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Regression-Kriged Soil Organic Carbon Stock Changes 
in Manured Corn Silage–Alfalfa Production Systems

Soil & Water Management & Conservation

Accurate measurement of soil organic C (SOC) stock changes over time is 
essential to verify management effects on C sequestration. This study quanti-
fied spatial and temporal changes in SOC stocks on adjacent 65-ha corn (Zea 
mays L.) silage–alfalfa (Medicago sativa L.) fields receiving liquid dairy manure 
in west central Minnesota. We used regression kriging to interpolate SOC in 
four soil layers in 2006 and 2015, and calculated stock changes over time. 
Regression kriging with elevation, topographic wetness index, field (west vs. 
east), and irrigation (yes vs. no) accurately predicted SOC in the 0 to 15-cm 
(R2 = 0.89) and 15 to 30-cm layers (R2 = 0.51–0.95), where variogram analysis 
indicated moderate to strong spatial correlation. From 0 to 15 cm, SOC in the 
west field increased by 7% (+4.5 Mg C ha–1) over the study period caused by 
gains in irrigated portions of the field. No changes were found in the east field 
or from 15 to 30 cm in either field. Below 30 cm, a lack of spatial structure 
and a lack of relationships between SOC and auxiliary variables was found, 
but simple means indicated SOC gains of 13% (+4.7 Mg C ha–1) in the 30 to 
60-cm layer and 24% (+3.9 Mg C ha–1) in the 60 to 90-cm layer across both 
fields. Regression kriging with easily acquired auxiliary variables offers a highly 
accurate method of monitoring SOC stock changes over time to 30 cm depth. 
Current management practices maintain or increase SOC in these fields.

Abbreviations: Dist. tile, distance to the nearest tile line; GHG, greenhouse gas; LiDAR, light 
detection and ranging; SOC, soil organic C; TWI, topographic wetness index.

The global C sequestration potential of agricultural soils is estimated to be 
31 to 64 Gt, which is only a small fraction (1.9–6.5%) of projected green-
house gas (GHG) emissions by year 2100 (Lal, 2004; Sommer and Bossio, 

2014). Though seemingly small, this potential contribution to GHG mitigation is 
viewed as an important climate “stabilization wedge” that can provide short-term 
mitigation until more robust, permanent solutions are developed and put into 
practice (Pacala and Socolow, 2004; Lassaletta and Aguilera, 2015). Rapidly se-
questering C in soils and biomass will help avoid triggering slow climate feedback 
that could lead to dangerous warming and irreversible climate change (Hansen et 
al., 2013). Thus widespread application of agronomic management practices that 
promote rapid C accumulation are vital to climate change mitigation efforts.

The SOC content in agricultural soil is affected by management practices such 
as crop species and rotation, fertilizer rate, manure application, tillage methods, ir-
rigation, and drainage (Batjes, 1998; Bruce et al., 1999; Lal et al., 1999; Lal, 2002; 
Liu et al., 2006). These practices directly influence the C input from crop residue 
and organic amendments, and also the C output through decomposition, leaching, 
run-off, and erosion (Post and Kwon, 2000). Soil organic C content is also strongly 
influenced by terrain attributes, such as elevation, slope, aspect, and soil texture, as 
these factors directly impact the way water moves through and over the landscape 
(Moore et al., 1993). The combined influence of management factors and terrain 
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Core Ideas

•	Regression kriging with elevation, 
topographic wetness index, field (west 
vs. east), and irrigation (yes vs. no) 
accurately predicted soil organic C 
(SOC) in the 0 to 15- and 15 to 30-cm 
layers.

•	Lack of spatial structure and a lack 
of relationships between SOC and 
auxiliary variables precluded the use of 
regression kriging for the 30 to 60- and 
60 to 90-cm layers.

•	From 0 to 15 cm, SOC in the west field 
increased by 7% because of gains in 
irrigated portions of the field, but no 
changes were found in the east field or 
from 15 to 30 cm in either field.

•	Simple means indicated SOC gains 
of 13% in the 30 to 60-cm layer and 
24% in the 60 to 90-cm layer across 
both fields.

•	Typical field management practices 
associated with large, modern dairies 
can sequester SOC.
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results in great variability of SOC, even at small spatial scales 
(Kravchenko et al., 2006; Worsham et al., 2010). This variability 
presents great challenges in the initial assessment and long-term 
monitoring of SOC stocks because of the high sampling and 
analytical costs (Sherpa et al., 2016). Developing reliable and 
cost-effective ways to quantify variability and verify changes in 
SOC stocks is of key importance for assessing GHG mitigation 
strategies for agriculture (de Gruijter et al., 2016). Furthermore, 
greater precision in SOC maps is important for refining agricul-
tural management practices (McGrath and Zhang, 2003; Liu et 
al., 2006), such as precision fertilizer application, manure appli-
cation, and stover harvest technologies.

In this context, regression kriging has emerged as an impor-
tant tool for quantifying spatial variability in SOC and mapping 
SOC stocks. Regression kriging is a hybridized geostatistical in-
terpolation approach that combines ordinary kriging with linear 
regression via spatially explicit auxiliary variables (Hengl et al., 
2004). In regression kriging, the target variable is first predicted 
with a linear regression model, then the residuals of the regression 
are interpolated using ordinary kriging (Hengl et al., 2007). The 
final estimate of the target variable is then calculated as the sum of 
the regression estimate and the ordinary kriging estimate of the re-
sidual values at each interpolated location (Ping and Dobermann, 
2006). This approach has resulted in increased quality and pre-
cision of SOC maps relative to other techniques because of the 
incorporation of spatial autocorrelation and spatially correlated 
auxiliary information (Simbahan et al., 2006; Mooney et al., 
2007). Incorporation of auxiliary variables cannot only improve 
prediction accuracy, but by doing so, it can also help optimize 
sampling designs and reduce the sampling costs associated with 
SOC inventories (Simbahan and Dobermann, 2006; Simbahan 
et al., 2006; Omuto and Paron, 2011; Sherpa et al., 2016).

Most regression kriging studies to date have focused on as-
sessing prediction accuracy relative to other interpolation tech-
niques, and generally only report SOC stocks for a single year. 

Few studies have used regression kriging methods to monitor 
changes in SOC stocks over time in relation to agronomic man-
agement. Furthermore, most studies focus on SOC above 30 cm 
depth, rarely extending beyond the plow layer to account for C 
deeper in the soil profile. Here, we employ regression kriging to 
quantify the spatial and temporal changes in SOC stocks in four 
soil layers (to 90 cm depth) on adjacent irrigated 65-ha corn si-
lage–alfalfa production fields receiving liquid dairy manure in 
west central Minnesota. Our objectives were (i) to determine if 
typical field management practices associated with large, mod-
ern dairies can sequester SOC over a 10-yr study period (2006–
2015); and (ii) to evaluate the performance of regression kriging 
with easily acquired terrain and agronomic management data for 
predicting SOC stocks changes in four soil layers.

Materials and Methods
Site Description

The study was conducted on adjacent 65-ha fields on a pri-
vately owned dairy farm in west central Minnesota from September 
2006 to October 2015. The study fields had a long history of ag-
ricultural production, with a gradual transition from small-scale 
cropping, grazing, or wildlands to large-scale monocropping 
(Krueger et al., 2013). Draining depressional areas in these fields 
began before 1951 and continued in stages, including installation 
of new drainage tiles in fall 2009 (Fig. 1). These most recent drain-
age additions primarily impacted the west field, where drainage 
had been less extensive than in the east field prior to 2009.

The soils were formed in a calcareous loamy glacial till, char-
acteristic of the prairie pothole soils of the Upper Midwest. Soils 
on higher landscape positions included a well-drained Forman 
clay loam and a moderately well-drained Aastad clay loam (see 
Table 1 for the soil series descriptions). The soil on side slopes 
surrounding the depressions was primarily a somewhat poorly 
drained Hamerly clay loam, whereas the depressional areas were 
characterized by poorly drained Parnell silty clay loam, Parnell–

Fig. 1. Maps of research fields, sample locations, and auxiliary variables used for regression kriging of soil organic C (SOC) stocks. Definitions for 
soil survey map unit symbols are found in Table 1.
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Flom silty clay loam, and Nuttie-Hatley clay soils. Mapping of 
the study site with light detection and ranging (LiDAR) revealed 
low relief, with elevation varying by approximately 5 m across the 
130-ha research site.

Agronomic Management
The study fields, designated as the “west field” and the “east 

field”, were managed as part of the cooperating dairy, and all man-
agement decisions were made by the farm operator. The east field 
was planted to corn each year of the study; the west field was 
planted to corn from 2006 to 2012, and alfalfa from 2013 to 2015 
(Table 2). Corn was harvested for silage each fall on dates ranging 
from 28 August to 29 September. A winter rye (Secale cereal L. var. 
‘Rymin’) cover crop was established in the west field following the 
silage harvest in 2007 and then terminated in May 2008 by ap-
plying glyphosate [N-(phosphomonomethyl) glycine] at a rate of 

1.2 kg acid equivalent ha–1. Winter kill of alfalfa occurred in some 
of the low-lying areas of the west field in the winter of 2014 to 2015. 
The following spring, the cooperating farmer seeded orchardgrass 
(Dactylis glomerata L.) in these areas to provide additional ground 
cover. Corn silage yields were generally similar between fields over 
the study period, though the C removed in harvest was lower in 
the west field during alfalfa years. Center pivot irrigation was in-
stalled in both fields in October 2008, and irrigation began in May 
2009 and continued each year throughout the study.

Liquid dairy manure was applied most years, though ma-
nure management practices differed between fields and changed 
over the course of our study. From 2006 to 2008, raw liquid dairy 
manure was applied to both fields. Beginning in 2009, the ma-
nure was processed in an anaerobic digester prior to field appli-
cation. From 2006 to 2012, manure was applied following the 
silage harvest in the west field by drag-line injection at depths 

Table 1. Summary of soil survey information† for the study site in west central Minnesota

Soil survey 
map unit 
symbol

 
 

Description

 
 

Taxonomic class

Share  
of  study 

area
%

AaA Aastad clay loam, 0–2% slopes Fine-loamy, mixed, superactive, frigid Pachic Argiudolls 16.2

Dv Dovray clay, very poorly drained Fine, smectitic, frigid Cumulic Vertic Epiaquolls 0.7

FmA Forman clay loam, 0–2% slopes Fine-loamy, mixed, superactive, frigid Calcic Argiudolls 4.1

FmB Forman clay loam, 2–6% slopes Fine-loamy, mixed, superactive, frigid Calcic Argiudolls 0.2

FmB2 Forman clay loam, 2–6% slopes, eroded Fine-loamy, mixed, superactive, frigid Calcic Argiudolls 1.2

HaA Hamerly clay loam, 0–3% slopes Fine-loamy, mixed, superactive, frigid Aeric Calciaquolls 53.1

HnB Hattie–Nutley clays, 2–6% slopes Fine, smectitic, frigid Aquic Hapluderts, Fine, smectitic, frigid Chromic Hapluderts 2.1

Ho Hegne clay Fine, smectitic, frigid Typic Calciaquerts 0.7

NhA Nutley–Hattie clays, 0–2% slopes Fine, smectitic, frigid Chromic Hapluderts, Fine, smectitic, frigid Aquic Hapluderts 5.4

Pa Parnell silty clay loam Fine, smectitic, frigid Vertic Argiaquolls 9.7

Pf Parnell and Flom soils Fine, smectitic, frigid Vertic Argiaquolls; fine-loamy, mixed, superactive, frigid Typic 
Endoaquolls

4.5

To Tonka loam Fine, smectitic, frigid Argiaquic Argialbolls 0.4

Va Vallers silty clay loam Fine-loamy, mixed, superactive, frigid Typic Calciaquolls 1.6
† Source: USDA-NRCS Soil Survey geographic database (Soil Survey Staff, 2016).

Table 2. Summary of agronomic management practices, manure C additions, and crop C removal at the study site in west central 
Minnesota over the study period. 

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

East field

Crop Corn Corn Corn Corn Corn Corn Corn Corn Corn Corn

Manure application Inj.† Inj. Inj. NA¶ Fert.‡ Fert. Fert. Fert. Fert. Fert.

Manure C applied, Mg ha-1 2.8 2.2 1.7 0 2.3 0.4 1.0 1.5 0.2 0.1

Crop C removed, Mg ha-1 –§ 4.7 7.6 9.4 8.8 7.9 9.0 8.7 7.6 7.4

Irrigation, mm NA NA NA 102 126 52 106 155 30 0

West field

Crop Corn Corn–rye Rye–corn Corn Corn Corn Corn Alfalfa Alfalfa Alfalfa–
orchardgrass

Manure application Inj. Inj. Inj. Inj. Inj. Inj. Inj. NA Aer. Aer.

Manure C applied, Mg ha-1 2.8 2.2 1.7 0.8 0.9 0.9 0.9 0 0.6 0.7

Crop C removed, Mg ha-1 – 4.9 6.5 9.3 9.4 7.5 9.1 2.2 5.7 5.7

Irrigation, mm NA NA NA 62 59 0 130 65 42 10
† Inj., injected; Fert., fertigated; Aer. aerway slurry applicator.
‡ From 2010 to 2015, manure was applied in the east field via center pivot irrigation, except in pivot corners where it was injected.
§ Crop C removal in harvest was not estimated in 2006.
¶NA, not applicable.
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of 16 to 18 cm and rates of 97,000 to 150,000 L ha–1. Rates of 
manure injection were determined by desired N rates. In 2006, 
manure was pumped directly from the stirred lagoon, but in 
all other years, the manure slurry was screened to remove some 
solids before injection. After manure applications in 2006 and 
2007, the field was tilled to a depth of 23 to 30 cm with a disk 
ripper (Ecolo-Tiger 870, Case IH, Racine, WI); from 2008 to 
2012, tillage occurred before manure application. Dates of ma-
nure injection ranged from 28 August to 4 November over this 
period. No manure was applied in 2013 to alfalfa; however, in 
2014 and 2015, manure was applied to alfalfa after the first har-
vest via subsurface deposition slurry applicator (Aerway SSD, 
Holland Equipment Ltd., Norwich, ON, Canada) at rates of 
82,000 and 96,000 L ha–1, respectively, and no tillage was used.

Manure management in the east field was identical to that 
of the west from 2006 to 2008, but no manure was applied in the 
east field in 2009. Starting in 2010, manure was applied to the 
east field via a center-pivot irrigation system (i.e., fertigation) at 
53,000 to 150,000 L ha–1 on dates ranging from 25 June to 16 
July. In 2015, manure was applied to only about one-third of the 
east field because of an irrigator malfunction. Mineral fertilizer 
was applied to the remainder of the field through the irrigator. In 
the pivot corners where fertigation was not possible, manure was 
injected each year at similar rates as in the west field. Fall tillage 
in the east field occurred after corn silage harvest, applying simi-
lar practices as in the west field.

For injected dairy slurry, grab samples of the manure were 
obtained from the pump station just prior to or during applica-
tion. For fertigated dairy slurry, sample containers were placed 
in the field during fertigation to collect grab samples. Samples 
were analyzed for dry matter content by a commercial laboratory 
(Agvise Labs, Benson, MN). In 2006, manure C was determined 
using an Elementar Variomax C/N analyzer (Elementar, Hanau, 
Germany). On the basis of the 2006 analysis, the manure C in re-
maining years was calculated as a constant fraction (442.5 g kg–1) 
of dry matter content. For both fields, total C applied as manure 
ranged from 0.1 to 2.3 Mg C ha–1 yr–1 and generally declined 
over the study period, corresponding to reduced N application 
rates and use of anaerobic digestion.

Soil Sampling
Soil samples were collected in fall after the corn silage har-

vest and before manure application, on 8 Sept. 2006, 25 Aug 
and 10 Sept. 2015. Samples were collected at 49 locations in 
each field in a grid pattern with approximately 113 m between 
sample locations (Fig. 1). Samples were collected to a depth of 
90 cm with a hydraulic sampler with a core inner diameter of 
6.5 cm. One core was collected for chemical and one for physical 
analysis, and cores were subdivided into 0 to 15-, 15 to 30-, 30 
to 60-, and 60 to 90-cm layers. The uppermost segment of the 
cores taken for chemical analysis was further subdivided into 0 
to 5- and 5 to 15-cm layers. Samples for chemical analysis were 
dried at 37°C and ground to <0.5 mm, and samples for physical 
analysis were dried at 105°C and their core dry weights were ob-

tained. Samples were analyzed via dry combustion, and SOC was 
calculated as total C less inorganic C (Bremner and Mulvaney, 
1982; Wagner et al., 1998). Soil organic C stocks at each sam-
pling point were calculated via equivalent soil mass methods 
(Wendt, 2012; Wendt and Hauser, 2013) for four soil mass layers 
(0–2000, 2000–4000, 4000–8000, and 8000–12,000 Mg ha–1). 
The average depth to equivalent soil mass for these layers was 
17, 32, 61, and 88 cm, which corresponds closely with our tar-
get sampling depths of 15, 30, 60, and 90 cm. To calculate SOC 
stocks in the 0 to 15-cm layer, a depth-weighted average SOC 
concentration was calculated with SOC values from the 0 to 
5-cm and 5 to 15-cm layers. Soil layer masses were estimated via 
physical analysis of the core dry weights. Results are reported on 
the basis of the targeted sampling depth layers.

Regression Kriging
Fine-resolution auxiliary variables available for each field 

included relative elevation, topographic wetness index (TWI), 
soil type, latitude, longitude, and distance to the nearest tile line 
(Dist. tile) for each sampling point. Elevation was derived from 
a 1-m resolution LiDAR digital elevation model (DEM) of the 
site obtained from the Minnesota Geospatial Information Office 
(MnGeo, 2016). Topographic wetness index was calculated for 
each 1- by 1-m cell in the digital elevation model as ln(a ÷ tanβ), 
where a is the local upslope area draining through a certain point 
per unit of contour length (flow accumulation) and β is the local 
slope in radians (Sørensen et al., 2006). Flow accumulation was 
calculated with a D-infinity flow algorithm (Tarboton, 1997). A 
digital soil map was downloaded from the national Soil Survey 
Geographic database (Soil Survey Staff, 2016) and was used to 
classify the study area based on soil type. Latitude and longitude 
were calculated for each grid location. Distance to the nearest 
subsurface tile drainage line (in m) was calculated for each grid 
location by using digital maps of the tile drainage system ob-
tained from the farm operator. This variable was calculated for 
both 2006 and 2015 to account for differences in drainage pat-
terns as a result of tile line additions in 2009. Additional auxil-
iary rasters created for regression included irrigation (yes vs. no) 
and field (west vs. east). All auxiliary variables were resampled to 
1-m resolution raster datasets for analysis.

Statistical Analysis
Linear regression models for predicting SOC stocks were 

developed with elevation, TWI, Dist. tile, soil type, irrigation, 
latitude, longitude, and field as predictors. Preliminary analysis re-
vealed significant effects of year and depth on SOC stocks; there-
fore, a unique regression model was fitted for each depth within 
year. Shapiro–Wilk tests for normality revealed non-normal dis-
tributions for SOC stocks in the 30 to 60-cm and 60 to 90-cm lay-
ers. These data were square-root or log transformed to ensure nor-
mality for regression analysis. Testing for multicollinearity among 
predictors using the vif function in the “usdm” R package (Naimi, 
2013) revealed that no predictors exhibited significant variance 
inflation (>3). Therefore, all predictors were included in the full 
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model. Final regression models for kriging included only variables 
with P ≤ 0.1 as determined by post-hoc ANOVA of the full regres-
sion model. Variograms were fit with the autofitvariogram func-
tion and kriging was conducted with the autokrige function in the 
“automap” R package (Hiemstra et al., 2009). All points were used 
for variogram construction and model fitting. As a result, cross-
validation was done by leaving out one point at a time and krig-
ing an estimated value at its location from the remaining samples 
(Isaaks and Srivastava, 1989; Pebesma, 2004). Cross-validation 
statistics included the root mean square error (RMSE) for predic-
tion and the R2 for observed versus predicted SOC stocks. When 
significant effects of field and irrigation were observed, we used 
the extract function in the “raster” R package to calculate mean 
SOC stocks for fields and irrigated vs. rain-fed areas by using poly-
gons of the target areas. When no significant regression predic-
tors were identified, mean SOC stocks were compared between 
years using paired t-tests. All analyses were conducted in R 3.3.0 
(R Core Team, 2016).

Results and Discussion
Summary of SOC Stocks and Auxiliary Variables

In 2006, SOC stocks ranged from 0.1 to 101.5 Mg C ha–1 
across all depths, and mean SOC stocks were 65.4, 50.9, 36.6, 
and 15.8 Mg C ha–1 in the 0 to 15-, 15 to 30-, 30 to 60-, and 
60 to 90-cm soil layers, respectively (Table 3). By 2015, SOC 
stocks ranged from 2.2 to 111.0 Mg C ha–1 across all depths, and 
mean SOC stocks were 67.0, 50.4, 41.4, and 19.8 Mg C ha–1 
in the 0 to 15-, 15 to 30-, 30 to 60-, and 60 to 90-cm soil lay-
ers, respectively. Elevation ranged from 352.6 to 357.5 m across 
both fields, with a mean value of 355.8 
m, and TWI ranged from 2.0 to 25.0 
with a mean value of 7.5. In 2006, Dist. 
tile ranged from 0.9 to 214.2 m, with a 
mean value of 31.9 m. After the instal-
lation of new tile lines in 2009, Dist. 
tile ranged from less than 1 to 56.3 m, 
with a mean value of 13.8 m.

Regression Analysis
Regression analysis for the 0 to 

15-cm layer indicated that elevation, 
TWI, and field were significant pre-
dictors of SOC stocks for both 2006 
and 2015 (Table 4), and irrigation was 
a significant predictor for 2015. This 
pattern was repeated for 15 to 30-cm 
SOC stocks, except that field was not 
significant for 2006. Regression pre-
dictors accounted for 58, 55, 5%, and 
48% of the variation in SOC stocks 
for the 2006 0 to 15-, 2015 0 to 15-, 
2006 15 to 30-, and 2015 15 to 30-cm 
layers, respectively. Auxiliary variables 
had little ability to predict 2006 SOC 

stocks in the 30 to 60-cm and 60 to 90-cm soil layers. For 2015, 
soil type was a significant predictor for 30 to 60-cm and 60 to 
90-cm SOC stocks, and Dist. tile was significant for 30 to 60-cm 
stocks only.

Spatial Autocorrelation and Variogram Estimation
Spatial correlation structures of SOC stocks varied among 

depth layers and years as indicated by the fitted variogram mod-
el, sill, range, and nugget/sill ratio (Table 5). In 2015, the 15 to 
30-cm SOC stock had a nugget/sill ratio larger than 0.96, indi-
cating poor spatial correlation and a high degree of unexplained 

Table 3. Descriptive statistics for soil organic C (SOC) stocks and 
auxiliary variables at the study site in west central Minnesota.

Parameter Min. Mean Med. Max. SD

2006 SOC

0–15 cm, Mg ha-1 (n = 98) 28.2 65.4 65.5 101.5 13.0

15–30 cm, Mg ha-1 (n = 98) 21.5 50.9 50.1 86.7 14.7

30–60 cm, Mg ha-1 (n = 97) 0.1 36.6 37.2 101.8 21.6

60–90 cm, Mg ha-1 (n = 94) 0.1 15.8 13.9 70.4 14.2

2015 SOC

0–15 cm, Mg ha-1 (n = 98) 47.3 67.0 66.5 96.0 9.2

15–30 cm, Mg ha-1 (n = 98) 18.4 50.4 50.5 81.5 13.7

30–60 cm, Mg ha-1 (n = 98) 7.9 41.4 38.8 111.0 18.2

60– 90 cm, Mg ha-1 (n = 98) 2.2 19.8 18.3 82.2 10.2

Elevation, m† 352.6 355.8 355.9 357.5 0.8

TWI 2.0 7.5 6.0 25.0 4.2

Dist. tile 2006, m 0.9 31.9 23.0 214.2 36.7

Dist. tile 2015, m 0.0 13.8 11.4 56.3 11.1
† �n = 1274403 for elevation, topographic wetness index (TWI), and 

distance to the nearest tile line (Dist. tile) (797 ´ 1599 raster).

Table 4. Tests of fixed effects on soil organic C (SOC) stocks by soil layer and year at the 
study site in west central Minnesota

Effect† df 0–15 cm 15–30 cm

2006 2015 2006 2015

F Pr (>F) F Pr (>F) F Pr (>F) F Pr (>F)

Elevation 1 16.76 <0.001*** 21.91 <0.001*** 5.64 0.020** 11.96 <0.001***
TWI 1 10.25 0.002*** 11.84 <0.001*** 4.37 0.040** 5.01 0.028**
Field 1 19.2 <0.001*** 4.5 0.022** 1.56 0.214 5.71 0.019**
Soil type 9 1.47 0.170 1.07 0.394 1.11 0.295 1.11 0.365
Irrigation 1 0.32 0.572 2.97 0.088* 0.02 0.883 4.09 0.046**
Dist. tile 1 0.12 0.735 0.05 0.829 0.67 0.416 0.79 0.374
Lat 1 0.03 0.864 0.67 0.413 0.01 0.933 0.04 0.852
Lon 1 0.18 0.669 0.44 0.509 0.56 0.456 0.08 0.777

30–60 cm 60–90 cm

2006 2015 2006 2015

F Pr (>F) F Pr (>F) F Pr (>F) F Pr (>F)

Elevation 1 0.27 0.612 1.41 0.238 0.00 0.946 0.15 0.698
TWI 1 1.49 0.226 0.45 0.504 0.82 0.367 0.21 0.644
Field 1 0.19 0.660 0.44 0.510 0.16 0.688 0.02 0.881
Soil type 9 1.51 0.158 2.50 0.014** 0.79 0.620 3.82 <0.001***
Irrigation 1 0.01 0.935 1.15 0.286 0.03 0.864 0.11 0.744
Dist. tile 1 0.03 0.861 3.39 0.069* 0.01 0.929 0.40 0.530
Lat 1 1.06 0.307 0.53 0.471 1.01 0.356 0.02 0.876
Lon 1 0.02 0.901 1.20 0.277 0.00 0.98 1.27 0.262
* Significant at the 0.1 probability level. 
** Significant at the 0.05 probability level. 
*** Significant at the 0.01 probability level. 
† TWI, topographic wetness index; Dist. tile, distance to the nearest tile line.
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variability (Cambardella et al., 1994). For all other 0 to 15-cm 
and 15 to 30-cm layer variograms, the nugget/sill ratio was below 
0.30, indicating moderate to strong spatial correlation of SOC 
stocks. Variogram analysis indicated poor or no spatial correla-
tion for SOC stocks in 30 to 60-cm and 60 to 90-cm soil layers.

Reported ranges for spatial correlation of SOC or soil or-
ganic matter vary widely depending on soil type, land use, and, 
as we have found here, also with soil depth. Typical SOC correla-
tion ranges reported for agricultural soils are between 65 and 300 
m, with nugget/sill ratios from 0 to 0.37 for samples up to 30 cm 
depth (Cambardella et al., 1994; Ping and Dobermann, 2006; 
Simbahan et al., 2006; Worsham et al., 2010; Sherpa et al., 2016). 
In the present study, the range varied from 68 to 172 m for vario-
grams with well-structured spatial covariance (upper profile) and 
extended up to 698 m where the spatial structure was weak (below 
30 cm). Spatial correlation of topsoil SOC in the present study was 

comparable to that in literature reports, but correlation 
declined with soil depth as indicated by increased range 
and nugget/sill ratio. Thus our sampling distance of 113 
m provided adequate parameters for variogram estima-
tion in the upper soil profile (to 30 cm) but was insuf-
ficient for the deeper soil layers.

Predicted SOC Stocks and  
Changes over Time

In the 0 to 15-cm layer, predicted SOC stocks in 
2006 ranged from 30.7 to 107.0 Mg C ha–1, with the 
highest values associated with areas of low elevation 

and high TWI (Fig. 2a). For instance, the highest SOC value 
of 107.0 Mg C ha–1 was predicted in the east field, where the 
relative elevation was 355.2 m and TWI was 23, representing the 
20th and 99th percentiles for these data, respectively. Conversely, 
the lowest SOC value of 30.7 Mg C ha–1 was predicted in the 
west field, where the elevation was 356.6 m and TWI was 3, rep-
resenting the 88th and third percentile, respectively. Mean SOC 
stocks in the 0 to 15-cm layer were calculated for each field, and 
stocks were greater in the east (73.3 Mg C ha–1) than in the west 
field (60.5 Mg C ha–1). According to the landowner, historical 
management of these two fields was very similar, dating back to 
the early 1970s. However, estimates of 2006 SOC stocks differed 
by nearly 13 Mg C ha–1, which suggests either drastic differences 
in agronomic management prior to initiation of the study or 
some unimagined presettlement difference between fields.

Table 5. Parameters for omnidirectional semivariograms of soil organic C 
(SOC) stocks by year and soil layer at the study site in west central Minnesota.

Year Layer Fitted model† Nugget Sill Range (m) Nugget/Sill

2006 0–15 cm Sph 30.0 108.4 171.6 0.28
15–30 cm Ste 0.0 193.6 68.2 0.0
30–60 cm Ste 391.1 402.9 605.4 0.97
60–90 cm Sph 184.7 185.5 697.8 1.0

2015 0–15 cm Ste 0.0 60.2 72.2 0.0
15–30 cm Sph 123.1 127.8 404.6 0.96
30–60 cm Ste 239.9 248.0 100.8 0.97
60–90 cm Sph 61.4 67.4 102.4 0.90

† Sph, spherical model; Ste, Matern Stein’s parameterization model.

Fig. 2. Maps of regression-kriged soil organic C (SOC) stocks (Mg C ha-1) for the 0 to 15-cm soil layer in (a) 2006 and (b) 2015, and for the 15 to 
30-cm soil layer in (c) 2006 and (d) 2015.
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Strong relationships between SOC and terrain attributes can 
be found throughout the literature because of the direct impact 
of terrain on water flow and soil moisture patterns (e.g., Moore 
et al., 1993; Sumfleth and Duttmann, 2008; Pei et al., 2010). Soil 
moisture patterns regulate microbial metabolism and rates of de-
composition (Linn and Doran, 1984) and, in doing so, also ex-
ert significant influence on SOC dynamics (Parton et al., 1987; 
Burke et al., 1989). Topographic wetness index quantitatively 
represents the balance between water accumulation and drainage 
conditions at the local scale, with increasing values representing 
greater water accumulation (Pei et al., 2010). As such, it represents 
long-term soil moisture patterns and therefore closely relates to 
SOC dynamics, as we and others have found. For example, Moore 
et al. (1993) found that TWI was positively correlated (r = 0.57) 
with soil organic matter in a northeastern Colorado agroecosys-
tem, which is consistent with our findings here.

By 2015, predicted SOC stocks in the 0 to 15-cm layer ranged 
from 42.2 to 108.9 Mg ha–1, and mean stocks remained greater in 
the east (71.3 Mg C ha–1) than in the west field (65.0 Mg C ha–1; 
(Fig. 2b). However, SOC stocks in the west field have increased 
since 2006 (+4.5 ± 4.2 Mg C ha–1) but there was no detectable 
change in the east field (–2.0 ± 3.7 Mg C ha–1) over the study 
period (Fig. 3a). The increase in the west field was caused by SOC 
gain in the irrigated portion of the field (+5.3 ± 4.3 Mg C ha–1), 
whereas no change was observed in the rain-fed pivot corners 
(+1.6 ± 3.5 Mg C ha–1). In contrast, no effect of irrigation was 
observed in the east field, where, on average, irrigation rates ex-
ceeded those of the west field by 45 mm yr–1. Soil organic C gains 
in the west field appear to be greatest in locations where SOC 
was lowest in 2006 (i.e., areas of relatively high elevation and low 
TWI). Similarly, the areas of highest SOC in the east field ap-
peared to lose SOC over the study period, whereas those low in 
SOC showed slight gains. Rapid gains in SOC on the top slopes 
suggest that these areas were previously depleted. These gains may 
be related to improved soil stabilization and reduced erosional 
transfer of organic matter to lower slope positions, particularly in 
the west field, where alfalfa and a rye cover crop were integrated 
into the rotation.

Differing effects of irrigation between fields are likely to be 
related to differences in the size of the initial C stocks and irriga-
tion rates. Soils with relatively low SOC tend to respond more rap-
idly to management than those near equilibrium (Sartori and Lal, 
2006). For example, after 15 yr of irrigation in Nebraska, Lueking 
and Schepers (1985) reported an increase of 0.11 Mg C ha–1 yr–1 
for sandy soils with low C content. However, in C-rich soils, 
Dersch and Böhm (2001) found that 21 yr of irrigation in Austria 
decreased SOC by between 0.04 and 0.13 Mg C ha–1 yr–1, which 
they attributed to a higher mineralization rate under the wetter 
soil conditions. Our findings are consistent with the aforemen-
tioned studies in that overall SOC gain was only found in the west 
field where initial SOC was relatively low and irrigation rates were 
low compared with the east field. In the east field, higher irriga-
tion resulted in a net C balance that was neutral or perhaps slightly 
negative, similar to the findings of Dersch and Böhm (2001).

In the 15 to 30-cm layer, predicted SOC stocks in 2006 
ranged from 11.9 to 96.6 Mg C ha–1, which was generally lower 
than topsoil SOC stocks but with similar spatial patterns in re-
lation to elevation and TWI (Fig. 2c). Mean SOC stocks were 
similar in the east and west fields (mean of 52.3 Mg C ha–1). By 
2015, predicted SOC stocks ranged from 24.7 to 86.7 Mg C ha–1 
(Fig. 2d) and mean SOC stocks were greater in the east (55.8 Mg 
C ha–1) than in the west field (46.8 Mg C ha–1). No change in 
SOC stocks was observed in the east (+0.27 ± 5.6 Mg C ha–1) 
or west fields (–2.1 ± 6.3 Mg C ha–1) over the study period (Fig. 
3b). However, when averaged across fields, mean SOC stocks 
were greater in irrigated (52.9 Mg C ha–1) than in the rain-fed 
areas (46.2 Mg C ha–1) by 2015. Soil organic C gains in the 15 
to 30-cm layer occurred where the initial SOC was high, whereas 
the losses occurred where the initial SOC was low. This is in con-
trast to the topsoil layer, where gains were found in areas of low 
initial SOC.

The application of geostatistical techniques requires data 
that exhibit a spatial structure (Trangmar et al., 1986). Therefore, 
no spatial interpolation was conducted for SOC stocks in 30 to 
60-cm and 60 to 90-cm soil layers because of the lack of spatial 
correlation among observations and the poor ability of auxiliary 
variables to predict SOC stocks. Consequently, simple means 

Fig. 3. Maps of changes in regression-kriged soil organic C (SOC) stocks (Mg C ha-1) at the study site from 2006 to 2015 for (a) the 0 to 15-cm 
soil layer and (b) the 15 to 30-cm soil layer.
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were used to calculate SOC stocks in these layers for each year, 
and differences between years were determined with paired t-tests. 
Over the entire study area, mean SOC stocks in the 30 to 60-cm 
layer increased from 36.7 Mg C ha–1 in 2006 to 41.4 Mg C ha–1 
in 2015 (t = 2.35, p = 0.021), a gain of 4.7 Mg C ha–1. Similarly, 
SOC stocks in the 60 to 90-cm soil layer increased from 15.9 to 
19.8 Mg C ha–1 over the study period (t = 3.14, p = 0.002), a gain 
of 3.9 Mg C ha–1. Regression models for 2015 SOC stocks in the 
30 to 60-cm and 60 to 90-cm soil layers were improved with the 
inclusion of a term for soil type. However, no significant differ-
ences in SOC stocks were observed among soil types.

The lack of spatial interpolation in lower soil layers pre-
cludes an analysis of SOC change across depths (0–90 cm); sum-
mation of sample point data from deeper layers with interpolated 
raster data from upper layers would be methodologically un-
sound. Hence, we cannot provide confidence-bounded estimates 
of SOC change across the entire sampled profile. However, for 
the sake of discussion, we consider that SOC stock in the west 
field increased in all but the 15 to 30-cm layer, gaining 13.1 Mg C 
ha–1 across the other three layers. The east field showed relatively 
stable SOC in the top two layers, whereas the deeper two lay-
ers gained a combined 8.6 Mg C ha–1. These gains suggest that 
typical field management practices associated with large, mod-
ern dairies can indeed sequester SOC. Both manure application 
(Sommerfeldt et al., 1988; Maillard and Angers, 2014) and irri-
gation (Lueking and Schepers, 1985; Denef et al., 2008) are com-
monly shown to increase surface soil SOC under certain condi-
tions. Reports of increased SOC in deeper soil layers in response 
to these factors are less common. However, Mikha et al. (2017) 
recently showed that long-term manure applications increased 
total SOC to 90 cm depth and increased mineral-associated or-
ganic matter C up to 30 cm depth relative to mineral fertilizer 

applications on a cropped very-fine sandy loam soil in Nebraska. 
The authors also showed that the fraction of total SOC associ-
ated with mineral-associated organic matter C increases with soil 
depth, especially in manured systems. Application of liquid dairy 
manure can increase dissolved organic C leaching through the 
soil profile (Royer et al., 2007), as can any activities that stimu-
late mineralization of organic matter (Kalbitz et al., 2000), such 
as irrigation. In subsoil horizons with low C contents, dissolved 
organic C leached from the topsoil may be adsorbed strongly to 
mineral surfaces (Kalbitz et al., 2000). Thus the changes in deep 
soil layers observed in the present study may be related to move-
ment of dissolved organic C through the profile as a result of liq-
uid manure application and irrigation.

In the upper soil layers, manure application method and 
cropping differences probably played a role in the observed dif-
ferences between fields. Manure was digested prior to application 
in most years (2009–2015). This reduces the amount of read-
ily oxidizable C in the slurry, leaving behind more recalcitrant 
C compounds (Holly et al., 2017). Undoubtedly, this results 
in less initial decomposition following manure application and 
probably expedites the formation of soil organic matter relative 
to undigested manures. Powlson et al. (2012) found that SOC 
gain was threefold greater using digested biosolids than raw farm 
manures in a long-term study in the UK. The authors attributed 
this to the recalcitrance of C in biosolids, reflecting the greater 
degree of decomposition that had already occurred during the di-
gestion process. We suggest that injection of manure slurry deep-
er into the profile may further assist in the physical protection of 
recalcitrant C compounds; this may be part of the reason why 
we observed greater SOC gain in the west field. Finally, alfalfa 
root biomass and rhizodeposition surely contributed to gains in 
SOC in the west field. In as little as 3 yr, alfalfa can increase soil 
aggregation and SOC relative to corn cropping (Angers, 1992).

Cross-validation
Leave-one-out cross-validation showed excellent predictive 

ability for SOC stocks in the 0 to 15-cm layer, with R2 = 0.89 for 
both 2006 and 2015 (Fig. 4). For the 15 to 30-cm layer, the R2 
between observed and predicted SOC stock was also high in 2006 
(R2 = 0.95) but was substantially lower for 2015 (R2 = 0.51). The 
root mean square error of prediction ranged from 3.6 to 9.2 Mg 
C ha–1, and was highest for the 15 to 30-cm layer in 2015. Cross-
validation was not conducted for 30 to 60-cm and 60 to 90-cm soil 
layers, since SOC stocks were estimated with simple means.

The prediction performance of regression kriging depends, 
in part, on the relationship between the target variable and the ex-
planatory co-variables. The closer the dependency and the more 
systematically the primary variables vary across the landscape, the 
more the prediction performance of the regression kriging model 
increases (Sumfleth and Duttmann, 2008). Elevation, TWI, 
field, and irrigation showed strong systematic variation with 
SOC at our study site, which contributed to the very high pre-
diction efficiency of the analyses here. However, prediction per-
formance also depends on the degree of spatial correlation. Soil 

Fig. 4. Comparison of predicted and measured soil organic C (SOC) 
stocks (Mg C ha-1) by year for 0 to 15-cm (top panels) and 15 to 
30-cm (bottom panels) soil layers.
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properties with a strong spatial structure can be mapped more 
accurately than those with a weak structure (Kravchenko, 2003). 
This was evident for the 2015 15 to 30-cm layer, where poor 
predictive ability and high error clearly resulted from poor spa-
tial correlation, in spite of the fact that regression predictors ac-
counted for nearly half of the variability in SOC stocks. Sumfleth 
and Duttmann (2008) note that strong spatial dependences are 
usually caused by intrinsic factors (e.g., soil type, terrain), but can 
be weakened by extrinsic factors such as soil management and 
tillage practices. Management practices, especially irrigation and 
tile drainage, probably contributed to a homogenization of SOC 
over the study period, which would, in turn, reduce spatial cor-
relation and prediction performance in this layer.

Conclusions
Ongoing efforts to mitigate GHG emissions and adapt 

to shifts in climate require the ability to accurately and cost-
effectively verify changes in SOC stocks. Our results show that 
regression kriging with easily acquired auxiliary variables offers 
a highly accurate method of monitoring SOC stock changes to 
30-cm depth in this agroecosystem, where the spatial distribu-
tion of SOC corresponded closely with elevation, TWI, and ir-
rigation. High-resolution LiDAR data are readily available for all 
of Minnesota and a number of other states, and the relevant vari-
ables used here are easily derived. Future research should evaluate 
the potential of regression kriging with this data for accurately 
quantifying management-induced SOC changes at a broader va-
riety of sites and spatial scales. For deeper soil increments, a lack 
of spatial structure and lack of relationships between SOC stocks 
and auxiliary variables was found, suggesting that high sampling 
densities or alternative interpolation techniques are required to 
monitor SOC changes. Finally, after 10 yr of monitoring, SOC 
stocks to 90 cm depth have been maintained or increased at this 
farm, suggesting that typical field management practices associ-
ated with large, modern dairies can sequester SOC.
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