60% of the

Table 2
Spectral vegetative indices screened as potential predictors of alfalfa yield and nutritive value.

Index Abbreviation Wavebands (nm) Reference

Normalized Difference Vegetation Index NDVI 650, 810 Rouse et al., 1973
Green Normalized Difference Vegetation Index GNDVI 550, 810 Gitelson and Merzlyak, 1996
Red Edge Inflection Point REIP 700†, 670, 780, 740 Guyot et al., 1988
MERIS Terrestrial Chlorophyll Index MTCI 754, 709, 681 Dash and Curran, 2004
Chlorophyll Absorption Ratio Index CARI 700, 500, 550, 670 Kim et al., 1994
Photochemical Reflectance Index PRI 531, 570 Gamon et al., 1997
Normalized Difference Lignin Index NDLI 1754, 1680 Serrano et al., 2002
Normalized Difference Nitrogen Index NDNI 1510, 1680 Serrano et al., 2002
Wavebands for Sainfoin Forage Estimations – 460, 550, 650, 780 Albayrak, 2008

† Waveband numbers represent 21-nm wavebands centered on the listed value.
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data (n=152) was sampled at random and stepwise regression was
performed to identify the set of wavelengths as predictors that mini-
mized the Bayesian information criterion (BIC) (Schwartz, 1978). This
process was repeated 50 iterations, across which the average number of
wavebands used (λ) in the resulting models was determined. The most
frequently occurring wavebands (n= λ) in the selected models across
the 50 iterations were retained as the final set of predictors for the
corresponding dependent variable. This process was repeated for each
dependent variable.

Canopy reflectance models were subsequently reduced by spectral
range, limiting predictors to only wavebands within the visible and
near-infrared spectrum (VIS-NIR; 400–1100 nm), and reiterating the
step-wise procedure for each response (Table 3). The purpose of model
reduction was to simplify the parameters required and improve utility
and affordability of the application. Cumulative GDUs since the most
recent harvest and LiDAR-estimated canopy height (2015) were also
tested as covariates in the reduced VIS-NIR models (Fig. 2) to compare
the prediction value of integrating different predictors and technolo-
gies. Only plots harvested prior to lodging in 2015 (n=127) were used
for development of models using LiDAR and for spectral models in
comparison; therefore, these results are reported independently of the
spectral models that were constructed and tested with both years of
data.

A five-fold cross-validation procedure was applied to all predictive
models for an objective comparison of remote- vs. temperature- vs.
phenology-based predictions. The dataset was first divided into five
random subsets. These subsets were held constant across all models per
response variable. Next, during each of five iterations (or folds), a

unique combination of four subsets were combined to calibrate a model
for the predictors being tested. This model was then applied to predict
the response variable values of the fifth subset. At the end of the five
folds, the predicted values were correlated with the observed values to
quantify the prediction accuracy of the model predictor(s) under testing
for the corresponding dependent variable. The adjusted coefficient of
determination was calculated for each of the resulting correlations to
penalize model complexity and provide direct comparison of the var-
ious prediction methods.

An additional model selection approach was used to identify a set of
common wavebands, hereafter referred to as the utility spectra, in the
VIS-NIR region to predict all response variables. All wavebands selected
for the VIS-NIR models across all dependent variables were compiled
and wavebands were evaluated for collinearity. When two or more
wavebands were strongly correlated (r > |0.95|), the procedure re-
moved the waveband(s) least correlated to the greatest number of re-
sponse variables. This procedure resulted in a set of seven wavebands (6
VIS and 1 NIR) (Table 4). The utility spectra were subsequently com-
bined with GDU predictors and LiDAR-estimated canopy height to test
the hypothetical value of a single-integrated application.

3. Results

3.1. Environmental conditions

Monthly average air temperatures were similar (within 1 °C) to 30-
yr averages during all alfalfa growth cycles in this study. The seasonal
distribution of cumulative GDUs varied between the two GDU calcu-
lations tested (Table 5). The GDUALT values were greater at the be-
ginning of the growing season and became increasingly less than
GDUbase-5 values throughout the mid- and late-season months. During
August 2014, the first month of the study, monthly total precipitation
was 54% below normal; however, irrigation was applied to supply total
water similar to monthly average precipitation. In 2015, total pre-
cipitation during the growing season exceeded the 30-yr average by
21% and no irrigation was applied.

3.2. Maturity-based predictions

The phenological indices, MSC, and MSW were generally accurate
predictors of alfalfa CP, NDF, and NDFd relative to other measurements

Fig. 1. Illustration of LiDAR sensor deployment to estimate canopy height in alfalfa plots.

Table 3
Canopy reflectance wavebands in the VIS-NIR region identified by
stepwise variable selection to predict alfalfa yield, crude protein (CP),
neutral detergent fiber (NDF), and neutral detergent fiber digestibility
(48-h in-vitro) (NDFd).

Response Predictive wavebands (nm)†

Yield 551, 711, 712, 1073, 1077, 1087
CP 351, 547, 549, 667, 706, 813, 1100
NDF 351, 461, 547, 549, 546, 820, 990
NDFd 351, 398, 520, 551, 677, 702, 704

†Reflectance values represent 21-nm wavebands centered on the listed
value.
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and models (Table 6). Predictions based on maturity explained 9–15%
more variation in alfalfa yield and 20–42% more variation in NDFd
than the best-performing models from temperature-based predictions
and standard vegetative indices. Maturity-based predictions of alfalfa
CP and NDF resulted in accuracies similar to GDUALT models, but
greater accuracies than the standard vegetative indices tested. Both
phenological indices were similar in prediction accuracy for all re-
sponse variables.

3.3. Temperature-based predictions

The modified scale of GDU (GDUALT) base temperatures improved
prediction accuracy for all dependent variables compared to the tradi-
tionally accepted static Tb of 5 °C (Table 6). Compared to GDUbase-5,
estimations using GDUALT explained 17, 10, 9, and 14% more variation
in yield, CP, NDF, and NDFd, respectively. Predictions of CP and NDF
based on GDUALT resulted in prediction accuracies similar to or slightly
greater than the maturity indices, but resulted in less accurate models
for yield and NDFd (Table 6).

3.4. Canopy reflectance

Average values of NDVI increased rapidly from 0.74 at seven days of
regrowth to 0.87 at 12 days of regrowth; then, all average NDVI mea-
surements taken from 14 to 62 days of regrowth were within the range

of 0.89–0.94. Of the indices tested, NDVI, SFI, PRI, NDLI, and NDNI
explained less than 10% of the variation in any of the dependent
variables; therefore, outputs of these indices are not reported in further

Fig. 2. Workflow diagram illustrating the sequences of data acquisition and processing for predictive model selection.

Table 4
Matrix of correlation coefficients between alfalfa yield, nutritive value, and canopy reflectance wavebands (the UTILITY spectra) selected for predictive models.

Response Canopy reflectance waveband (nm)

Yield CP NDF NDFd 351 398 461 551 667 712 1077
Yield 1.00 – – – – – – – – – –
CP −0.82 1.00 – – – – – – – – –
NDF 0.79 −0.97 1.00 – – – – – – – –
NDFd −0.81 0.88 −0.84 1.00 – – – – – – –
351 −0.18 0.21 −0.30 0.10 1.00 – – – – – –
398 −0.46 0.47 −0.46 0.48 0.72 1.00 – – – – –
461 −0.11 0.11 −0.06 0.11 0.51 0.79 1.00 – – – –
551 −0.68 0.74 −0.71 0.70 0.42 0.80 0.58 1.00 – – –
667 0.18 −0.16 0.20 −0.21 0.30 0.45 0.86 0.24 1.00 – –
712 −0.35 0.45 −0.45 0.40 0.50 0.78 0.75 0.87 0.50 1.00 –
1077 0.36 −0.22 0.14 −0.17 0.33 0.22 0.23 0.09 0.09 0.46 1.00

Table 5
Total Growing Degree Units according to two different calculations and total
monthly precipitation from April to October in 2014 and 2015 at Rosemount,
MN.

Month GDU base−5
a GDU ALT Precipitation

2014 2015 2014 2015 2014 2015

°C °C mm

April 68 133 78 150 158 (81)b 51 (−25)
May 279 279 251 252 117 (9) 114 (6)
June 454 443 377 366 268 (149) 135 (15)
July 489 512 359 382 74 (−41) 220 (105)
August 513 458 358 303 52 (−62) 126 (11)
September 343 411 197 261 70 (−17) 126 (39)
October 128 141 22 42 39 (−28) 63 (−4)

a GDUALT, cumulative growing degree units since last alfalfa harvest, base
temperature graduating from 3.5 °C (1 April) to 10 °C (31 July) and static at
10 °C through the remainder of the year; GDU base-5, cumulative growing degree
units since last alfalfa harvest (base temperature= 5 °C).

b Departures from 30-yr averages shown in parentheses.
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comparisons. Among the remaining indices, models based on GNDVI
resulted in the most accurate predictions for all dependent variables,
followed by REIP (Table 2). Both GNDVI and REIP resulted in more
accurate predictions of yield than models based on GDUs alone.
Otherwise, previously established indices, including MTCI and CARI,
resulted in less accurate predictions for all dependent variables com-
pared to all reported methods of estimation. Models using the four
wavebands reported by Albayrak (2008) for estimating nutritive value
in sainfoin (Table 2) resulted in prediction accuracies similar to models
selected from the VIS-NIR-SWIR for yield and NDF, but lower accuracy
for CP and NDFd (Table 6).

Models using the full spectral range (VIS-NIR-SWIR) had prediction
accuracies similar to models using only the VIS-NIR for all response
variables (Table 6). Optimum spectra from the VIS-NIR-SWIR range
included one and two more wavebands than the VIS-NIR models for CP
and NDF, respectively, and the number of selected wavebands was the
same across models for both yield and NDFd. Models from both spectral
ranges had greater prediction accuracy for yield than models based on
maturity, air temperature, or vegetative indices; however, predictions
of nutritive value parameters were similar to or less accurate than
maturity-based predictions. The utility spectra, seven common wave-
bands centered on 351, 398, 461, 551, 667, 712, and 1077 nm, resulted
in prediction accuracy similar to the VIS-NIR models for NDF, although
accuracy was reduced modestly for yield, CP, and NDFd.

3.5. Combined models

Predictions combining GDUALT with selected wavebands in the VIS-
NIR region had greater accuracy for all dependent variables than
models based solely on contact measurement of maturity, temperature-
based estimations, or canopy reflectance alone (Table 6). The UTILITY
spectra combined with GDUALT resulted in similar accuracies to VIS-
NIR+GDUALT models for the nutritritive value parameters and slightly
reduced accuracy for yield. In plots sampled before lodging with cor-
responding LiDAR measurements (n=127), yield estimations based on
LiDAR-estimated canopy height were strongly correlated with alfalfa
biomass (R2= 0.85; y= 0.9474x+226.6). The addition of LiDAR-es-
timated canopy height improved predictions of yield, NDF, and NDFd
compared to VIS-NIR models alone (Table 7). Adding LiDAR to the VIS-
NIR-GDUALT models improved predictions of yield; however, it did not
improve prediction accuracy for the nutritive value parameters. Using
only the seven utility wavebands, GDUALT, and LiDAR-estimated canopy
height, prediction accuracies were similar to models integrating

GDUALT and LiDAR with the response-specific VIS-NIR wavebands.

4. Discussion

The findings of this study demonstrate potential for improved esti-
mations of alfalfa yield and nutritive value based on remote sensing
measurements, and also support the usefulness of estimations based on
morphology or air temperature. Maturity-based predictions were rela-
tively informative, although prediction accuracies were less than de-
scribed by Kalu and Fick (1983), who reported R2 values of 0.88 and
0.95 for CP and NDF, respectively. The greatest discrepancy was in
predictions of NDF, where the optimum maturity-based predictions in
this study explained 12% less of the variation in NDF compared to Kalu
and Fick (1983). Previous work has not reported methods of estimating
alfalfa NDFd in situ; however, maturity-based predictions of NDFd were
also less accurate than expected, as Kalu and Fick (1983) found strong
correlations with fiber fractions related to NDFd, including ADF and
lignin. A range of factors could have contributed to these incon-
sistencies, including differences between alfalfa cultivars and environ-
mental conditions (Buxton, 1996), providing further justification for
specialized and integrated models that account for environmental fac-
tors.

Improved predictions based on GDUALT compared to GDUbase-5

support the findings of Sharratt et al. (1989) and warrant further in-
vestigation into the use of temporally-graduating base temperatures in
GDU calculations for alfalfa. Both models based on cumulative GDUs
had greater accuracy than reported by Hakl et al. (2010) for CP and
NDF (R2= 0.65 and 0.40, respectively). However, Hakl et al. (2010)
likely constructed models using a narrower range of responses with
greater environmental variability compared to the current study, as
they compiled data across 4 yr and only harvested from the late-vege-
tative to early-bloom growth-stages. Poor prediction accuracy of NDFd
using GDUs supports Sulc et al. (1999), who concluded that in-field
estimations of alfalfa nutritive value should not be based on GDUs
alone. As water was not a limiting factor for alfalfa growth in this study,
cumulative precipitation was collinear with cumulative GDUs and did
not provide additional insight to the factors affecting alfalfa growth.
Under conditions of limited water, using cumulative precipitation as a
covariate would be expected to improve model predictions since this
factor would influence plant growth independently of temperature.

The screening of vegetative indices generally demonstrates the need
for specialized models to predict alfalfa yield and nutritive value, as
most indices explained little to no variation in the dependent variables.
One exception was GNDVI, which was relatively informative compared
to other spectral indices, and only required two wavebands, meaning it
would be one of the most affordable spectral indices to measure. The
usefulness of the wavebands correlated with sainfoin forage nutritive
value indicates potential for transferability of this technology across
forage species, although Albayrak (2008) reported greater accuracy of

Table 6
Adjusted coefficients of determination (R2) from 5-fold model validation pro-
cedure and number of wavebands used (λ) in models to predict alfalfa yield
(kg DM ha−1), crude protein (CP), neutral detergent fiber (NDF), and neutral
detergent fiber digestibility (48-h in-vitro) (NDFd).

Model Yield CP NDF NDFd

R2 λ R2 λ R2 λ R2 λ

MSC† 0.67 – 0.84 – 0.83 – 0.74 –
MSW 0.65 – 0.83 – 0.82 – 0.77 –
GDU base-5 0.39 – 0.75 – 0.74 – 0.43 –
GDU ALT 0.56 – 0.85 – 0.83 – 0.57 –
MTCI 0.32 3 0.15 3 0.07 3 0.13 3
GNDVI 0.52 2 0.40 2 0.27 2 0.35 2
REIP 0.45 4 0.24 4 0.15 4 0.21 4
CARI 0.09 4 0.14 4 0.15 4 0.07 4
Albayrak 2008 bands 0.78 4 0.72 4 0.66 4 0.70 4
VIS+NIR+ SWIR 0.78 6 0.81 8 0.69 9 0.78 7
VIS+NIR 0.81 6 0.78 7 0.70 7 0.76 7
(VIS+NIR) + GDUALT 0.85 6 0.91 7 0.87 7 0.83 7
UTILITY 0.78 7 0.73 7 0.72 7 0.70 7
UTILITY + GDUALT 0.81 7 0.90 7 0.88 7 0.82 7

† See Abbreviations section for definitions.

Table 7
Adjusted coefficients of determination (R2) from 5-fold model validation pro-
cedure and number of wavebands used (λ) in models based on canopy re-
flectance, cumulative GDUs, and LiDAR-estimated canopy height to predict
alfalfa yield (kg DM ha−1), crude protein (CP), neutral detergent fiber (NDF),
and neutral detergent fiber digestibility (48-h in-vitro) (NDFd).

Model Yield CP NDF NDFd

R2 λ R2 λ R2 λ R2 λ

VIS+NIR† 0.79 6 0.66 7 0.60 7 0.67 7
(VIS+NIR)+GDUALT 0.79 6 0.87 7 0.76 7 0.86 7
(VIS+NIR)+ LiDAR 0.84 6 0.66 7 0.62 7 0.72 7
(VIS+NIR)+ LiDAR+GDU ALT 0.84 6 0.86 7 0.76 7 0.86 7
UTILITY+GDU ALT 0.78 7 0.86 7 0.75 7 0.86 7
UTILITY+GDU ALT+ LiDAR 0.84 7 0.86 7 0.76 7 0.86 7

† See Abbreviations section for definitions.
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individual wavebands and simple indices than observed in this study.
For example, they found that the NIR:RED ratio, using the same spectral
information as NDVI, explained 61–80% of the variation in most forage
nutritive value parameters, whereas NDVI explained<10% of varia-
tion in all parameters in this study.

Predictions of CP based on seven wavebands in the VIS-NIR spectral
range were similar to those achieved by Starks et al. (2016), who used
this range at higher resolution to estimate CP (R2=0.78). However,
VIS-NIR-based predictions of NDF in this study were less accurate
(R2=0.69) than reported by Starks et al. (R2=0.77). This supports the
hypothesis that fewer wavebands with lower spectral resolution may be
used to inform predictions of alfalfa nutritive value, although the
greatest accuracy may be obtained with higher spectral resolution.
Similarly, predictions of yield based on canopy reflectance alone were
greater than those reported by Pittman et al. (2015) (R2= 0.38–0.56),
yet a wider spectral range with greater resolution was selected for the
current study.

The demonstrated potential for LiDAR-estimated canopy height to
predict alfalfa biomass agrees with other alfalfa yield predictions based
on height (Pittman et al., 2015; Lyons et al., 2016) and adds value to
the potential for remote sensing applications in alfalfa management.
One challenge is LiDAR-based estimations rely on a precise, known
sensor-height above the ground surface. The efficacy of using LiDAR
measurements before and after alfalfa growth would subsequently de-
pend on the accuracy of the UAV altimeter, or the ability of sensors to
estimate the distance to the ground through the alfalfa canopy. In a
field application, structure-from-motion analyses from UAV imagery,
before and after alfalfa growth, may be a more efficient way to remotely
estimate canopy height (Matthews and Jensen, 2013). Aerial imagery
from UAVs can be used to render 3-D models referenced to fixed-height
ground control points, which would likely optimize both affordability
and accuracy of non-contact estimations of alfalfa canopy height. The
improved fit of combined models supports the hypothesis that in-
tegrating non-contact measurements with environmental information
can provide more reliable predictions than using these methods alone.
Owens et al. (1995) reported improved estimations of fiber composition
using measurements of the tallest stem in sample. This aligns with the
improved predictions of NDF and NDFd when LiDAR-estimated canopy
height was included in the VIS-NIR models.

The overall improvement of models integrating GDUs with canopy
reflectance establishes a valuable concept that can be easily in-
corporated into future applications of remote sensing in agriculture. In
this study, measurement of the seven utility wavebands, integrated with
cumulative GDUs on the modified scale, provided near-optimum pre-
dictions relative to other approaches. Including a remote estimate of
canopy height in the completely integrated model was ultimately
beneficial for only yield predictions; however, this information can
easily be obtained through analyses of digital imagery if a UAV is al-
ready being used to collect measurements of canopy reflectance.
Therefore, a practical and valuable application of remote sensing
technology could be a UAV carrying a multi-spectral sensor measuring
the seven utility wavebands as well as an RGB digital camera. All
spectral data and imagery could be analyzed, real-time, with environ-
mental data to estimate current properties of the crop and forecast
optimum harvest time.

5. Conclusions

This work establishes potential for integrating environmental data
such as GDUs with canopy reflectance data and remote measurements
of canopy height for improved estimations of alfalfa yield and nutritive
value. These methods could be applied on-farm across large acreages
and multiple fields to inform economically efficient decisions regarding
timing of harvest, which field(s) to harvest first, or how to ration the
current feed supply relative to the anticipated harvest time, yield, and
nutritive value. Farm-specific models may be developed and

continuously improved by monitoring predictors alongside yield and
quality parameters at each harvest. Modern software applications can
easily retrieve environmental data such as estimated soil type, tem-
perature, rainfall, and relative humidity based on geographic location,
and could apply iterative regression with every harvest to improve
predictive models. The increasing spectral and temporal resolution, and
availability of satellite-measured spectral data may also facilitate rapid
assessment of crop status across large geographic regions to inform
market predictions and management decisions. As remote sensing and
predictive crop modeling technologies continue to be developed and
applied across the landscape, the overall resource-use efficiencies of
agricultural industries will be improved for greater profitability and
system resilience.
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